MAE Examples

1 (Van Dyke; Hinch 5.12) Consider the following problem which has an outer, an inner and an inner-inner inside the inner (called a triple deck problem)

$$x^3y' = \epsilon[(1+\epsilon)x + 2\epsilon^2]y^2$$

in 0 < x < 1 with $y(1) = 1 - \epsilon$. Calculate two terms of the outer, then two of the inner, and finally one for the inner-inner. At each state, find the rescaling required for the next layer by examining the non-uniformity of the asymptoticness in the current layer.

Solution Outer solution: write $y = y_0 + \epsilon y_1 + \cdots$. The O(1) equation is

$$x^3y'_0 = 0, \qquad y_0(1) = 1,$$

with solution $y_0 = 1$. The $O(\epsilon)$ equation is

$$x^3y_1' = xy_0^2 = x, \qquad y_1(1) = -1,$$

with solution $y_1 = -x^{-1}$. So the two-term solution is

$$y=1-\frac{\epsilon}{x}$$

This clearly breaks down when $x = O(\epsilon)$. Rescale with $x = \epsilon X$. To be careful, write $y = \epsilon^a Y$. The governing equation becomes

$$\epsilon^{2+a} X^3 Y_X = \epsilon^{2+2a} [(1+\epsilon)X + 2\epsilon] Y^2.$$

Hence a = 0, which is expected, because in terms of X the outer solution is $1 - X^{-1}$, which is O(1). Now expand $Y = Y_0 + \epsilon Y_1 + \cdots$. The O(1) equation is

$$X^3 Y_{0X} = X Y_0^2,$$

leaving the boundary condition for later. This first-order nonlinear equation can be solved by separating variables to give

$$Y_0^{-1} = X^{-1} + A.$$

For large *X*, we must match onto the outer solution. Informally, this means that as $X \to \infty$, $Y_0 \to 1$, so A = 1. Hence

$$Y_0 = \frac{X}{1+X}.$$

At $O(\epsilon)$, we have

$$X^3 Y_{1X} = (X+2)Y_0^2 + 2XY_0Y_1,$$

which can be transformed into

$$Y_{1X} - \frac{2}{X(1+X)}Y_1 = \frac{X+2}{X(1+X)^2}.$$

Using an integrating factor, we find

$$Y_1 = -\frac{X^{-2} + X^{-1} + B}{(1 + X^{-1})^2}.$$

Now we use Van Dyke's rule. We find

$$\begin{aligned} y^{(0,0)} &= 1, \quad y^{(0,1)} = 1, \quad y^{(1,0)} = 1 - X^{-1}, \quad y^{(1,1)} = 1 - X^{-1}, \\ Y^{(0,0)} &= 1, \quad Y^{(1,0)} = 1, \quad Y^{(0,1)} = 1 - \epsilon x^{-1}, \quad Y^{(1,1)} = 1 - \epsilon (B + x^{-1}). \end{aligned}$$

The matching conditions give B = 0. Hence

$$Y = \frac{X}{1+X} - \frac{\epsilon}{1+X}.$$

This breaks down for small *X* when *X* ~ ϵ . For the inner-inner solution, rescale using *X* = $\epsilon \xi$. However, now *y* = *O*(*X*) = *O*(ϵ), so write *y* = $\epsilon \eta(\xi)$. Then

$$\xi^3 \eta_{\xi} = [(1+\epsilon)\xi + 2]\eta^2.$$

The leading-order solution is now obtained from

$$\xi^3\eta_{0\xi} = (\xi+2)\eta_0^2$$

with solution

$$\eta = \frac{1}{\xi^{-2} + \xi^{-1} + C}.$$

We can match informally, because for large ξ we need to match onto *X*, so *C* must vanish. Hence

$$y = \frac{\epsilon \xi^2}{1 + \xi} + \cdots$$

in the inner-inner region. The exact solution is

$$y = \frac{x^2}{\epsilon[(1+\epsilon)(x-x^2) + \epsilon^2(1-x^2)] + (1-\epsilon)^{-1}x^2}.$$

You can check that expanding this expression for small ϵ with fixed x, X and ξ respectively gives the results above. Figure 1 shows the exact and asymptotic solutions over the interval (0, 1) using semilogarithmic and logarithmic axes.

Figure 1: Exact and asymptotic solutions (two terms for the outer, two terms for the inner, one for the inner-inner) for $\epsilon = 0.01$.

2 Find a uniformly valid solution to the problem

$$\epsilon \ddot{x} + (1+t^2)\dot{x} - x(1+x) = 0, \qquad x(0) = 0, \quad x \to 1 \text{ as } t \to \infty$$

for $0 < \epsilon \ll 1$.

Solution This is a two-point BVP with a nonlinear term and an infinite domain, that can be solved using MAE. The leading-order outer equation is

$$(1+t^2)\dot{x}_0 - x_0(1+x_0) = 0.$$

Separate variables:

$$\frac{\mathrm{d}t}{1+t^2} = \frac{\mathrm{d}x_0}{x_0(1+x_0)} = \mathrm{d}x_0\left(\frac{1}{x_0} - \frac{1}{1+x_0}\right),$$

so

$$\tan^{-1} t = \ln \frac{x_0}{1 + x_0} + A.$$

Solving for x_0 and plugging in the boundary condition at infinity gives

$$x_0 = \frac{1}{2e^{\pi/2 - \tan^{-1}t} - 1}$$

We find $x_0(0) = [2e^{\pi/2} - 1]^{-1}$. The inner rescaling is $t = \epsilon T$ so the leading-order inner equation is

$$\ddot{X} + \dot{X} = 0,$$

with solution $X = C(1 - e^{-T})$. Matching gives $C = x_0(0)$. The uniform approximation is

$$x_u(t) = \frac{1}{2e^{\pi/2 - \tan^{-1}t} - 1} - \frac{e^{-t/\epsilon}}{2e^{\pi/2} - 2}$$

3 Consider the problem

$$\epsilon y'' + x^{1/2}y' - y = 0, \qquad y(0) = 0, \quad y(1) = e^2.$$

Find one term of an appropriate outer expansion and one of an inner expansion, showing that they match in the correct asymptotic sense. Calculate the leading approximation to y'(0).

Solution Write $y = y_0 + \epsilon y_1 + \epsilon^2 y_2 + \cdots$. The leading-order outer solution is the solution to $x^{1/2}y'_0 + y = 0$, so that $y_0 = Ce^{2x^{1/2}}$. There cannot be a boundary layer at x = 1 for the usual reason, so $y_0 = e^{2x^{1/2}}$ and there is a boundary layer at the origin. The appropriate rescaling is $x = \epsilon^{2/3}X$ so that

$$y_{XX} + X^{1/2} y_X - \epsilon^{1/3} y = 0.$$

The leading-order inner solution satisfying $Y_{0XX} + X^{1/2}Y_{0X} = 0$ that vanishes at the origin is

$$Y_0 = D \int_0^X e^{-2u^{3/2}/3} \,\mathrm{d}u$$

Matching gives

$$D\int_0^\infty e^{-2u^{3/2}/3} du = D(2/3)^{1/3}\Gamma(2/3) = 1.$$

The leading-order approximation to y'(0) is

$$\epsilon^{-2/3} Y_{0X}(0) = \epsilon^{-2/3} (3/2)^{1/3} / \Gamma(2/3) \approx 0.845 \epsilon^{-2/3}.$$

4 Find leading-order solutions to

$$\epsilon y'' + (\log x)y' - x(\log x)y = 0, \qquad y(\frac{1}{2}) = y(\frac{3}{2}) = 1$$

valid in different regions of the interval $(\frac{1}{2}, \frac{3}{2})$. (Hint: think carefully about the possible locations of boundary and internal layers.)

Solution The outer solution satisfies $y'_0 - xy_0 = 0$, so $y_0 = Ae^{x^2/2}$. A boundary layer at $\frac{1}{2}$ would use the new variable $x = \frac{1}{2} + \epsilon X$, which gives the leading-order equation $Y_{XX} - (\log 2)Y_X = 0$. The solution to this equation blows up into the interior so there can be no boundary layer on the left. On the right, the new variable $x = \frac{3}{2} - \epsilon X$ gives $Y_{XX} - (\log \frac{3}{2})Y_X = 0$. Again the solution blows up into the interior. Hence there must be an internal layer at x = 1. The outer solution is $e^{x^2/2-1/8}$ for x < 1 and $e^{x^2/2-9/8}$

for x > 1. The new variable comes from $x = 1 + e^{1/2}X$. The leading-order IL solution satisfies $Y_{XX} + XY_X = 0$, so $Y = A \operatorname{erf} (X/\sqrt{2}) + B \to \pm A + B$ as $X \to \pm \infty$. The limits of the outer solution are $e^{3/8}$ to the left and $e^{-5/8}$ to the right. Hence the inner solution is

$$Y = \frac{1}{2}(e^{-5/8} + e^{3/8}) + \frac{1}{2}(e^{-5/8} - e^{3/8})\operatorname{erf}(X/\sqrt{2})$$