Homework 0

For practice. Do not hand in. Stars indicate more challenging problems.

1 Find a vector \boldsymbol{x} for which $\boldsymbol{u}(\boldsymbol{x} \cdot \boldsymbol{u})+\boldsymbol{x}=\boldsymbol{v}$ where \boldsymbol{u} and \boldsymbol{v} are given vectors.

2 Find the locations of the minima of the function $f(x, y)=2 x^{2}+y^{2}-3 y+2$ in the plane. Now do the same in the circle of unit radius centered at the origin.

3 Calculate

- $\nabla^{2} r^{-n}$
- $\nabla(\Omega \cdot \boldsymbol{x})$ where Ω is a constant vector
- ∇f, where f is the scalar function $f \equiv A_{i j} x_{i} x_{j}+B_{j} x_{j}+C$. What happens if A is a symmetric matrix?

4 Compute the surface integral $-\int_{S} p \mathrm{~d} S$ where the integrand is given by $p(z)=p_{0}+$ $N^{2} z^{2} / 2 g$, where S is a closed surface enclosing a volume V. [Hint: think about the location of center of mass of the volume.]

5* If the vector field $\boldsymbol{u}(\boldsymbol{x})$ is irrotational, show that for a closed volume

$$
\int_{V}|\boldsymbol{u}|^{2} \mathrm{~d} x=\int_{S} \phi \frac{\partial \phi}{\partial n} \mathrm{~d} S
$$

What is ϕ in this expression? [Optional: what happens if V is unbounded?]

6* Calculate the integral

$$
\int_{V} x_{i} x_{j} x_{k} \mathrm{~d} V
$$

over a sphere of radius a. [Hint: think about isotropic third-rank tensors.]
7 Find the principal axes of the tensor field $t_{i j}=x_{i} x_{j}-\delta_{i j} r$ at the point $(2,1,-1)$.

