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Solutions I

1 Convert the vector expression to suffices:
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2 The components of 7; are
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The normal to the plane x = 0 has components (1,0,0), so the matrix-vector product
gives the shear stress (0, —2Uy/a%, —2Uz/b?). The magnitude of the stress is hence f =
2U(y?/a* + z2/b*)1/2. This is smallest on the axis where y = z = 0 and largest on the
boundary, where we write y = acos 6, z = bcos 6. Then
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If a < b this is maximum when 6 = 0 and 6 = 7. If 2 > b this is maximum when 6 = /2
and 6 = 37t/2. So the shear stress magnitude is largest at the intersection of the semi-
minor axis and the boundary. If a = b (circle), the shear stress has the same value over
the whole boundary.

3 Along any circle n = # so
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This vanishes along the circle r = a. The function p is given along r = a by
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Along the circle we have dS = a(cos 6, sin0) d6. Hence
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This gives —pI'Uj. Along any circle x = n so x x n = 0. Therefore the last integral
vanishes.

4 The equation for the streamlines is dx/u = dy/v, which leads to
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Along the pathlines
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Using the initial condition, this gives in parametric form
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for x > 1. Write t, for the time at which the particle passes through (1,1). Thenatt =1
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for 0 < t, < 1. Solving for y(x) gives
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for t > 0. Solving for y(x) gives

forl <x<2.



