Homework I

Due Jan 19, 2018.

1 [Acheson 6.1] Shows that the expression

$$
t_{i}=-p n_{i}+\mu n_{j}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

may be written in vector form as

$$
\boldsymbol{t}=-p \boldsymbol{n}+\mu[2(\boldsymbol{n} \cdot \nabla) \boldsymbol{u}+\boldsymbol{n} \times(\nabla \times \boldsymbol{u})]
$$

by rewriting the vector expression in suffices.

2 Poiseuille flow through a pipe with an elliptic cross-section has the velocity field $u=$ $(u, 0,0)$ with $u=U\left(1-y^{2} / a^{2}-z^{2} / b^{2}\right)$. Compute the shear stress $f_{i}=\tau_{i j} n_{j}$ acting on the plane $x=0$, where

$$
\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) .
$$

Where is the stress largest in magnitude and where is it smallest?

3 Show that the two-dimensional velocity field $\boldsymbol{u}(r, \theta)$ given by $\boldsymbol{u}=\nabla \phi$, where $\phi=$ $U\left(r+a^{2} / r\right) \cos \theta+\Gamma \theta /(2 \pi)$, satisfies $u \cdot \boldsymbol{n}=0$ on the circle $r=a$. Compute $-\int_{S} p \mathrm{~d} S$ and $-\boldsymbol{k} \cdot \int_{S} p \boldsymbol{x} \times \mathrm{d} S$ over the circle $r=a$, where $p=-\frac{1}{2} \rho|\boldsymbol{u}|^{2}$.

4 [Kundu \& Cohen 2.6] For the velocity field

$$
u=\frac{x}{1+t^{\prime}}, \quad v=\frac{2 y}{2+t^{\prime}}
$$

find the streamlines, the particle path starting at $(1,1)$ at $t=0$, and the streakline passing through $(1,1)$ starting at $t=0$.

