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Homework 0

1 Take dot product and cross product with u:

u · x = u · v; u2x− (u · x)u + u× x = u× v.

where u = |u|. Substitute u · x and x× u into the final equation:

u2x− (u · v)u + x− v = u× v.

Now solve for x:
x = (1 + u2)−1[(u · v)u + v + u× v].

2 We have∇ f = (6x− 2y− 3, 2y− 2x). This vanishes at x = y = 3/4 which is not in-
side the circle. Write x = cos θ, y = sin θ on the boundary. Then f (θ) = 3 cos2 θ + sin2 θ−
2 sin θ cos θ − 3 cos θ. This is a function of one variable, and its maxima and minima can
be found by differentiating. The stationarity condition is

f ′(θ) = −4 cos θ sin θ + 4 sin θ2 + 3 sin θ − 2 = 0.

The best way to solve this is to square it so that it becomes the polynomial equation

32 sin4 θ + 24 sin3 θ − 23 sin2 θ − 12 sin θ + 4 = 0.

This polynomial has four roots, and the relevant one, as shown in Figure 1a, is sin θ =
0.6928, which corresponds to the point on the boundary (0.7211, 0.6928). Next ∇g =
(6x− 4y− 3, 2y− 4x). Again the extremeum is outside the circle. Now g(θ) = 3 cos2 θ +
sin2 θ − 4 sin θ cos θ − 3 cos θ. The stationarity condition is

g′(θ) = −4 cos θ sin θ + 8 sin θ2 + 3 sin θ − 4 = 0.

Hence
80 sin4 θ + 48 sin3 θ − 71 sin2 θ − 24 sin θ + 16 = 0.

This polynomial also has four roots, and the relevant one, as shown in Figure 1b, is sin θ =
0.6985, which corresponds to the point on the boundary (0.7156, 0.6985).

3 Use suffix notation.

• Remember that ∂r/∂xi = xi/r (which can be obtained by taking the gradient of
r2 = xjxj).

∇2rn =
∂2

∂xi∂xi
rn =

∂

∂xi
nxirn−2 = n[(n− 2) + δii]rn−2.

So in three dimensions, the answer is n(n + 1)rn−2, in two dimensions n2rn−2.
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Figure 1: f (θ) and g(θ) with maximum and minima.

• This uses the result ∂xi/∂xj = δij.

[∇× (Ω× x)]i = εijk
∂

∂xj
εklmΩlxm = Ωl(δilδjm − δimδjl)

∂xm

∂xj
= 2Ωi.

This is just 2Ω in vector notation.

•
(∇ f )k = Akjxj + Ajkxj + Bk = (Ajk + Akj)xj + Bk.

If A is symmetric, the first term is just 2Akjxj.

4 Vector divergence theorem: the integral is

−
∫

V
∇p dV = ρgk

∫
V

dV = ρgV,

where V is the volume surrounded by the surface. If p is the pressure, this shows that the
force on a submerged body in a fluid at rest is equal to the weight of fluid displaced by
the body.

5 Let S be a surface far from the origin (which we take later to tend to infinity). Then∫
ωi(x)dx =

∫
∂

∂xj
(xiωj)dx =

∫
S

xiωj dSj = 0,
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since ∂ωj/∂xj = 0 and the surface integral vanishes since ω is zero outside a bounded
region. For the second integral (call it D),

Di =
∫

∂

∂x′k
(xjx′jx

′
iω
′
k)dx′ −

∫
xjx′iω

′
j dx′ =

∫
S

xjx′jx
′
iω
′
k dSk −

∫
xjx′iω

′
j dx.

Once again the surface integral vanishes. Now add this expression to D and divide by
two:

D =
1
2

∫
([(x · x′)ω′ + (x ·ω′)x′]dx′ =

1
2

∫
[x× (ω′ × x′)]dx′ =

1
2

x×
∫

ω′ × x′ dx′.

The x can be taken out of the last integral since it is independent of x′. The first result
shows that the integral of a solenoidal vector field over all space is zero. (The average is
zero too, since one would take the above and divide by the volume of the sphere inside
S.)

6 Call the integral Iijkl. It is isotropic since if one transforms to another set of axes, the
sphere does not change. Hence it must be equal to the isotropic fourth-rank tensor given
in the question. Consider the contraction i = j, k = l:

I = Iiikk =
∫

V
xixixkxk dV =

∫
r4 dV = 9λ + 3µ + 3ν.

Two other similar contractions give I = 3λ + 9µ + 3ν = 3λ + 3µ + 9ν. Hence by symme-
try, λ = µ = ν and we can calculate I:

I =
∫ a

0
r4(4πr2)dr =

4πa7

7
= 15λ.

The final result is ∫
V

xixixkxk dV =
4πa7

105
(δijδkl + δikδjl + δilδjk).

7 At (3, 0, 4), r = 5 and the tensor becomes in matrix form 4 0 12
0 −5 0
12 − 11

 .

The characteristic equation for this matrix is λ3 − 10λ2 − 175λ− 500 = 0, with solutions
−5, −5 and 20. The corresponding orthonormal eigenvectors are (0, 1, 0), (4/5, 0,−3/5)
and (3/5, 0, 4/5).

3


