Solutions II

1 The flow is incompressible so

$$
\frac{\partial e_{i j}}{\partial x_{j}}=\frac{1}{2} \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+\frac{1}{2} \frac{\partial^{2} u_{j}}{\partial x_{j} \partial x_{i}}=\frac{1}{2} \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}} .
$$

Hence

$$
D=\int_{V} u_{i} \frac{\partial^{2} u_{i}}{x_{j} x_{j}} \mathrm{~d} V=\int_{V} 2 u_{i} \frac{\partial e_{i j}}{\partial x_{j}} \mathrm{~d} V=2 \int_{S} e_{i j} u_{i} u_{j} \mathrm{~d} S-2 \int e_{i j} \frac{\partial u_{i}}{\partial x_{j}} \mathrm{~d} V
$$

so that $W=2 \int_{S} e_{i j} u_{i} n_{j}$ on the boundary. We have $u_{i} e_{i j} n_{j}=u_{i}\left(\tau_{i j}+p \delta_{i j}\right) /(2 \mu) n_{j}=$ $u_{i}\left(f_{i}+p n_{i}\right) /(2 \mu)$. On the boundary $u_{i} n_{i}=0$ by the no-penetration condition. If $f_{i} u_{i}=0$ as well, the surface integral vanishes. Then $D \leq 0$ because the remaining integrand is positive (D will vanish if all the $e_{i j}$ terms are zero, i.e. if the velocity field is linear).

2 At $t=2 \pi$, the equations for the streamlines are

$$
-\frac{\mathrm{d} x}{y}=\frac{\mathrm{d} y}{x}=\left(x^{2}+y^{2}+2 \pi+1\right) \mathrm{d} z
$$

Parameterize with s. Then we need to solve

$$
\frac{\mathrm{d} x}{\mathrm{~d} s}=-y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} s}=x, \quad \frac{\mathrm{~d} z}{\mathrm{~d} s}=\frac{1}{x^{2}+y^{2}+2 \pi+1} .
$$

The solution to the first two of these equations that passes through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
x=x_{0} \cos s-y_{0} \sin s, \quad y=x_{0} \sin s+y_{0} \cos s
$$

Hence $x^{2}+y^{2}=x_{0}^{2}+y_{0}^{2}$ which is independent of s, and the solution to the final equation is

$$
z=\frac{s}{x_{0}^{2}+y_{0}^{2}+2 \pi+1}+z_{0} .
$$

The equations for particle paths and streamlines are

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=x, \quad \frac{\mathrm{~d} z}{\mathrm{~d} t}=\frac{1}{x^{2}+y^{2}+t+1} .
$$

The solution to the first two of these equations passing through $(1,0,0)$ at $t=t_{*}$ is

$$
x=\cos \left(t-t_{*}\right), \quad y=\sin \left(t-t_{*}\right)
$$

Once again $x^{2}+y^{2}=1$ is a constant. The final equation then has solution

$$
z=\log \frac{t+2}{t_{*}+2}
$$

The particle paths correspond to $t_{*}=0$ so

$$
x=\cos t, \quad y=\sin t, \quad z=\log (1+t / 2)
$$

for $0 \leq t \leq 2 \pi$. For streaklines, $t=2 \pi$ and

$$
x=\cos t_{*}, \quad y=-\sin t_{*}, \quad z=\log \frac{2 \pi+2}{t_{*}+2} .
$$

where $0 \leq t_{*} \leq 2 \pi$.

3 Strains:

$$
e_{i j}=\left(\begin{array}{ccc}
-z & 0 & -z / 2 \\
0 & -z & -y / 2 \\
-z / 2 & -y / 2 & 2 z
\end{array}\right)
$$

and 0 for second flow, since it is solid-body rotation and the tensor $\partial u_{i} / \partial x_{j}$ is antisymmetric. The vorticities are $(y,-x, 0)$ and $(0,0,2)$. For the Taylor flow

$$
e_{i j}=\left(\begin{array}{ccc}
-a A s_{a} s_{b} s_{c} & \left(b A c_{a} c_{b} s_{c}+a C s_{a} s_{b} s_{z}\right) / 2 & \left(c A c_{a} s_{b} c_{c}+a C c_{a} s_{b} c_{c}\right) / 2 \\
\left(b A c_{a} c_{b} s_{c}+a B c_{a} c_{b} s_{c}\right) / 2 & -b B s_{a} s_{b} s_{c} & \left(b B s_{a} s_{b} s_{c}+b C s_{a} c_{b} c_{c}\right) / 2 \\
\left(c A c_{a} s_{b} c_{c}+a C c_{a} s_{b} c_{c}\right) / 2 & \left(b B s_{a} s_{b} s_{c}+b C s_{a} c_{b} c_{c}\right) / 2 & -c C s_{a} s_{b} s_{c}
\end{array}\right)
$$

using a reduced notation, and the vorticity is

$$
\left((b C-c B) s_{a} c_{b} c_{c},(c A-a C) c_{a} s_{b} c_{c},(a B-b A) c_{a} c_{b} s_{c}\right)
$$

The divergences of the first two velocity fields are zero (see the trace of $e_{i j}$). For the third, we compute the trace of $e_{i j}$ and find the condition $a A+b B+c C=0$.

4 The velocity inside the sphere is given by

$$
\boldsymbol{u}=\frac{1}{\sigma} \frac{\partial \psi}{\partial z} \hat{\sigma}-\frac{1}{\sigma} \frac{\partial \psi}{\partial \sigma} \hat{\mathbf{z}}=\frac{1}{10} A\left[-2 \sigma z \hat{\sigma}-\left(2 a^{2}-2 z^{2}-4 \sigma^{2}\right) \hat{\mathbf{z}}\right] .
$$

The corresponding vorticity is

$$
\left(\frac{\partial u_{\sigma}}{\partial z}-\frac{\partial u_{z}}{\partial \sigma}\right) \hat{\phi}=A \sigma \hat{\phi}
$$

The velocity outside the sphere is given by

$$
u=U \cos \theta\left(1-\frac{a^{2}}{2 r^{3}}\right) \hat{r}-U \sin \theta\left(1+\frac{a^{3}}{2 r^{3}}\right) \hat{\theta}
$$

The Laplacian of ϕ vanishes. Requiring the velocity to be continuous across the boundary gives

$$
\frac{1}{10} A\left[-2 \sigma z \hat{\sigma}+2 \sigma^{2} \hat{\mathbf{z}}\right]=-\frac{3}{2} U \sin \theta \hat{\theta}
$$

The boundary is given by $\sigma^{2}+z^{2}=a^{2}$ in cylindrical coordinates. On it the relations $\sigma=a \sin \theta$ and $z=a \cos \theta$ hold. The expression for x in spherical polar and cylindrical polar coordinates give

$$
\hat{\theta}=(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta), \quad \hat{\sigma}=(\cos \phi, \sin \phi, 0), \quad \hat{\mathbf{z}}=(0,0,1) .
$$

This gives the relation $\hat{\theta}=\cos \theta \hat{\sigma}-\sin \theta \hat{\mathbf{z}}$. Hence on the boundary

$$
\frac{1}{10} A a^{2} \sin \theta[-2 \cos \theta \hat{\sigma}+2 \sin \theta \hat{\mathbf{z}}]=\frac{1}{10} A a^{2} \sin \theta[-2 \hat{\theta}]=-\frac{3}{2} U \sin \theta \hat{\theta}
$$

Hence $U=2 A a^{2} / 15$.

