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Solutions I

1 Convert the vector expression to suffices:
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2 The components of τij are

τij =

 0 −2Uy/a2 −2Uz/b2

−2Uy/a2 0 0
−2Uz/b2 0 0

 .

The normal to the plane x = 0 has components (1, 0, 0), so the matrix-vector product
gives the shear stress (0,−2Uy/a2,−2Uz/b2). The magnitude of the stress is hence f =
2U(y2/a4 + z2/b4)1/2. This is smallest on the axis where y = z = 0 and largest on the
boundary, where we write y = a cos θ, z = b cos θ. Then
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If a < b this is maximum when θ = 0 and θ = π. If a > b this is maximum when θ = π/2
and θ = 3π/2. So the shear stress magnitude is largest at the intersection of the semi-
minor axis and the boundary. If a = b (circle), the shear stress has the same value over
the whole boundary.

3 Along any circle n = r̂ so

u · n = ∇φ · r̂ = ∂φ

∂r
= U cos θ

(
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)
.

This vanishes along the circle r = a. The function p is given along r = a by
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Along the circle we have dS = a(cos θ, sin θ)dθ. Hence
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This gives −ρΓUj. Along any circle x = n so x × n = 0. Therefore the last integral
vanishes.

4 The equation for the streamlines is dx/u = dy/v, which leads to

1 + t
x
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2y
dy i.e. |x|1+t = A|y|1+t/2.

Along the pathlines
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Using the initial condition, this gives in parametric form

x = 1 + t, y =

(
2 + t

2

)2

for t ≥ 0. Solving for y(x) gives
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2

)2

for x ≥ 1. Write t∗ for the time at which the particle passes through (1, 1). Then at t = 1
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for 0 ≤ t∗ ≤ 1. Solving for y(x) gives

y =
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for 1 ≤ x ≤ 2.
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