Midterm

This is a 50 minute closed-book closed-note exam. You may use a sheet of notes that you have prepared. No calculators.

1 (10 points) For the velocity field

$$
u=(\cos t, x,-z)
$$

compute the particle path starting from $(0,0,1)$ at $t=0$, the streamlines at $t=0$ and the streakline at $t=\pi$ made up of dye released from ($0,0,1$) during $0 \leq t \leq \pi$. Results can be left in parametric form.

2 (15 points) Consider the velocity field $\boldsymbol{u}=u_{\theta}(r) \hat{\boldsymbol{\theta}}$ in cylindrical polar coordinates (r, θ, z) given by

$$
u_{\theta}(r)= \begin{cases}\Omega r & \text { for } 0<r<a \\ \Omega a^{2} / r & \text { for } a<r\end{cases}
$$

(i) Calculate the vorticity field.
(ii) Calculate the circulation around a circle of radius R centered at the origin.
(iii) The density is constant, the fluid is inviscid and gravity points in the negative z direction. Compute the pressure field by integrating the radial and vertical equations of motion. Sketch lines of constant pressure in the (r, z) plane.

3 (15 points) Fluid flows between two parallel plates at $y=-h$ and $y=h$.
(i) Show that the velocity field $u=A\left(y^{2}-h^{2}, 0,0\right)$ satisfies the incompressible NavierStokes equations.
(ii) What is the volume flux Q in terms of A and h ? Take $Q>0$; what is the sign of A ?
(ii) What is the pressure gradient? What are the rate of strain and the shear stress?
(iii) Calculate the force exerted on each boundary per unit width over the region $0<x<$ L. In what direction does it act?

For reference Vorticity in cylindrical polar coordinates (r, θ, z) :

$$
\omega=\left(\frac{1}{r} \frac{\partial u_{z}}{\partial \theta}-\frac{\partial u_{\theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) \hat{\mathbf{z}} .
$$

Radial component of the Euler equation in cylindrical polar coordinates (r, θ, z) :

$$
\frac{\partial u_{r}}{\partial t}+(\boldsymbol{u} \cdot \nabla) u_{r}-\frac{u_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r} .
$$

