Solutions IV

1 The flow is incompressible and two-dimensional so

$$
u=\frac{\partial \psi}{\partial y}=\epsilon_{123} \frac{\partial \psi}{\partial x_{2}}, \quad v=-\frac{\partial \psi}{\partial x}=\epsilon_{213} \frac{\partial \psi}{\partial x_{1}} .
$$

(ii) The vorticity points out of the plane and is given by

$$
\omega_{i}=\epsilon_{i j k} \frac{\partial}{\partial x_{j}} \epsilon_{k l 3} \frac{\partial \psi}{\partial x_{l}}=\left(\delta_{i l} \delta_{j 3}-\delta_{i 3} \delta_{j l}\right) \frac{\partial^{2} \psi}{\partial x_{j} \partial x_{l}}=-\delta_{i 3} \nabla^{2} \psi
$$

The $\delta_{j 3}$ term vanishes since ψ does not depend on the x_{3} coordinate (two-dimensional flow).
(iii) The velocity is

$$
u_{i}=\epsilon_{i j 3} \frac{\partial}{\partial x_{j}} a_{k l} x_{k} x_{l}=\epsilon_{i j 3}\left[a_{j l} x_{l}+a_{k j} x_{k}\right]=\epsilon_{i j 3}\left[a_{j l}+a_{l j}\right] x_{l} .
$$

The vorticity is

$$
\omega=-\frac{\partial^{2}}{\partial x_{k} \partial x_{k}} a_{i j} x_{i} x_{j}=-\frac{\partial}{\partial x_{k}} a_{i j}\left[\delta_{i k} x_{j}+x_{i} \delta_{j k}\right]=-a_{i j}\left[\delta_{i k} \delta_{j k}+\delta_{i k} \delta_{j k}\right]=-2 a_{i i} .
$$

The flow is irrotational when $a_{i i}=0$.
(iv) The viscous term for incompressible flow is $\mu \nabla^{2} u$. This vanishes here since the velocity field is linear.
(v) The dissipation rate for an incompressible flow is

$$
\phi=2 \mu e_{i j} e_{i j} .
$$

We have

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)=\frac{1}{2} \epsilon_{i p 3}\left(a_{p j}+a_{j p}\right)+\frac{1}{2} \epsilon_{j p 3}\left(a_{p i}+a_{i p}\right) .
$$

Hence

$$
\phi=2 \mu\left[\frac{1}{2} \epsilon_{i p 3} \epsilon i q 3\left(a_{p j}+a_{j p}\right)\left(a_{q j}+a_{j q}\right)+\frac{1}{2} \epsilon_{i p 3} \epsilon j q 3\left(a_{p j}+a_{j p}\right)\left(a_{q i}+a_{i q}\right)\right] .
$$

The first term can be simplified but the second is hard to deal with:

$$
\phi=\mu\left[\left(a_{p j}+a_{j p}\right)\left(a_{p j}+a_{j p}\right)+\epsilon_{i p 3} \epsilon j q 3\left(a_{p j}+a_{j p}\right)\left(a_{q i}+a_{i q}\right)\right] .
$$

2 Make the following assumptions: 1) steady density field, 2) steady state, 3) inviscid fluid, and 4) uniform velocity profile and pressure. By conservation of momentum,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho u_{i} \mathrm{~d} V+\int_{S} \rho u_{i}\left(u_{j} n_{j}\right) \mathrm{d} S=\sum F_{i} .
$$

Consider a cylindrical fixed control volume surrounding the rocket, just covering its nozzle outlet. The component of the above equation along the direction of thrust is

$$
\int_{S} \rho U^{2} \mathrm{~d} S=\int_{S} P_{a t m} \mathrm{~d} S-\int_{S} P \mathrm{~d} S+F_{t h r u s t}
$$

where the P term comes from the nozzle, and the $P_{\text {atm }}$ term comes from the opposite surface of the cylinder. All the integrands are constant. Therefore

$$
F_{\text {thrust }}=\rho A U^{2}+A\left(P-P_{a t m}\right)
$$

3 In a fluid at rest, the stress is entirely due to pressure, so that $\tau_{i j}=-p \delta_{i j}$. The momentum equation can be written as

$$
\mathbf{0}=-\boldsymbol{\nabla} p+\rho \boldsymbol{\nabla} \phi .
$$

Take the curl of this equation. The curl of gradients vanish, and the product rule for the last term gives $\nabla \rho \times \nabla \phi=\mathbf{0}$.

4 (i) In cylindrical polars, the continuity equation is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{\partial v_{x}}{\partial x}=-2 \alpha+\frac{\partial v_{x}}{\partial x}=0
$$

This gives $v_{x}=2 \alpha x+C(r)=2 \alpha x+U_{0}$ using the condition at $x=0$.
(ii) At the nozzle wall, $\boldsymbol{u} \cdot \boldsymbol{n}=0$. The equation for the nozzle wall is $F(r, x)=r-R(x)=0$, so the normal vector is proportional to $\nabla F=\left(-R^{\prime}, 1\right)$. Hence the boundary condition becomes

$$
-R^{\prime}(x) v_{x}(R(x), x)-\alpha R(x)=-\left(2 \alpha x+U_{0}\right) R^{\prime}(x)-\alpha R(x)=0
$$

This is an ODE for the shape $R(x)$, with solution

$$
R(x)=\left(\frac{R_{0}}{2 \alpha x / U 0+1}\right)
$$

Since this cannot depend on U_{0}, we must have $\alpha=k U_{0}$.
(iii) The flow rates are

$$
\begin{aligned}
\int_{0}^{R_{0}} v_{x}(r, 0) 2 \pi r \mathrm{~d} r & =\pi R_{0}^{2} U_{0} \\
\int_{0}^{R(L)} v_{x}(r, L) 2 \pi r \mathrm{~d} r & =\pi R_{L}^{2}\left(2 \alpha L+U_{0}\right)=\pi R_{0}^{2} \frac{2 \alpha L+U_{0}}{2 \alpha L / U_{0}+1}=\pi R_{0}^{2} U_{0}
\end{aligned}
$$

(The x-velocity is independent of r.) The flow rates are the same since the flow is incompressible.

