Midterm Solution

1 The stationary points in the (μ, x) plane are at

$$
\mu^{2}+x^{2}=1 \quad\left(\frac{\mu-2}{2}\right)^{2}+x^{2}=1
$$

the circle of radius one centered at the origin and the ellipse centered at $(2,0)$ passing through the origin and $(2,1)$. The denominator is positive, and $\dot{x}>0$ for large $|x|$. The diagram shows the stability of the points along the curves. There are four saddle-node bifurcations at $(-1,0)(0,0),(1,0)$ and $(4,0)$ as well as two transcritical bifurcations at $(2 / 3, \sqrt{5} / 3)$ and $(2 / 3,-\sqrt{5} / 3)$.

Figure 1: Bifurcation diagram in (μ, x) plane for 1 . Blue curves are stable and red curves are unstable.

2 Write $y=\mathrm{e}^{S(x)}$ and obtain

$$
S^{\prime \prime}+S^{\prime 2}-\frac{x^{2}}{1+x^{2}}=0
$$

Expand the last term and assume the dominant balance is $S^{\prime 2} \sim 1$. Then $S \sim \pm x$, and $S^{\prime \prime} \ll S^{\prime 2}$ as assumed. The next term is found by writing $S= \pm x+R$, with $R \ll x$. This leads to

$$
R^{\prime \prime} \pm 2 R^{\prime}+R^{\prime 2}+\frac{1}{x^{2}}+\cdots=0
$$

The dominant balance gives $R^{\prime} \sim \mp x^{-2} / 2$, so R is small as $x \rightarrow 0$. Hence the controlling behavior is $\mathrm{e}^{ \pm x}$ Write $y(x)=\mathrm{e}^{ \pm x} w(x)$. Then Leibniz's rule gives

$$
w^{\prime \prime} \pm 2 w^{\prime}+\frac{1}{1+x^{2}} w=0
$$

3 Draw the graphs of $\tanh x$ and $\epsilon(x-1)^{2}$. One can see a root for small x and a large root. For the former, $\tanh x \sim x$ and $\epsilon(x-1)^{2} \sim \epsilon$, so write $x=\epsilon x_{1}+\epsilon^{a} x_{2}+\cdots$. Then

$$
\epsilon x_{1}+\epsilon^{a} x_{2}-\frac{1}{3} \epsilon^{3} x_{1}^{3}+\epsilon\left(1-2 \epsilon x_{1}\right)+\cdots=0
$$

Hence $x_{1}=1, a=2$ and $x_{2}=-2$. For large x, $\tanh x \sim 1 \sim \epsilon x^{2}$, so $1 \sim \epsilon x^{2}$. Try $x=\epsilon^{-1 / 2}+\epsilon^{b} X_{2}+\cdots$. For large $x, \tanh x \sim 1+\cdots$ and all the subsequent algebraic terms in the right-hand side must vanish. This means that $b=0$ and hence

$$
1+\cdots=\epsilon\left[\epsilon^{-1 / 2}+X_{2}-1+\cdots\right]^{2}
$$

This gives $X_{2}=1$. The two-term approximations to the roots are

$$
x=\epsilon-2 \epsilon^{2}, \quad x=\epsilon^{-1 / 2}+1
$$

4 Skip the naive expansion. The leading-order solution is $x_{0}=A(T) \mathrm{e}^{\mathrm{i} t}+A^{*}(T) \mathrm{e}^{-\mathrm{i} t}$ with $A(0)=1 / 2$. At $O(\epsilon)$, one finds

$$
x_{1 t t}+x_{1}+2 x_{0 t T}+x_{0}^{2} x_{0 t}=0
$$

Secular terms look like $\mathrm{e}^{ \pm i t}$ so look at

$$
x_{0}^{2} x_{0 t}=\left(A \mathrm{e}^{\mathrm{i} t}+A^{*} \mathrm{e}^{-\mathrm{i} t}\right)^{2}\left(\mathrm{i} A \mathrm{e}^{\mathrm{i} t}-\mathrm{i} A^{*} \mathrm{e}^{-\mathrm{i} t}\right)=\mathrm{i} A^{2} A^{*}+\cdots
$$

The amplitude equation is hence

$$
2 A_{T}+|A|^{2} A=0
$$

Writing $A=R \mathrm{e}^{\mathrm{i} \Theta}$ gives $R \Theta_{t}=0$ and $2 R_{T}+R^{3}=0$. From the initial condition $\Theta(0)=0$ and $R(0)=1 / 2$. The Bernoulli equation for $R(T)$ can be solved to give

$$
R(T)=\frac{1}{\sqrt{T+4}}
$$

The solution is hence

$$
x(t)=\frac{2}{\sqrt{4+\epsilon t}} \cos t+O(\epsilon)
$$

uniformly for $\epsilon t=O(1)$.

