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Solutions IV

1 The flow is incompressible and two-dimensional so

u =
∂ψ

∂y
= ε123

∂ψ

∂x2
, v = −∂ψ

∂x
= ε213

∂ψ

∂x1
.

(ii) The vorticity points out of the plane and is given by

ωi = εijk
∂

∂xj
εkl3

∂ψ

∂xl
= (δilδj3 − δi3δjl)

∂2ψ

∂xj∂xl
= −δi3∇2ψ.

The δj3 term vanishes since ψ does not depend on the x3 coordinate (two-dimensional
flow).
(iii) The velocity is

ui = εij3
∂

∂xj
aklxkxl = εij3[ajlxl + akjxk] = εij3[ajl + al j]xl.

The vorticity is

ω = − ∂2

∂xk∂xk
aijxixj = −

∂

∂xk
aij[δikxj + xiδjk] = −aij[δikδjk + δikδjk] = −2aii.

The flow is irrotational when aii = 0.
(iv) The viscous term for incompressible flow is µ∇2u. This vanishes here since the veloc-
ity field is linear.
(v) The dissipation rate for an incompressible flow is

φ = 2µeijeij.

We have

eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
=

1
2

εip3(apj + ajp) +
1
2

εjp3(api + aip).

Hence

φ = 2µ[1
2 εip3εiq3(apj + ajp)(aqj + ajq) +

1
2 εip3εjq3(apj + ajp)(aqi + aiq)].

The first term can be simplified but the second is hard to deal with:

φ = µ[(apj + ajp)(apj + ajp) + εip3εjq3(apj + ajp)(aqi + aiq)].
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2 Make the following assumptions: 1) steady density field, 2) steady state, 3) inviscid
fluid, and 4) uniform velocity profile and pressure. By conservation of momentum,

d
dt

∫
V

ρui dV +
∫

S
ρui(ujnj)dS = ∑ Fi.

Consider a cylindrical fixed control volume surrounding the rocket, just covering its noz-
zle outlet. The component of the above equation along the direction of thrust is∫

S
ρU2 dS =

∫
S

Patm dS−
∫

S
P dS + Fthrust,

where the P term comes from the nozzle, and the Patm term comes from the opposite
surface of the cylinder. All the integrands are constant. Therefore

Fthrust = ρAU2 + A(P− Patm).

3 In a fluid at rest, the stress is entirely due to pressure, so that τij = −pδij. The momen-
tum equation can be written as

0 = −∇p + ρ∇φ.

Take the curl of this equation. The curl of gradients vanish, and the product rule for the
last term gives∇ρ×∇φ = 0.

4 (i) In cylindrical polars, the continuity equation is

1
r

∂

∂r
(rvr) +

∂vx

∂x
= −2α +

∂vx

∂x
= 0.

This gives vx = 2αx + C(r) = 2αx + U0 using the condition at x = 0.
(ii) At the nozzle wall, u ·n = 0. The equation for the nozzle wall is F(r, x) = r−R(x) = 0,
so the normal vector is proportional to ∇F = (−R′, 1). Hence the boundary condition
becomes

−R′(x)vx(R(x), x)− αR(x) = −(2αx + U0)R′(x)− αR(x) = 0.

This is an ODE for the shape R(x), with solution

R(x) =
(

R0

2αx/U0 + 1

)
.

Since this cannot depend on U0, we must have α = kU0.
(iii) The flow rates are∫ R0

0
vx(r, 0)2πr dr = πR2

0U0,∫ R(L)

0
vx(r, L)2πr dr = πR2

L(2αL + U0) = πR2
0

2αL + U0

2αL/U0 + 1
= πR2

0U0.

(The x-velocity is independent of r.) The flow rates are the same since the flow is incom-
pressible.
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