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Solutions II

1 The flow is incompressible so

∂eij

∂xj
=

1
2

∂2ui

∂xj∂xj
+

1
2

∂2uj

∂xj∂xi
=

1
2

∂2ui

∂xj∂xj
.

Hence

D =
∫

V
ui

∂2ui

xjxj
dV =

∫
V

2ui
∂eij

∂xj
dV = 2

∫
S

eijuinj dS − 2
∫

eij
∂ui

∂xj
dV,

so that W = 2
∫

S eijuinj on the boundary. We have uieijnj = ui(τij + pδij)/(2µ)nj =
ui( fi + pni)/(2µ). On the boundary uini = 0 by the no-penetration condition. If fiui = 0
as well, the surface integral vanishes. Then D ≤ 0 because the remaining integrand is
positive (D will vanish if all the eij terms are zero, i.e. if the velocity field is linear).

2 At t = 2π, the equations for the streamlines are

−dx
y

=
dy
x

= (x2 + y2 + 2π + 1)dz.

Parameterize with s. Then we need to solve

dx
ds

= −y,
dy
ds

= x,
dz
ds

=
1

x2 + y2 + 2π + 1
.

The solution to the first two of these equations that passes through the point (x0, y0, z0) is

x = x0 cos s − y0 sin s, y = x0 sin s + y0 cos s.

Hence x2 + y2 = x2
0 + y2

0 which is independent of s, and the solution to the final equation
is

z =
s

x2
0 + y2

0 + 2π + 1
+ z0.

The equations for particle paths and streamlines are

dx
dt

= −y,
dy
dt

= x,
dz
dt

=
1

x2 + y2 + t + 1
.

The solution to the first two of these equations passing through (1, 0, 0) at t = t∗ is

x = cos (t − t∗), y = sin (t − t∗).
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Once again x2 + y2 = 1 is a constant. The final equation then has solution

z = log
t + 2
t∗ + 2

.

The particle paths correspond to t∗ = 0 so

x = cos t, y = sin t, z = log (1 + t/2).

for 0 ≤ t ≤ 2π. For streaklines, t = 2π and

x = cos t∗, y = − sin t∗, z = log
2π + 2
t∗ + 2

.

where 0 ≤ t∗ ≤ 2π.

3 Strains:

eij =

 −z 0 −z/2
0 −z −y/2

−z/2 −y/2 2z


and 0 for second flow, since it is solid-body rotation and the tensor ∂ui/∂xj is antisym-
metric. The vorticities are (y,−x, 0) and (0, 0, 2). For the Taylor flow

eij =

 −aAsasbsc (bAcacbsc + aCsasbsz)/2 (cAcasbcc + aCcasbcc)/2
(bAcacbsc + aBcacbsc)/2 −bBsasbsc (bBsasbsc + bCsacbcc)/2
(cAcasbcc + aCcasbcc)/2 (bBsasbsc + bCsacbcc)/2 −cCsasbsc


using a reduced notation, and the vorticity is

((bC − cB)sacbcc, (cA − aC)casbcc, (aB − bA)cacbsc)

The divergences of the first two velocity fields are zero (see the trace of eij). For the third,
we compute the trace of eij and find the condition aA + bB + cC = 0.

4 The velocity inside the sphere is given by

u =
1
σ

∂ψ

∂z
σ̂ − 1

σ

∂ψ

∂σ
ẑ =

1
10

A[−2σzσ̂ − (2a2 − 2z2 − 4σ2)ẑ].

The corresponding vorticity is (
∂uσ

∂z
− ∂uz

∂σ

)
φ̂ = Aσφ̂.

The velocity outside the sphere is given by

u = U cos θ

(
1 − a2

2r3

)
r̂ − U sin θ

(
1 +

a3

2r3

)
θ̂.
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The Laplacian of φ vanishes. Requiring the velocity to be continuous across the boundary
gives

1
10

A[−2σzσ̂ + 2σ2ẑ] = −3
2

U sin θθ̂.

The boundary is given by σ2 + z2 = a2 in cylindrical coordinates. On it the relations
σ = a sin θ and z = a cos θ hold. The expression for x in spherical polar and cylindrical
polar coordinates give

θ̂ = (cos θ cos φ, cos θ sin φ,− sin θ), σ̂ = (cos φ, sin φ, 0), ẑ = (0, 0, 1).

This gives the relation θ̂ = cos θ σ̂ − sin θ ẑ. Hence on the boundary

1
10

Aa2 sin θ[−2 cos θσ̂ + 2 sin θẑ] =
1

10
Aa2 sin θ[−2θ̂] = −3

2
U sin θθ̂.

Hence U = 2Aa2/15.
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