Homework 0

1 Take dot product and cross product with \boldsymbol{u} :

$$
u \cdot x=u \cdot v ; \quad u^{2} x-(u \cdot x) u+u \times x=u \times v .
$$

where $u=|\boldsymbol{u}|$. Substitute $\boldsymbol{u} \cdot \boldsymbol{x}$ and $\boldsymbol{x} \times \boldsymbol{u}$ into the final equation:

$$
u^{2} x-(u \cdot v) u+x-v=u \times v .
$$

Now solve for \boldsymbol{x} :

$$
\boldsymbol{x}=\left(1+u^{2}\right)^{-1}[(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{u}+\boldsymbol{v}+\boldsymbol{u} \times \boldsymbol{v}] .
$$

2 We have $\nabla f=(6 x-2 y-3,2 y-2 x)$. This vanishes at $x=y=3 / 4$ which is not inside the circle. Write $x=\cos \theta, y=\sin \theta$ on the boundary. Then $f(\theta)=3 \cos ^{2} \theta+\sin ^{2} \theta-$ $2 \sin \theta \cos \theta-3 \cos \theta$. This is a function of one variable, and its maxima and minima can be found by differentiating. The stationarity condition is

$$
f^{\prime}(\theta)=-4 \cos \theta \sin \theta+4 \sin \theta^{2}+3 \sin \theta-2=0
$$

The best way to solve this is to square it so that it becomes the polynomial equation

$$
32 \sin ^{4} \theta+24 \sin ^{3} \theta-23 \sin ^{2} \theta-12 \sin \theta+4=0
$$

This polynomial has four roots, and the relevant one, as shown in Figure 1a, is $\sin \theta=$ 0.6928 , which corresponds to the point on the boundary ($0.7211,0.6928$). Next $\nabla g=$ $(6 x-4 y-3,2 y-4 x)$. Again the extremeum is outside the circle. Now $g(\theta)=3 \cos ^{2} \theta+$ $\sin ^{2} \theta-4 \sin \theta \cos \theta-3 \cos \theta$. The stationarity condition is

$$
g^{\prime}(\theta)=-4 \cos \theta \sin \theta+8 \sin \theta^{2}+3 \sin \theta-4=0
$$

Hence

$$
80 \sin ^{4} \theta+48 \sin ^{3} \theta-71 \sin ^{2} \theta-24 \sin \theta+16=0 .
$$

This polynomial also has four roots, and the relevant one, as shown in Figure 1 b , is $\sin \theta=$ 0.6985 , which corresponds to the point on the boundary $(0.7156,0.6985)$.

3 Use suffix notation.

- Remember that $\partial r / \partial x_{i}=x_{i} / r$ (which can be obtained by taking the gradient of $r^{2}=x_{j} x_{j}$.

$$
\nabla^{2} r^{n}=\frac{\partial^{2}}{\partial x_{i} \partial x_{i}} r^{n}=\frac{\partial}{\partial x_{i}} n x_{i} r^{n-2}=n\left[(n-2)+\delta_{i i}\right] r^{n-2} .
$$

So in three dimensions, the answer is $n(n+1) r^{n-2}$, in two dimensions $n^{2} r^{n-2}$.

Figure 1: $f(\theta)$ and $g(\theta)$ with maximum and minima.

- This uses the result $\partial x_{i} / \partial x_{j}=\delta_{i j}$.

$$
[\nabla \times(\Omega \times x)]_{i}=\epsilon_{i j k} \frac{\partial}{\partial x_{j}} \epsilon_{k l m} \Omega_{l} x_{m}=\Omega_{l}\left(\delta i l \delta_{j m}-\delta_{i m} \delta_{j l}\right) \frac{\partial x_{m}}{\partial x_{j}}=2 \Omega_{i}
$$

This is just 2Ω in vector notation.

$$
(\nabla f)_{k}=A_{k j} x_{j}+A_{j k} x_{j}+B_{k}=\left(A_{j k}+A_{k j}\right) x_{j}+B_{k}
$$

If A is symmetric, the first term is just $2 A_{k j} x_{j}$.

4 Vector divergence theorem: the integral is

$$
-\int_{V} \nabla p \mathrm{~d} V=\rho g k \int_{V} \mathrm{~d} V=\rho g V
$$

where V is the volume surrounded by the surface. If p is the pressure, this shows that the force on a submerged body in a fluid at rest is equal to the weight of fluid displaced by the body.

5 Let S be a surface far from the origin (which we take later to tend to infinity). Then

$$
\int \omega_{i}(x) \mathrm{d} x=\int \frac{\partial}{\partial x_{j}}\left(x_{i} \omega_{j}\right) \mathrm{d} x=\int_{S} x_{i} \omega_{j} \mathrm{~d} S_{j}=0
$$

since $\partial \omega_{j} / \partial x_{j}=0$ and the surface integral vanishes since ω is zero outside a bounded region. For the second integral (call it D),

$$
D_{i}=\int \frac{\partial}{\partial x_{k}^{\prime}}\left(x_{j} x_{j}^{\prime} x_{i}^{\prime} \omega_{k}^{\prime}\right) \mathrm{d} x^{\prime}-\int x_{j} x_{i}^{\prime} \omega_{j}^{\prime} \mathrm{d} x^{\prime}=\int_{S} x_{j} x_{j}^{\prime} x_{i}^{\prime} \omega_{k}^{\prime} \mathrm{d} S_{k}-\int x_{j} x_{i}^{\prime} \omega_{j}^{\prime} \mathrm{d} x
$$

Once again the surface integral vanishes. Now add this expression to D and divide by two:

$$
\boldsymbol{D}=\frac{1}{2} \int\left(\left[\left(x \cdot x^{\prime}\right) \omega^{\prime}+\left(x \cdot \omega^{\prime}\right) x^{\prime}\right] \mathrm{d} x^{\prime}=\frac{1}{2} \int\left[x \times\left(\omega^{\prime} \times x^{\prime}\right)\right] \mathrm{d} x^{\prime}=\frac{1}{2} x \times \int \omega^{\prime} \times x^{\prime} \mathrm{d} x^{\prime}\right.
$$

The x can be taken out of the last integral since it is independent of x^{\prime}. The first result shows that the integral of a solenoidal vector field over all space is zero. (The average is zero too, since one would take the above and divide by the volume of the sphere inside S.)

6 Call the integral $I_{i j k l}$. It is isotropic since if one transforms to another set of axes, the sphere does not change. Hence it must be equal to the isotropic fourth-rank tensor given in the question. Consider the contraction $i=j, k=l$:

$$
I=I_{i i k k}=\int_{V} x_{i} x_{i} x_{k} x_{k} \mathrm{~d} V=\int r^{4} \mathrm{~d} V=9 \lambda+3 \mu+3 v
$$

Two other similar contractions give $I=3 \lambda+9 \mu+3 v=3 \lambda+3 \mu+9 \nu$. Hence by symmetry, $\lambda=\mu=v$ and we can calculate I :

$$
I=\int_{0}^{a} r^{4}\left(4 \pi r^{2}\right) \mathrm{d} r=\frac{4 \pi a^{7}}{7}=15 \lambda
$$

The final result is

$$
\int_{V} x_{i} x_{i} x_{k} x_{k} \mathrm{~d} V=\frac{4 \pi a^{7}}{105}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)
$$

7 At $(3,0,4), r=5$ and the tensor becomes in matrix form

$$
\left(\begin{array}{ccc}
4 & 0 & 12 \\
0 & -5 & 0 \\
12 & - & 11
\end{array}\right)
$$

The characteristic equation for this matrix is $\lambda^{3}-10 \lambda^{2}-175 \lambda-500=0$, with solutions $-5,-5$ and 20. The corresponding orthonormal eigenvectors are $(0,1,0),(4 / 5,0,-3 / 5)$ and $(3 / 5,0,4 / 5)$.

