http://web.eng.ucsd.edu/~sgls/MAE210A_2018

Midterm Solution

1 Particle path: first solve

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \cos t, \qquad \frac{\mathrm{d}z}{\mathrm{d}t} = -z.$$

This gives $x(t) = \sin t$ and $z(t) = e^{-t}$ using the initial condition. Now solve

$$\frac{\mathrm{d}y}{\mathrm{d}t} = x = \sin t,$$

giving $y(t) = 1 - \cos t$. Streamlines at t = 0: solve

$$\frac{\mathrm{d}x}{1} = \frac{\mathrm{d}y}{x} = -\frac{\mathrm{d}z}{z}.$$

The coordinate x can be used to parameterize the streamlines, giving $y = x^2/2 + A$, $z = Be^{-x}$. Streaklines: solve the particle path equations with initial position (0,0,1) at $t = t_*$, giving

$$x(t) = \sin t - \sin t_*, \quad y(t) = -\cos t - t\sin t_* + \cos t_* + t_*\sin t_*, \quad z(t) = e^{-t + t_*}.$$

At $t = \pi$, these give $(-\sin t_*, 1 - \pi \sin t_* + \cos t_* + t_* \sin t_*, e^{-\pi + t_*})$ with $0 \le t \le \pi$.

2 (i) The vorticity is in the *z*-direction and is given by $\omega = 2\Omega$ for r < a and $\omega = 0$ for r > a.

(ii) The circulation is the area integral of vorticity. The vorticity is piecewise constant. For R < a, the circulation is the area of the circle of radius R times 2Ω , so $\Gamma = 2\Omega\pi R^2$. For R > a, there is no vorticity outside the circle of radius a, so the circulation is the area of the circle of radius a times 2Ω , so $\Gamma = 2\Omega\pi a^2$.

(iii) There is no flow in the vertical direction, so

$$0 = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g,$$

which gives $p = -\rho gz + A(r)$. The radial equation gives

$$-\frac{1}{\rho}\frac{\partial p}{\partial r} = -\frac{u_{\theta}^2}{r} = \begin{cases} -\Omega^2 r & \text{for } 0 < r < a, \\ -\Omega^2 a^4 / r^3 & \text{for } a < r. \end{cases}$$

This gives

$$p = \begin{cases} \Omega^2 r^2 / 2 + B(z) & \text{for } 0 < r < a, \\ \Omega^2 a^4 / 2r^2 + B(z) & \text{for } a < r. \end{cases}$$

Hence

$$p = P_0 - \rho gz + \begin{cases} \Omega^2 r^2 / 2 & \text{for } 0 < r < a, \\ \Omega^2 a^4 / 2r^2 & \text{for } a < r. \end{cases}$$

The curves of constant p are given by $z = A + Br^2$ (parabolas) for r < a and by $z = C + Dr^{-2}$ for r > a, where A, B, C and D can be found from the previous expression.

3 (i) The steady and advective terms vanish. The y- and z-components of velocity vanish so p does not depend on y and z. The x-component gives

$$0 = -\frac{1}{\rho} \frac{\mathrm{d}p}{\mathrm{d}x} + \nu \frac{\mathrm{d}^2 u}{\mathrm{d}y^2} = -\frac{1}{\rho} \frac{\mathrm{d}p}{\mathrm{d}z} + 2A\nu.$$

(ii)

$$Q = \int_{-h}^{h} A(y^2 - h^2) \, \mathrm{d}y = -\frac{4Ah^3}{3}.$$

Hence $A = -3Q/4h^3 < 0$.

(ii) From (i) the pressure gradient is constant: $dp/dx = 2A\rho\nu = 2\mu A = -3\mu/2h^3$. The rate of strain e_{ij} and stress $\sigma_{ij} = -p\delta_{ij} + 2\mu e_{ij}$ tensors are

$$e_{ij} = \begin{pmatrix} 0 & Ay & 0 \\ Ay & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \sigma_{ij} = \begin{pmatrix} -2\mu Ax & 2\mu Ay & 0 \\ 2\mu Ay & -2\mu Ax & 0 \\ 0 & 0 & -2\mu Ax \end{pmatrix},$$

using $p = -2 - \nu Ax$ (i.e. setting the pressure to vanish at x = 0).

(iii) The shear stress is $\mu du/dy = 2\mu Ay$. At the boundaries, this is $2\mu Ah$, a negative constant. The force on the wall is minus the integral over area (per unit width), i.e. $F = -2\mu AhL = 3\mu QL/2h^2$ toward the right since Q > 0 (the fluid tries to drag the plate along with it).