Solutions I

1 Convert the vector expression to suffices:

$$
\begin{aligned}
t_{i} & =-p n_{i}+\mu\left(2 n_{j} \frac{\partial u_{i}}{\partial x_{j}}+\epsilon_{i j k} n_{j} \epsilon_{k l m} \frac{\partial u_{m}}{\partial x_{l}}\right) \\
& =-p n_{i}+\mu\left(2 n_{j} \frac{\partial u_{i}}{\partial x_{j}}+\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) n_{j} \frac{\partial u_{m}}{\partial x_{l}}\right) \\
& =-p n_{i}+\mu\left(2 n_{j} \frac{\partial u_{i}}{\partial x_{j}}+n_{j} \frac{\partial u_{j}}{\partial x_{i}}-n_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)
\end{aligned}
$$

2 The components of $\tau_{i j}$ are

$$
\tau_{i j}=\left(\begin{array}{ccc}
0 & -2 U y / a^{2} & -2 U z / b^{2} \\
-2 U y / a^{2} & 0 & 0 \\
-2 U z / b^{2} & 0 & 0
\end{array}\right)
$$

The normal to the plane $x=0$ has components $(1,0,0)$, so the matrix-vector product gives the shear stress $\left(0,-2 U y / a^{2},-2 U z / b^{2}\right)$. The magnitude of the stress is hence $f=$ $2 U\left(y^{2} / a^{4}+z^{2} / b^{4}\right)^{1 / 2}$. This is smallest on the axis where $y=z=0$ and largest on the boundary, where we write $y=a \cos \theta, z=b \cos \theta$. Then

$$
\frac{f^{2}}{4 U^{2}}=\frac{\cos ^{2} \theta}{a^{2}}+\frac{\sin ^{2} \theta}{b^{2}}=\frac{1}{a^{2}}+\left(\frac{1}{b^{2}}-\frac{1}{a^{2}}\right) \sin ^{2} \theta=\frac{1}{b^{2}}+\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right) \cos ^{2} \theta
$$

If $a<b$ this is maximum when $\theta=0$ and $\theta=\pi$. If $a>b$ this is maximum when $\theta=\pi / 2$ and $\theta=3 \pi / 2$. So the shear stress magnitude is largest at the intersection of the semiminor axis and the boundary. If $a=b$ (circle), the shear stress has the same value over the whole boundary.

3 Along any circle $\boldsymbol{n}=\hat{r}$ so

$$
u \cdot \boldsymbol{n}=\nabla \phi \cdot \hat{r}=\frac{\partial \phi}{\partial r}=U \cos \theta\left(1-\frac{a^{2}}{r^{2}}\right)
$$

This vanishes along the circle $r=a$. The function p is given along $r=a$ by

$$
-\frac{1}{2} \rho\left(4 U^{2} \sin ^{2} \theta+\frac{\Gamma^{2}}{4 \pi^{2} a^{2}}-\frac{2 \Gamma U}{\pi a} \sin \theta\right)
$$

Along the circle we have $\mathrm{d} S=a(\cos \theta, \sin \theta) \mathrm{d} \theta$. Hence

$$
-\int_{S} p \mathrm{~d} S=\frac{1}{2} \rho \int_{0}^{2 \pi}\left(4 U^{2} \sin ^{2} \theta+\frac{\Gamma^{2}}{4 \pi^{2} a^{2}}-\frac{2 \Gamma U}{\pi a} \sin \theta\right)(\cos \theta, \sin \theta) a \mathrm{~d} \theta
$$

This gives $-\rho \Gamma U j$. Along any circle $\boldsymbol{x}=\boldsymbol{n}$ so $\boldsymbol{x} \times \boldsymbol{n}=\mathbf{0}$. Therefore the last integral vanishes.

4 The equation for the streamlines is $\mathrm{d} x / u=\mathrm{d} y / v$, which leads to

$$
\frac{1+t}{x} \mathrm{~d} x=\frac{2+t}{2 y} \mathrm{~d} y \quad \text { i.e. } \quad|x|^{1+t}=A|y|^{1+t / 2}
$$

Along the pathlines

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x}{1+t^{\prime}}, \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{2 y}{2+t}
$$

Using the initial condition, this gives in parametric form

$$
x=1+t, \quad y=\left(\frac{2+t}{2}\right)^{2}
$$

for $t \geq 0$. Solving for $y(x)$ gives

$$
y=\left(\frac{1+x}{2}\right)^{2}
$$

for $x \geq 1$. Write t_{*} for the time at which the particle passes through $(1,1)$. Then at $t=1$

$$
x=\frac{2}{1+t *}, \quad y=\left(\frac{3}{2+t *}\right)^{2}
$$

for $0 \leq t_{*} \leq 1$. Solving for $y(x)$ gives

$$
y=\left(\frac{3 x}{2+x}\right)^{2}
$$

for $1 \leq x \leq 2$.

