Homework IV

Due Feb 9, 2018.

1 This question treats two-dimensional incompressible flow of a Newtonian fluid.
(i) Show that the velocity can be written as $u_{i}=\epsilon_{i j 3} \partial \psi / \partial x_{j}$ where ψ is the streamfunction.
(ii) Show that the vorticity out of the plane is given by $\omega=-\nabla^{2} \psi$.
(iii) For the streamfunction $\psi=a_{i j} x_{i} x_{j}$ where $a_{i 3}=a_{3 j}=0$, calculate the velocity and vorticity. What is the condition on a for the flow to be irrotational?
(iv) What is the viscous term in the Navier-Stokes equation for this flow?
(v) What is the dissipation rate ϕ ?

2 [Kundu 4.8] Show that the thrust developed by a stationary rocket motor is $F=$ $\rho A U^{2}+A\left(p-p_{a t m}\right)$, where $p_{a t m}$ is the atmospheric pressure, and p, ρ, A, and U are, respectively, the pressure, density, area, and velocity of the fluid at the nozzle exit.

3 Consider a fluid at rest with variable density. Explain why the total stress tensor is $\tau_{i j}=-p \delta_{i j}$. Write down the momentum equation with a gravity field (force/unit area) written as $\nabla \phi$. Derive the relation $\nabla \rho \times \nabla \phi=\mathbf{0}$.

4 Consider incompressible flow with constant density through an axisymmetric nozzle of length L with varying cross-section. Let x the coordinate along the axis of the nozzle and z be the radial coordinate. The local radius of the nozzle is $R(x)$. Assume that the fluid velocity in the nozzle can be expressed as

$$
\boldsymbol{u}(\boldsymbol{x})=v_{x}(x) \boldsymbol{e}_{x}-\alpha r \boldsymbol{e}_{r},
$$

where α is a constant.
(i) Use the continuity equation to solve for $u_{x}(x)$ with the condition $u_{x}(0)=U_{0}$ at the entrance of the nozzle.
(ii) Knowing that the velocity at the nozzle wall is tangential to the nozzle, obtain an expression for the shape $R(x)$ of the nozzle in terms of α, U_{0} and the entrance radius $R_{0}=R(0)$. Realizing that the nozzle shape must be independent of U_{0}, explain why α and U_{0} must be proportional.
(iii) Calculate the flow rates through the entrance and exit of the nozzle located at $x=0$ and $x=L$. The two flow rates should be equal. Discuss.

