Midterm Solution

1 Particle path: first solve

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\cos t, \quad \frac{\mathrm{~d} z}{\mathrm{~d} t}=-z
$$

This gives $x(t)=\sin t$ and $z(t)=\mathrm{e}^{-t}$ using the initial condition. Now solve

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=x=\sin t
$$

giving $y(t)=1-\cos t$. Streamlines at $t=0$: solve

$$
\frac{\mathrm{d} x}{1}=\frac{\mathrm{d} y}{x}=-\frac{\mathrm{d} z}{z} .
$$

The coordinate x can be used to parameterize the streamlines, giving $y=x^{2} / 2+A$, $z=B \mathrm{e}^{-x}$. Streaklines: solve the particle path equations with initial position $(0,0,1)$ at $t=t_{*}$, giving

$$
x(t)=\sin t-\sin t_{*}, \quad y(t)=-\cos t-t \sin t_{*}+\cos t_{*}+t_{*} \sin t_{*}, \quad z(t)=\mathrm{e}^{-t+t_{*}}
$$

At $t=\pi$, these give $\left(-\sin t_{*}, 1-\pi \sin t_{*}+\cos t_{*}+t_{*} \sin t_{*}, \mathrm{e}^{-\pi+t_{*}}\right)$ with $0 \leq t \leq \pi$.
2 (i) The vorticity is in the z-direction and is given by $\omega=2 \Omega$ for $r<a$ and $\omega=0$ for $r>a$.
(ii) The circulation is the area integral of vorticity. The vorticity is piecewise constant. For $R<a$, the circulation is the area of the circle of radius R times 2Ω, so $\Gamma=2 \Omega \pi R^{2}$. For $R>a$, there is no vorticity outside the circle of radius a, so the circulation is the area of the circle of radius a times 2Ω, so $\Gamma=2 \Omega \pi a^{2}$.
(iii) There is no flow in the vertical direction, so

$$
0=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g
$$

which gives $p=-\rho g z+A(r)$. The radial equation gives

$$
-\frac{1}{\rho} \frac{\partial p}{\partial r}=-\frac{u_{\theta}^{2}}{r}= \begin{cases}-\Omega^{2} r & \text { for } 0<r<a \\ -\Omega^{2} a^{4} / r^{3} & \text { for } a<r\end{cases}
$$

This gives

$$
p= \begin{cases}\Omega^{2} r^{2} / 2+B(z) & \text { for } 0<r<a \\ \Omega^{2} a^{4} / 2 r^{2}+B(z) & \text { for } a<r\end{cases}
$$

Hence

$$
p=P_{0}-\rho g z+ \begin{cases}\Omega^{2} r^{2} / 2 & \text { for } 0<r<a \\ \Omega^{2} a^{4} / 2 r^{2} & \text { for } a<r\end{cases}
$$

The curves of constant p are given by $z=A+B r^{2}$ (parabolas) for $r<a$ and by $z=$ $C+D r^{-2}$ for $r>a$, where A, B, C and D can be found from the previous expression.

3 (i) The steady and advective terms vanish. The y - and z-components of velocity vanish so p does not depend on y and z. The x-component gives

$$
0=-\frac{1}{\rho} \frac{\mathrm{~d} p}{\mathrm{~d} x}+v \frac{\mathrm{~d}^{2} u}{\mathrm{~d} y^{2}}=-\frac{1}{\rho} \frac{\mathrm{~d} p}{\mathrm{~d} z}+2 A v
$$

(ii)

$$
Q=\int_{-h}^{h} A\left(y^{2}-h^{2}\right) \mathrm{d} y=-\frac{4 A h^{3}}{3} .
$$

Hence $A=-3 Q / 4 h^{3}<0$.
(ii) From (i) the pressure gradient is constant: $\mathrm{d} p / \mathrm{d} x=2 A \rho v=2 \mu A=-3 \mu / 2 h^{3}$. The rate of strain $e_{i j}$ and stress $\sigma_{i j}=-p \delta_{i j}+2 \mu e_{i j}$ tensors are

$$
e_{i j}=\left(\begin{array}{ccc}
0 & A y & 0 \\
A y & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \sigma_{i j}=\left(\begin{array}{ccc}
-2 \mu A x & 2 \mu A y & 0 \\
2 \mu A y & -2 \mu A x & 0 \\
0 & 0 & -2 \mu A x
\end{array}\right)
$$

using $p=-2-v A x$ (i.e. setting the pressure to vanish at $x=0$).
(iii) The shear stress is $\mu \mathrm{d} u / \mathrm{d} y=2 \mu A y$. At the boundaries, this is $2 \mu A h$, a negative constant. The force on the wall is minus the integral over area (per unit width), i.e. $F=$ $-2 \mu A h L=3 \mu Q L / 2 h^{2}$ toward the right since $Q>0$ (the fluid tries to drag the plate along with it).

