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Solutions I1

1 The flow is incompressible so
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Hence
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so that W = 2 [ ejjuin; on the boundary. We have u;e;in; = u;(t; + pdij)/(2u)n; =
u;(fi + pn;)/(2u). On the boundary u;n; = 0 by the no-penetration condition. If fju; =0
as well, the surface integral vanishes. Then D < 0 because the remaining integrand is
positive (D will vanish if all the ¢;; terms are zero, i.e. if the velocity field is linear).

2 Att = 2m, the equations for the streamlines are

_dx _dy (x> +y*>+2m+1)dz.
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Parameterize with s. Then we need to solve
dx % B dz 1
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The solution to the first two of these equations that passes through the point (xo, yo, zo) is
X = X(COSS — Yo sins, Y = X sins + y( coss.

Hence x? 4 y*> = x3 + y3 which is independent of s, and the solution to the final equation
is - S
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The equations for particle paths and streamlines are

dx dy dz 1
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+ zp.

The solution to the first two of these equations passing through (1,0,0) at t = t, is

x = cos (t — ts), y =sin (t — ty).



Once again x> + y? = 1 is a constant. The final equation then has solution

The particle paths correspond to ¢, = 0 so
X = cost, y =sint, z=log (1+1t/2).

for 0 < t < 27. For streaklines, t = 27t and

X = costy, Yy = —sint,, z = log
where 0 < ¢, < 271.

3 Strains:
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and 0 for second flow, since it is solid-body rotation and the tensor du;/ Bx]- is antisym-
metric. The vorticities are (y, —x,0) and (0,0, 2). For the Taylor flow
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using a reduced notation, and the vorticity is
((bC — ¢B)sacpce, (cA — aC)egspee, (aB — bA)cacyse)

The divergences of the first two velocity fields are zero (see the trace of ¢;;). For the third,
we compute the trace of ¢;; and find the condition aA + bB + ¢C = 0.

4 The velocity inside the sphere is given by

= la_tp& — 18_1/72 = lA[—Zcrzfr — (2a% — 22% — 40?)3).
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The corresponding vorticity is
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The velocity outside the sphere is given by
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u = Ucosf (1 — ﬁ) 7—Usinb <1+F> 0.

2



The Laplacian of ¢ vanishes. Requiring the velocity to be continuous across the boundary
gives

lA[—zaza +20°2) = 3 U sin6d.
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The boundary is given by 02 + z2 = 4? in cylindrical coordinates. On it the relations
o = asinf) and z = acos 0 hold. The expression for x in spherical polar and cylindrical
polar coordinates give
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0 = (cos 6 cos ¢, cos fsin ¢, — sin ), 0 = (cos¢,sing,0), 2=1(0,0,1).

This gives the relation § = cos @ ¢ — sin 0 2. Hence on the boundary
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EAaz sin 0[—2 cos 00 + 2 sin 02] = EAaz sin0[—20] = —gUsinQG.

Hence U = 2Aa4?%/15.



