MAE Examples

1 (Van Dyke; Hinch 5.12) Consider the following problem which has an outer, an inner and an inner-inner inside the inner (called a triple deck problem)

$$
x^{3} y^{\prime}=\epsilon\left[(1+\epsilon) x+2 \epsilon^{2}\right] y^{2}
$$

in $0<x<1$ with $y(1)=1-\epsilon$. Calculate two terms of the outer, then two of the inner, and finally one for the inner-inner. At each state, find the rescaling required for the next layer by examining the non-uniformity of the asymptoticness in the current layer.

Solution Outer solution: write $y=y_{0}+\epsilon y_{1}+\cdots$. The $O(1)$ equation is

$$
x^{3} y_{0}^{\prime}=0, \quad y_{0}(1)=1
$$

with solution $y_{0}=1$. The $O(\epsilon)$ equation is

$$
x^{3} y_{1}^{\prime}=x y_{0}^{2}=x, \quad y_{1}(1)=-1,
$$

with solution $y_{1}=-x^{-1}$. So the two-term solution is

$$
y=1-\frac{\epsilon}{x}
$$

This clearly breaks down when $x=O(\epsilon)$. Rescale with $x=\epsilon X$. To be careful, write $y=\epsilon^{a} Y$. The governing equation becomes

$$
\epsilon^{2+a} X^{3} Y_{X}=\epsilon^{2+2 a}[(1+\epsilon) X+2 \epsilon] Y^{2}
$$

Hence $a=0$, which is expected, because in terms of X the outer solution is $1-X^{-1}$, which is $O(1)$. Now expand $Y=Y_{0}+\epsilon Y_{1}+\cdots$. The $O(1)$ equation is

$$
X^{3} Y_{0 X}=X Y_{0}^{2}
$$

leaving the boundary condition for later. This first-order nonlinear equation can be solved by separating variables to give

$$
Y_{0}^{-1}=X^{-1}+A
$$

For large X, we must match onto the outer solution. Informally, this means that as $X \rightarrow \infty$, $Y_{0} \rightarrow 1$, so $A=1$. Hence

$$
Y_{0}=\frac{X}{1+X}
$$

At $O(\epsilon)$, we have

$$
X^{3} Y_{1 X}=(X+2) Y_{0}^{2}+2 X Y_{0} Y_{1}
$$

which can be transformed into

$$
Y_{1 X}-\frac{2}{X(1+X)} Y_{1}=\frac{X+2}{X(1+X)^{2}}
$$

Using an integrating factor, we find

$$
Y_{1}=-\frac{X^{-2}+X^{-1}+B}{\left(1+X^{-1}\right)^{2}}
$$

Now we use Van Dyke's rule. We find

$$
\begin{gathered}
y^{(0,0)}=1, \quad y^{(0,1)}=1, \quad y^{(1,0)}=1-X^{-1}, \quad y^{(1,1)}=1-X^{-1}, \\
Y^{(0,0)}=1, \quad Y^{(1,0)}=1, \quad Y^{(0,1)}=1-\epsilon x^{-1}, \quad Y^{(1,1)}=1-\epsilon\left(B+x^{-1}\right) .
\end{gathered}
$$

The matching conditions give $B=0$. Hence

$$
Y=\frac{X}{1+X}-\frac{\epsilon}{1+X}
$$

This breaks down for small X when $X \sim \epsilon$. For the inner-inner solution, rescale using $X=\epsilon \xi$. However, now $y=O(X)=O(\epsilon)$, so write $y=\epsilon \eta(\xi)$. Then

$$
\xi^{3} \eta_{\xi}=[(1+\epsilon) \xi+2] \eta^{2}
$$

The leading-order solution is now obtained from

$$
\tilde{\xi}^{3} \eta_{0 \xi}=(\xi+2) \eta_{0}^{2}
$$

with solution

$$
\eta=\frac{1}{\xi^{-2}+\xi^{-1}+C}
$$

We can match informally, because for large ξ we need to match onto X, so C must vanish. Hence

$$
y=\frac{\epsilon \tilde{\zeta}^{2}}{1+\xi}+\cdots
$$

in the inner-inner region. The exact solution is

$$
y=\frac{x^{2}}{\epsilon\left[(1+\epsilon)\left(x-x^{2}\right)+\epsilon^{2}\left(1-x^{2}\right)\right]+(1-\epsilon)^{-1} x^{2}} .
$$

You can check that expanding this expression for small ϵ with fixed x, X and ξ respectively gives the results above. Figure 1 shows the exact and asymptotic solutions over the interval $(0,1)$ using semilogarithmic and logarithmic axes.

Figure 1: Exact and asymptotic solutions (two terms for the outer, two terms for the inner, one for the inner-inner) for $\epsilon=0.01$.

2 Find a uniformly valid solution to the problem

$$
\epsilon \ddot{x}+\left(1+t^{2}\right) \dot{x}-x(1+x)=0, \quad x(0)=0, \quad x \rightarrow 1 \text { as } t \rightarrow \infty
$$

for $0<\epsilon \ll 1$.

Solution This is a two-point BVP with a nonlinear term and an infinite domain, that can be solved using MAE. The leading-order outer equation is

$$
\left(1+t^{2}\right) \dot{x}_{0}-x_{0}\left(1+x_{0}\right)=0 .
$$

Separate variables:

$$
\frac{\mathrm{d} t}{1+t^{2}}=\frac{\mathrm{d} x_{0}}{x_{0}\left(1+x_{0}\right)}=\mathrm{d} x_{0}\left(\frac{1}{x_{0}}-\frac{1}{1+x_{0}}\right)
$$

So

$$
\tan ^{-1} t=\ln \frac{x_{0}}{1+x_{0}}+A
$$

Solving for x_{0} and plugging in the boundary condition at infinity gives

$$
x_{0}=\frac{1}{2 \mathrm{e}^{\pi / 2-\tan ^{-1} t}-1} .
$$

We find $x_{0}(0)=\left[2 \mathrm{e}^{\pi / 2}-1\right]^{-1}$. The inner rescaling is $t=\epsilon T$ so the leading-order inner equation is

$$
\ddot{X}+\dot{X}=0,
$$

with solution $X=C\left(1-\mathrm{e}^{-T}\right)$. Matching gives $C=x_{0}(0)$. The uniform approximation is

$$
x_{u}(t)=\frac{1}{2 \mathrm{e}^{\pi / 2-\tan ^{-1} t}-1}-\frac{\mathrm{e}^{-t / \epsilon}}{2 \mathrm{e}^{\pi / 2}-2} .
$$

3 Consider the problem

$$
\epsilon y^{\prime \prime}+x^{1 / 2} y^{\prime}-y=0, \quad y(0)=0, \quad y(1)=\mathrm{e}^{2}
$$

Find one term of an appropriate outer expansion and one of an inner expansion, showing that they match in the correct asymptotic sense. Calculate the leading approximation to $y^{\prime}(0)$.

Solution Write $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\cdots$. The leading-order outer solution is the solution to $x^{1 / 2} y_{0}^{\prime}+y=0$, so that $y_{0}=C \mathrm{e}^{2 x^{1 / 2}}$. There cannot be a boundary layer at $x=1$ for the usual reason, so $y_{0}=\mathrm{e}^{2 x^{1 / 2}}$ and there is a boundary layer at the origin. The appropriate rescaling is $x=\epsilon^{2 / 3} X$ so that

$$
y_{X X}+X^{1 / 2} y_{X}-\epsilon^{1 / 3} y=0
$$

The leading-order inner solution satisfying $Y_{0 X X}+X^{1 / 2} Y_{0 X}=0$ that vanishes at the origin is

$$
Y_{0}=D \int_{0}^{X} \mathrm{e}^{-2 u^{3 / 2} / 3} \mathrm{~d} u
$$

Matching gives

$$
D \int_{0}^{\infty} \mathrm{e}^{-2 u^{3 / 2} / 3} \mathrm{~d} u=D(2 / 3)^{1 / 3} \Gamma(2 / 3)=1
$$

The leading-order approximation to $y^{\prime}(0)$ is

$$
\epsilon^{-2 / 3} Y_{0 X}(0)=\epsilon^{-2 / 3}(3 / 2)^{1 / 3} / \Gamma(2 / 3) \approx 0.845 \epsilon^{-2 / 3}
$$

4 Find leading-order solutions to

$$
\epsilon y^{\prime \prime}+(\log x) y^{\prime}-x(\log x) y=0, \quad y\left(\frac{1}{2}\right)=y\left(\frac{3}{2}\right)=1
$$

valid in different regions of the interval $\left(\frac{1}{2}, \frac{3}{2}\right)$. (Hint: think carefully about the possible locations of boundary and internal layers.)

Solution The outer solution satisfies $y_{0}^{\prime}-x y_{0}=0$, so $y_{0}=A \mathrm{e}^{x^{2} / 2}$. A boundary layer at $\frac{1}{2}$ would use the new variable $x=\frac{1}{2}+\epsilon X$, which gives the leading-order equation $Y_{X X}-(\log 2) Y_{X}=0$. The solution to this equation blows up into the interior so there can be no boundary layer on the left. On the right, the new variable $x=\frac{3}{2}-\epsilon X$ gives $Y_{X X}-\left(\log \frac{3}{2}\right) Y_{X}=0$. Again the solution blows up into the interior. Hence there must be an internal layer at $x=1$. The outer solution is $\mathrm{e}^{x^{2} / 2-1 / 8}$ for $x<1$ and $\mathrm{e}^{x^{2} / 2-9 / 8}$
for $x>1$. The new variable comes from $x=1+\epsilon^{1 / 2} X$. The leading-order IL solution satisfies $Y_{X X}+X Y_{X}=0$, so $Y=A \operatorname{erf}(X / \sqrt{2})+B \rightarrow \pm A+B$ as $X \rightarrow \pm \infty$. The limits of the outer solution are $\mathrm{e}^{3 / 8}$ to the left and $\mathrm{e}^{-5 / 8}$ to the right. Hence the inner solution is

$$
Y=\frac{1}{2}\left(\mathrm{e}^{-5 / 8}+\mathrm{e}^{3 / 8}\right)+\frac{1}{2}\left(\mathrm{e}^{-5 / 8}-\mathrm{e}^{3 / 8}\right) \operatorname{erf}(X / \sqrt{2})
$$

