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MAE Examples

1 (Van Dyke; Hinch 5.12) Consider the following problem which has an outer, an inner
and an inner-inner inside the inner (called a triple deck problem)

x3y′ = ε[(1 + ε)x + 2ε2]y2

in 0 < x < 1 with y(1) = 1− ε. Calculate two terms of the outer, then two of the inner,
and finally one for the inner-inner. At each state, find the rescaling required for the next
layer by examining the non-uniformity of the asymptoticness in the current layer.

Solution Outer solution: write y = y0 + εy1 + · · ·. The O(1) equation is

x3y′0 = 0, y0(1) = 1,

with solution y0 = 1. The O(ε) equation is

x3y′1 = xy2
0 = x, y1(1) = −1,

with solution y1 = −x−1. So the two-term solution is

y = 1− ε

x
.

This clearly breaks down when x = O(ε). Rescale with x = εX. To be careful, write
y = εaY. The governing equation becomes

ε2+aX3YX = ε2+2a[(1 + ε)X + 2ε]Y2.

Hence a = 0, which is expected, because in terms of X the outer solution is 1 − X−1,
which is O(1). Now expand Y = Y0 + εY1 + · · ·. The O(1) equation is

X3Y0X = XY2
0 ,

leaving the boundary condition for later. This first-order nonlinear equation can be solved
by separating variables to give

Y−1
0 = X−1 + A.

For large X, we must match onto the outer solution. Informally, this means that as X → ∞,
Y0 → 1, so A = 1. Hence

Y0 =
X

1 + X
.
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At O(ε), we have
X3Y1X = (X + 2)Y2

0 + 2XY0Y1,

which can be transformed into

Y1X −
2

X(1 + X)
Y1 =

X + 2
X(1 + X)2 .

Using an integrating factor, we find

Y1 = −X−2 + X−1 + B
(1 + X−1)2 .

Now we use Van Dyke’s rule. We find

y(0,0) = 1, y(0,1) = 1, y(1,0) = 1− X−1, y(1,1) = 1− X−1,

Y(0,0) = 1, Y(1,0) = 1, Y(0,1) = 1− εx−1, Y(1,1) = 1− ε(B + x−1).

The matching conditions give B = 0. Hence

Y =
X

1 + X
− ε

1 + X
.

This breaks down for small X when X ∼ ε. For the inner-inner solution, rescale using
X = εξ. However, now y = O(X) = O(ε), so write y = εη(ξ). Then

ξ3ηξ = [(1 + ε)ξ + 2]η2.

The leading-order solution is now obtained from

ξ3η0ξ = (ξ + 2)η2
0

with solution
η =

1
ξ−2 + ξ−1 + C

.

We can match informally, because for large ξ we need to match onto X, so C must vanish.
Hence

y =
εξ2

1 + ξ
+ · · ·

in the inner-inner region. The exact solution is

y =
x2

ε[(1 + ε)(x− x2) + ε2(1− x2)] + (1− ε)−1x2 .

You can check that expanding this expression for small ε with fixed x, X and ξ respec-
tively gives the results above. Figure 1 shows the exact and asymptotic solutions over the
interval (0, 1) using semilogarithmic and logarithmic axes.
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Figure 1: Exact and asymptotic solutions (two terms for the outer, two terms for the inner,
one for the inner-inner) for ε = 0.01.

2 Find a uniformly valid solution to the problem

εẍ + (1 + t2)ẋ− x(1 + x) = 0, x(0) = 0, x → 1 as t→ ∞

for 0 < ε� 1.

Solution This is a two-point BVP with a nonlinear term and an infinite domain, that can
be solved using MAE. The leading-order outer equation is

(1 + t2)ẋ0 − x0(1 + x0) = 0.

Separate variables:

dt
1 + t2 =

dx0

x0(1 + x0)
= dx0

(
1
x0
− 1

1 + x0

)
,

so
tan−1 t = ln

x0

1 + x0
+ A.

Solving for x0 and plugging in the boundary condition at infinity gives

x0 =
1

2eπ/2−tan−1 t − 1
.

We find x0(0) = [2eπ/2 − 1]−1. The inner rescaling is t = εT so the leading-order inner
equation is

Ẍ + Ẋ = 0,
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with solution X = C(1− e−T). Matching gives C = x0(0). The uniform approximation is

xu(t) =
1

2eπ/2−tan−1 t − 1
− e−t/ε

2eπ/2 − 2
.

3 Consider the problem

εy′′ + x1/2y′ − y = 0, y(0) = 0, y(1) = e2.

Find one term of an appropriate outer expansion and one of an inner expansion, showing
that they match in the correct asymptotic sense. Calculate the leading approximation to
y′(0).

Solution Write y = y0 + εy1 + ε2y2 + · · ·. The leading-order outer solution is the solu-
tion to x1/2y′0 + y = 0, so that y0 = Ce2x1/2

. There cannot be a boundary layer at x = 1 for
the usual reason, so y0 = e2x1/2

and there is a boundary layer at the origin. The appropri-
ate rescaling is x = ε2/3X so that

yXX + X1/2yX − ε1/3y = 0.

The leading-order inner solution satisfying Y0XX +X1/2Y0X = 0 that vanishes at the origin
is

Y0 = D
∫ X

0
e−2u3/2/3 du.

Matching gives

D
∫ ∞

0
e−2u3/2/3 du = D(2/3)1/3Γ(2/3) = 1.

The leading-order approximation to y′(0) is

ε−2/3Y0X(0) = ε−2/3(3/2)1/3/Γ(2/3) ≈ 0.845ε−2/3.

4 Find leading-order solutions to

εy′′ + (log x)y′ − x(log x)y = 0, y(1
2) = y(3

2) = 1

valid in different regions of the interval (1
2 , 3

2). (Hint: think carefully about the possible
locations of boundary and internal layers.)

Solution The outer solution satisfies y′0 − xy0 = 0, so y0 = Aex2/2. A boundary layer
at 1

2 would use the new variable x = 1
2 + εX, which gives the leading-order equation

YXX − (log 2)YX = 0. The solution to this equation blows up into the interior so there
can be no boundary layer on the left. On the right, the new variable x = 3

2 − εX gives
YXX − (log 3

2)YX = 0. Again the solution blows up into the interior. Hence there must
be an internal layer at x = 1. The outer solution is ex2/2−1/8 for x < 1 and ex2/2−9/8
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for x > 1. The new variable comes from x = 1 + ε1/2X. The leading-order IL solution
satisfies YXX + XYX = 0, so Y = A erf (X/

√
2) + B→ ±A + B as X → ±∞. The limits of

the outer solution are e3/8 to the left and e−5/8 to the right. Hence the inner solution is

Y = 1
2(e
−5/8 + e3/8) + 1

2(e
−5/8 − e3/8) erf (X/

√
2).
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