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Using an acoustic model for the full elastic problem, the early times of the two-
dimensional impact of a disc on a rigid plane, or impact between two identical discs, are
analysed. We examine some aspects of wave propagation during the impact process and
specify stress distributions near the impact region. Unlike the impact of two spheres for
which the quasi-static local contact approach of Hertz is well adapted, a complete
dynamical approach is necessary for the dynamic contact of two discs. At short times
after impact, we show the existence of supersonic effects and we determine the shape of
the corresponding stress waves that travel from the impact region through the unstressed
body. During the supersonic phase, the contact region grows faster than the speed of
sound and the surface outside the contact region is undisturbed. We then solve the
transition from supersonic to subsonic regimes and determine the stress distribution near
the impact region. Finally, we discuss some physical implications of these results.
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1. Introduction

Impact of solid bodies encompasses a wide range of processes. Examples may be
found in the fields of tool design, vehicle accidents, game of billiards, granular
materials, impact of meteorites, and in many other areas. The concept of impact
is differentiated from the case of static, or quasi-static, loading by the nature of
its application. Static loading may be regarded as a series of equilibrium states
and requires no consideration of accelerating or wave effects. On the other hand,
forces created by collisions are exerted and removed in a very short interval of
time and initiate stress waves, which travel away from the region of contact.
However, the complicated process of energy transfer under impact conditions
leads to serious difficulties in the mathematical analysis of this type of problem
(Goldsmith 1960; Johnson 1985).

The foundation for a rational description of impact phenomena was established
with the birth of the science of mechanics. The initial concept of rigid-body impact
is due to Galileo. Later, Newton furnished the concept of the coefficient of
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restitution, which has survived essentially unchanged to the present day, though of
questionable fundamental significance. An important advance in the field occurred
with the treatment of one-dimensional longitudinal and transverse vibrations
caused by impact on bars (Love 1944; Goldsmith 1960). However, this approach
was superseded by the Hertz theory of local contact deformations (Landau &
Lifshitz 1959; Johnson 1985), which has found wide use in spite of the static elastic
nature of its derivation. Using similar approaches, an extensive analysis of the
propagation of stresses exceeding the elastic limit, based upon various models of
plasticity, has been developed in the last few decades (Johnson 1985).

In the case of a falling sphere on a rigid substrate, the Hertz theory of local
contact deformations allows the determination of the duration of impact tH
(Landau & Lifshitz 1959; Johnson 1985). It is shown that tHfðc=vÞ1=5R=c, where
v is the initial velocity of the sphere, R its radius and c is a characteristic elastic
wave speed of the material. Since in most applications v/c, the duration of
impact is thus much larger than tWfR=c, the time taken by a wave to travel
from the impact region to the upper boundary of the sphere, which is the
minimum period of free vibration of the body. Consequently, the quasi-static
local contact approach provides reliable results of the stress field for this
configuration (Goldsmith 1960; Johnson 1985). Nevertheless, at times smaller
than tW, the propagation of elastic waves from the region of contact into the
body cannot be neglected and the stress field in the body exhibits a truly
dynamical character (Thompson & Robinson 1977). On the contrary, one can
show that the Hertz quasi-static approach of impact of an infinite cylinder or of a
disc in two dimensions on a rigid plane gives a duration of impact tHwtWfR=c,
independently of the initial velocity of the disc (Goldsmith 1960). Curiously, this
two-dimensional impact problem of a disc is similar to the one-dimensional case
of the impact on bars. Consequently, the quasi-static approximation is not valid
for this configuration and one has to deal with a dynamical approach. Finally,
independently of the geometry configuration, the dynamics of impact at times
smaller than the period of free vibration of the body shows supersonic effects
(Thompson & Robinson 1977), due to the fact that the contact region spreads
more rapidly than the characteristic speeds of elastic waves.

Motivated by the existence of these dynamical processes at the early stages of
impact, we examine in this paper some aspects of wave propagation during
dynamic contact between elastic solids. During the initial stage of the impact,
the spreading velocity of the contact region scales with time as tK1/2. Therefore,
at first contact the spreading velocity exceeds the characteristic wave speed of
the body and then decreases with time to become subsonic. Using an
elastodynamic formulation of a model linear compressible solid, we analyse the
early times of impact between a disc on a rigid plane, or between two identical
discs, and we determine stress distributions near the impact region. In particular,
we study in detail the transition from supersonic to subsonic regimes. Our
dynamical solution of impact is valid for times smaller than the minimum period
of free vibration of the body. Note that Thompson & Robinson (1977) have
already drawn attention to the supersonic behaviour immediately following the
first contact between two spheres. However, they focused on the supersonic stage
of contact between a rigid punch on an elastic body, and the transition from
supersonic to subsonic regimes was not considered. Moreover, as we shall show in
§2, the dynamics of the contact region of the present problem is different from
Proc. R. Soc. A (2006)
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Figure 1. Schematic representation of a falling disc on a rigid substrate. At times t!0, the body is
falling at constant velocity v, so that displacement is given by UzZKvt. At time tZ0, the body
touches the rigid plane, and spreads along zZ0 for tO0.
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the case studied in Tsai (1971), Bedding & Willis (1976) and Thompson &
Robinson (1977). Studies of the supersonic and subsonic regimes in the case of
impact between a rigid punch and an elastic body have been performed by
Borodich & Gomatam (1998), Kubenko (2004) and Zelentsov (2004). The case
with Coulomb friction has been examined by Brock & Georgiadis (1994). We
present exact and simple expressions, however, which shed light on the full
elastic problem.

The paper is organized as follow. In §2, the problem of a falling circular elastic
disc impacting a rigid plane and the corresponding acoustic model problem are
presented. In §§3 and 4, we determine in detail stress distributions near the
impact region for the supersonic and subsonic regimes. Finally, we discuss some
physical consequences of our results and their relevance to actual problems.
2. The dynamic contact problem

Consider a circular disc of radius R that falls vertically at constant speed v, and
impacts a rigid plane at time tZ0 (see figure 1). We will assume a plane strain
deformation of the disc, given by the two-dimensional displacement field
Uðx; z; tÞ. Defining Uðx; z; 0ÞZ0, the displacement vector at times t%0 is
simply given by UZKvtez , where ez is a unit vector parallel to the z-axis. Let us
also define a new displacement vector field u given by uZvtezCU , which
satisfies uðx; z; t%0ÞZ0.

We are interested in the dynamics of impact at times 0! t! tWZ2R=c, where
tW is the time taken by a wave to travel from the impact region to the upper
boundary of the disc. During this stage of dynamic contact, the condition on the
normal displacement uzðx; 0; tÞ on the contact region, as defined in figure 1 by the
segment ðKxC; xCÞ, can be derived using the same arguments as for the quasi-
static case (Landau & Lifshitz 1959):

uzðx; 0; tÞhuCðx; tÞZ vtK
x2

2R
; for jxj!xC and 0! t! tW: ð2:1Þ

Note that (2.1) is valid when the undeformed configuration of the body in the
vicinity of the contact region can be approximated by a parabolic shape.
Proc. R. Soc. A (2006)
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Moreover, the condition (2.1) holds when 0! t! tW only, because it assumes
that the disc is undeformed ðuZ0Þ far from the impact region, which is true until
the initial wave radiated from the impact point at tZ0 has reached the upper
boundary of the disc. The wave character of the present problem is similar to the
classical one-dimensional vibration problem caused by impact of a bar.

Since the rigid substrate remains undeformed during the impact process, the
locations xZGxC of the edges of the contact region must satisfy the conditions
uCðGxC; tÞZ0, which gives

xCðtÞZ
ffiffiffiffiffiffiffiffiffiffi
2Rvt

p
: ð2:2Þ

Therefore, the speed of impact spreading in the x-direction is given by

_xCðtÞh
dxC
dt

Z

ffiffiffiffiffiffiffi
Rv

2t

r
; with 0! t! tW: ð2:3Þ

Suppose that the material exhibits one characteristic elastic wave speed c. Thus,
at short times after the impact the speed of impact spreading is larger than the
elastic wave speed of the material ð _xCðtÞOcÞ, which is a signature of supersonic
effects. Moreover, the transition from supersonic to subsonic regimes ð _xCðtÞ!cÞ
occurs when the dynamic of contact is still governed by (2.1)–(2.3). Effectively,
(2.3) shows that the time t� at which the transition supersonic–subsonic regimes
occurs is given by

t� Z
Rv

2c2
: ð2:4Þ

Therefore, within the time-interval of interest ð0! t! tWÞ, one has supersonic
spreading for 0! t! t� and subsonic spreading for t�! t! tW.

Let us emphasize that due to the rigidity of the impacted plane, the dynamic
spreading of the contact region does not involve the inertia of the disc at times of
impact t! tW. This behaviour is different from the case of impact between a rigid
punch and an elastic medium, where the spreading velocity depends of the inertia
of the punch (Tsai 1971; Bedding & Willis 1976; Thompson & Robinson 1977). In
the present configuration, the dynamics of the contact region becomes controlled
by the inertia of the disc when tO tW only. Finally, note that the present
problem of impact of a disc on a rigid plane is equivalent to impact between two
identical discs and the following results are common to both configurations.
(a ) The acoustic impact model problem

In the following, we calculate the elastodynamic response of a disc (or an
infinite cylinder) when impacting a rigid plane. We will be mostly interested in
the transition from supersonic to subsonic regimes. For this we will use a model
solid which exhibits one characteristic wave speed only. The present acoustic
model may be connected to elastodynamics by assuming that the shear wave
speed of the material vanishes, and thus it will capture the main super-
sonic–subsonic transition features of the actual elastodynamic problem. We
define a scalar field 4 such that

uðx; z; tÞZV4ðx; z; tÞ; pðx; z; tÞZKlV24ðx; z; tÞ; ð2:5Þ
where l is the Lamé elastic constant and p is the pressure field. The present
acoustic model is equivalent to supposing that the Lamé shear coefficient
vanishes (mZ0), and that there is only one compressible wave speed given by
Proc. R. Soc. A (2006)
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cZ
ffiffiffiffiffiffiffiffi
l=r

p
, where r is the material density. Recalling that t� is given by (2.4), we

non-dimensionalize time by 2t�, length by 2ct�, displacement by 2vt�, pressure by
lv=c and 4 by 4vct�2. Then the dimensionless transonic time is tTZ1=2, and the
dimensionless period of free vibration of the body becomes tWZ2c=v.

For the present acoustic problem, the momentum equations reduce to

€4 ZV24; ð2:6Þ
with 4ðx; z; t!0ÞZ0. Far from the contact region, the disc is unstressed and
thus one has

4ðx; z; tÞZ 0; for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Cz2

p
/N: ð2:7Þ

The condition (2.1) over the region of the boundary zZ0 in contact with the disc
becomes

4;zðx; 0; tÞZ uCðx; tÞZ tKx2=2; for x2!2t; ð2:8Þ
where the subscripted comma denotes partial differentiation. The rest of the
boundaries of the disc are stress-free. Thus, one has

pðx; 0; tÞZK€4ðx; 0; tÞZ 0; for x2O2t: ð2:9Þ
During the first, supersonic, time-interval ð0! t!1=2Þ, the problem has a
Neumann boundary condition and can be solved explicitly. A simple expression
can be obtained using the Cagniard–de Hoop method. During the second,
subsonic time-interval ð1=2! t! tWÞ, the problem has mixed boundary
conditions with a moving contact line between the two regions, and a more
complicated procedure is needed (Poruchikov 1993).
3. The supersonic regime

Acoustic waves in the disc are excited by the imposed displacement (2.8). In the
time-interval of interest, t! tT h1=2, the boundary of the region affected by the
impact moves faster than the wave speed and the region jxjO

ffiffiffiffiffi
2t

p
is not affected.

Hence, the unstressed boundaries outside the impact region are not disturbed by
the propagation of the acoustic waves from the contact region. Therefore, until the
transonic instant, an equivalent boundary condition outside the contact area is

4;zðx; 0; tÞZ 0; for x2O2t and t! tT: ð3:1Þ
Thus, the boundary condition at zZ0 in the supersonic problem ðt! tTÞ can be
written as

4;z huCðx; tÞZ ðtKx2=2ÞHðtKx2=2Þ; ð3:2Þ
where Hð$Þ is the Heaviside step function.

Even though the expressions we will obtain only describe the solution until the
transonic instant, tTZ1=2, we calculate them beyond the transonic time,
because we will use them in order to solve the subsonic regime. We define the
Laplace–Fourier transform by

f LFðk; sÞh
ðN
KN

ðN
0
f ðx; tÞeKsðtKikxÞdt dx; ð3:3Þ
Proc. R. Soc. A (2006)
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with inverse transform

f ðx; tÞZ 1

4p2i

ðN
KN

ðaCiN

aKiN
sf LFðk; sÞesðtKikxÞds dk: ð3:4Þ

Then the Laplace–Fourier transform of the problem takes the form

4LF
;zz ðk; z; sÞZ s2ðk2C1Þ4LFðk; z; sÞ; ð3:5Þ

4LF
;z ðk; 0; sÞZ uLFC ðk; sÞZ

ffiffiffiffiffiffi
2p

p
sK5=2eKsk2=2: ð3:6Þ

The solution to this problem satisfying (2.7) is found to be

4LFðk; z; sÞZK
uLF
C ðk; sÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 C1

p eKsz
ffiffiffiffiffiffiffiffi
k2C1

p
: ð3:7Þ

We define branch cuts in the k-plane extending fromGi toGiN, with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2C1

p

positive and real for k on the real axis. Hence, the transformed pressure is

pLFðk; z; sÞZKs24LFðk; z; sÞZ
ffiffiffiffiffiffi
2p

p sK3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 C1

p eKsk2=2Ksz
ffiffiffiffiffiffiffiffi
k2C1

p
: ð3:8Þ

We now consider the Laplace transform of the pressure on the boundary zZ0,
which is given by

pLðx; 0; sÞZ sK1=2ffiffiffiffiffiffi
2p

p
ðN
KN

eKsðk2=2CikxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
k2C1

p dk: ð3:9Þ

This enables us to write

pLðx; 0; sÞZpK1=2sK1=2gLðx; sÞ: ð3:10Þ
The Cagniard–de Hoop method (e.g. Craster 1996) now relies on defining a new
variable t, so that the integral in (3.9) becomes a Laplace integral. Hence, we set

tZ 1

2
k2 C ikx: ð3:11Þ

(a ) Supersonic region

When jxj!
ffiffiffiffiffi
2t

p
, the relation (3.11) may be inverted to give

kðx; tÞZKixG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

p
: ð3:12Þ

We now move the Fourier contour to Im kZKx, initially with jxj!1 so as not to
involve the branch cut. We then change the variable of integration from k to t.
The resulting horizontal contour is described as t takes the values ð1=2Þx2 toN
(there are two branches of k corresponding to the two possible signs of the square
root: kC in the right half-plane and kK in the left half-plane). Hence, we may write

gLðx; sÞZ 1ffiffiffi
2

p
ðx2=2
N

eKstffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2
KC1

p dkK
dt

dtC
1ffiffiffi
2

p
ðN
x2=2

eKstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2
CC1

p dkC

dt
dt: ð3:13Þ

Since k 2
KZðk 2

CÞ� and
dkC

dt
ZK

dkK
dt

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2tKx2
p ; ð3:14Þ

we obtain

gLðx; sÞZ
ðN
0
HðtKx2=2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tKx2=2
p Re

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 C1

p eKstdt: ð3:15Þ
Proc. R. Soc. A (2006)



2787Supersonic and subsonic stages
The choice of the branch of k is now irrelevant. The expression (3.15) has the form
of a Laplace transform, so t is in fact the time variable t. From now on we replace
t by t, in particular in (3.12). Now (3.15) may readily be inverted to give

gðx; tÞhg1ðx; tÞZHðtKx2=2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tKx2=2

p Re
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðx; tÞC1
p ; ð3:16Þ

where kðx; tÞ is defined by (3.12) with t replacing t. Hence in the supersonic
regime, the pressure on the boundary zZ0 takes the form

pðx; 0; tÞhpSðx; tÞZ
1

p
tK1=2 � g1ðx; tÞ; ð3:17Þ

where � is the time-convolution operator.
(b ) Wave region

For jxjO1, there is still the contribution g1ðx; tÞ from the horizontal contour,
but the contour of integration must now also detour around the branch cut, and
so there is an extra contribution, g2ðx; tÞ, to add which corresponds to jxjO

ffiffiffiffiffi
2t

p
.

The appropriate way to write kðx; tÞ is now
kðx; tÞZKixC i sgn x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2K2t

p
: ð3:18Þ

The new section of the contour corresponds to values of t in the range ðta; x2=2Þ,
where taðxÞh jxjKð1=2Þ is the equation of the ray propagating at the acoustic
velocity that passes through the transonic point. We hence obtain

gL2 ðx; sÞZ
1ffiffiffi
2

p
ðta
x2=2

eKst

ði sgn xÞjk2C1j1=2
dk

dt
dt

C
1ffiffiffi
2

p
ðx2=2
ta

eKst

ðKi sgn xÞjk2C1j1=2
dk

dt
dt: ð3:19Þ

This leads to

g2ðx; tÞZHðx2K1ÞHðx2=2KtÞHðtKtaðxÞÞ
jk2 C1jK1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2=2Kt
p : ð3:20Þ

The pressure hence takes the form

pSðx; tÞZ
1

p
tK1=2 � ½g1ðx; tÞCg2ðx; tÞ�: ð3:21Þ

Figure 2 shows pSðx; tÞ for values of time before and after the transonic instant.
The curve marked ‘subsonic’ is not the physical pressure, since the boundary
condition (3.2) is not satisfied outside the contact area. The true pressure in the
contact region in the subsonic regime will be determined in §4. The convolution
integrals (3.17) and (3.21) have integrable singularities at the endpoints tZx2=2
corresponding to the contact line.
(c ) Asymptotic behaviours

We now examine in detail the pressure field in the vicinity of the endpoints,
tZx2=2, of the contact line. First, we consider the g1 convolution, which is the
only contribution in the supersonic region in which t! tT. It can be shown that
Proc. R. Soc. A (2006)
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Figure 2. Pressure pSðx; tÞ at times tZ0:1 (supersonic), tZ1=2 (transonic) and tZ1 (subsonic). The
dots correspond to the asymptotic behaviour near the contact line given by (3.26) and (3.38).
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the pressure given by (3.17) can be written as

pSðx; tÞZ
2

p

ðp=2
0

Re
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 02 C1
p dq; ð3:22Þ

with

k 02 C1Z 1Kx2K2ix
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

p
sin qCð2tKx2Þsin2q: ð3:23Þ

To obtain a uniform limit a new variable is needed. We hence define

ah
2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

p

1Kx2
: ð3:24Þ

Small values of a correspond to being close to the contact line, but with x not too
close to its transonic value of jxjZ1, while a/GN corresponds to approaching
the transonic value of x from the right and left, respectively. The integral in
(3.23) can then be simplified to

pSw
2

p
j1Kx2jK1=2

ðp=2
0

Re
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sKijajsin q
p dq; ð3:25Þ

where sZsgnð1Kx2Þ. This integral can be expressed in closed form in terms of
elliptic integrals, but the resulting formula is not enlightening.

For x2!1, i.e. in the supersonic region, we obtain pSZð1Kx2ÞK1=2Z
ð1K2tÞK1=2 on the contact line. This is the finite value at the right-hand end of
the supersonic pressure curve of figure 2. At the transonic point, which
corresponds to a/GN, the pressure is singular with

pSw
1

p

ffiffiffiffiffiffi
2

jxj

s
K

1

2

� �
ð2tKx2ÞK1=4w

ffiffiffi
2

p

p
K

1

2

� �
ð2tKx2ÞK1=4; ð3:26Þ

where K(m) is the complete elliptic integral of the first kind with parameter m.
This behaviour is indicated by the dots on the transonic curves in figure 2. For
x2O1, i.e. in the subsonic region, we have

p1w
2jxj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

p

ðx2K1Þ3=2
w

2
ffiffiffiffiffi
2t

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

p

ðx2K1Þ3=2
: ð3:27Þ
Proc. R. Soc. A (2006)
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This contribution to the pressure tends to zero on the contact line, and will
cancel with a contribution from g2 as will be shown. The correction terms to
(3.27) are Oða3; acÞ where chð2tKx2Þ=ð1Kx2Þ.

In the subsonic region, the g2 convolution needs to be taken into account.
There are now two cases depending on whether we are in the contact region with
tOð1=2Þx2O taðxÞ or in the acoustic region with ð1=2Þx2O tO taðxÞ. In the
contact region, the integral can be written as

p2 Z
1

p

ðp=2
0

cos2qC
2tKx2

x2K2ta

� �K1=2

jk 02C1jK1=22 sin q dq: ð3:28Þ

The factor jk 02C1jK1=2 does not simplify near the contact line, while the first
factor becomes non-uniform. We are led to define another new variable

bc h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tKx2

x2K2ta

s
; ð3:29Þ

and small values of bc correspond to a region near the contact line but not too
close to the transonic point. We now obtain the asymptotic behaviour of p for
small b. We find

p2 Z
2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
x2K1

p log
2

bc
CIcK

2jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2K2ta

p
pðx2K1Þ3=2

bc COðb2cln bcÞ; ð3:30Þ

where

Ic h
2

p

ðp=2
0

tan q½jk 02
c C1jK1=2Kðx2K1ÞK1=2�dq ð3:31Þ

and

k 0
c ZKixC i sgn x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2K2ta

q
cos q: ð3:32Þ

There is hence a logarithmic singularity in the pressure field. In the acoustic
region, a similar analysis holds with bc replaced by ba, where

ba h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2K2t

2ðtKtaÞ

s
: ð3:33Þ

Then

p2 Z
2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
x2K1

p log
2

ba
CIa COðb2aln baÞ; ð3:34Þ

where

Ic h
2

p

ðp=2
0

tan q½jk 02
a C1jK1=2Kðx2K1ÞK1=2�dq ð3:35Þ

and

k 0
a ZKixC i sgn x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtKtaÞ

p
cos q: ð3:36Þ
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Close to the contact line, we can write x2Z2tCOðb2aÞZ2tCOðb2cÞ, so we
define a new variable (note that tO1=2)

bZ
jx2K2tj1=2ffiffiffiffiffi

2t
p

K1
: ð3:37Þ

Then

pS Z
2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
x2K1

p log
2

b
CI0 COðb2 ln b; a3; acÞ; ð3:38Þ

where the contribution from (3.27) has cancelled with the third-term in (3.30).
Here

I0h
2

p

ðp=2
0

tan q½jk 02
0 C1jK1=2Kðx2K1ÞK1=2�dq;

k 0 ZKixC i sgn xð
ffiffiffiffiffi
2t

p
K1Þcos q:

ð3:39Þ

The asymptotic behaviours (3.26) and (3.38) are shown in figure 2.
4. The subsonic regime

We have obtained a solution 4S satisfying the boundary condition (3.2) over the
entire boundary. Now, consider the function 4P for tO tT that vanishes along
with _4P at tZ tT and satisfies the boundary conditions

€4P ZK€4S for x2O2t; 4P;z
Z 0 for x2!2t: ð4:1Þ

Then the sum 4Z4SC4P satisfies the boundary conditions (2.8) and (2.9):
4;zZuC for x2!2t and pZK€4Z0 for x2O2t, and is continuous in time, as is its
time-derivative. It is hence the solution to the full physical problem with the
correct boundary conditions.

A method for calculating 4P is given in Poruchikov (1993, §6.4.3) (see also
Slepyan 2002). It turns out to be essential to work with the pressure. We write
€4ZKpZa and 4;zZs. We consider only the right-hand discontinuity and
change to the new coordinates ~xZxK1, ~tZ tKtTZ tK1=2. Note also that
~pSð~x; ~tÞZpSðx; tÞ. The transonic point is at the origin of the new time and space
variables. We drop tildes for now.

The contact line is now at the location lðtÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2tC1

p
K1 (so that lð0ÞZ0 and

l 0ð0ÞZ1). The solution to the problem for a and s is given by

aKZSK� �f½sK� �SCKaC � �PK�H ½lðtÞKx�CCg; ð4:2Þ

sCZKPC � �f½sK� �SCKaC � �PK�H ½xKlðtÞ�KCg; ð4:3Þ
where the double convolution operator involves both time and space. Variables
with subscript C (respectively, K) vanish for x! lðtÞ (respectively, xO lðtÞ).
The boundary conditions give sKZ0 and aCZpS. The functions SK, PK and PC
are given by

SKZK
t
K1=2
Cffiffiffi
p

p dðtCxÞ; PKZ
t
K3=2
C

2
ffiffiffi
p

p dðtCxÞ; PCZK
t
K3=2
C

2
ffiffiffi
p

p dðtKxÞ; ð4:4Þ
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Figure 3. Space-time diagram for the subsonic and supersonic problems. The parabola is the
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horizontal dotted line separates the subsonic and supersonic regions. The thick lines are explained
in the text. The two indicated points are ð1:5; 2:5Þ (subsonic) and ð0:2; 1Þ (supersonic).
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where

fCðtÞZ
f ðtÞ for tO0;

0 for t!0:

(
ð4:5Þ

The contribution C corresponds to a homogeneous solution of the problem, which
we neglect for now.

A calculation analogous to that of Poruchikov (1993, §6.4.2) gives

pKZ
1

p
H ½lðtÞKx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðt0ÞKx

p ðxCt

lðt0Þ
pSðtCxKx; xÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xKlðt0Þ
p dx

xKx
; ð4:6Þ

where t0 is the root of the equation

lðt0ÞZ xCðtKt0Þ: ð4:7Þ
(Note that this is really ~pS above.) This equation gives the value of time, t0, at
which a ray propagating to the left at the acoustic velocity from the boundary to
the point ðx; tÞ intersects the contact line xZ lðtÞ. Note that tO t0. Figure 3
shows the contact line and acoustic lines in the original ðx; tÞ plane. The vertical
lines are the ranges of integration of the convolution integrals that define the
subsonic solution for the values of ðx; tÞ indicated by crosses. The solid portion
corresponds to the g1 convolution and the dashed portion to the g2 convolution.
The solid and dash-dot portions of the diagonal line make up the path of
integration for the subsonic solution defined by (4.6) for the supersonic value of
ðx; tÞ. The dotted portion is the continuation of that straight line to ðx; tÞ. Along
the dash-dot portion, the integrand (the supersonic potential evaluated beyond
the transonic point) vanishes by causality. The solution that we find is valid in the
region located in the right half-plane xO0 below the crossing of the acoustic ray
emitted from the left-hand contact line and the right-hand contact line itself.
Beyond that time, we must take into account both transonic points. However,
we do not need to do this in order to calculate the structure of the solution in
Proc. R. Soc. A (2006)
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the initial phase of the subsonic region. The reason we derived the solution (4.6) to
the problem in terms of p is that this produces a solution which has acceptable
behaviour in the pressure field. Working with 4 or _4 gives unacceptable singular
terms. These solutions could be eliminated using the homogeneous solutions, but
this would be difficult.

We have hence obtained the full solution to the subsonic problem. Figure 4
shows the full solution for times after the transonic instant. Near the contact
the pressure is finite with square root behaviour. We see that as time
progresses, the solution adjusts as a disturbance moves to the left from the
contact line leading to a cusp. At later times, the solution has a smooth
parabolic shape.
(a ) Asymptotics

We now calculate the behaviour of the pressure to the left of the contact line.
We return to the original coordinate system, in which pK takes the form

pKZ
1

p
H ½lðtÞKx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðt0ÞKx

p ðxCtK1=2

lðt0Þ
pSðtCxKx; xÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xKlðt0Þ
p dx

xKx
: ð4:8Þ

The only difference is in the upper limit of the integral. The relation (4.7) takes
the same form in the original coordinate system. A convenient variable to
investigate the asymptotic behaviour is eh lðt0ÞKx. We obtain

pZK
e1=2

p
4¼

tK1=2

0
pSðtKz; lðtÞCzÞ dz

z3=2
COðe; b2 ln b; a3; acÞ; ð4:9Þ

where the integral is to be understood as a Hadamard principal part integral. The
derivation of (4.9) is given in appendix A. The coefficient of e1=2 is hence a
regularized integral of 4Sðt; xÞ over the acoustic region (along the bold diagonal
line of figure 3). The variable e is convenient, but hh lðtÞKx is more physical.
For small e and h, one can show that

eZ
h

1K_lðtÞ
: ð4:10Þ
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The various error terms in (4.9) then become b2 ln bwh log h, a3wh3=2,
acwh3=2. This leads to

pZK
h1=2

pð1K_lðtÞÞ4¼
tK1=2

0
pSðtKz; lðtÞCzÞ dz

z3=2
COðh ln hÞ: ð4:11Þ

These asymptotic limits are not uniformly valid close to the transonic point,
where the various denominators in a, b and c are no longer small.
5. Discussion

Some aspects of wave propagation during dynamic contact between solids have
been presented. In the framework of a model linear acoustic solid, we have
analysed the earlier times of impact between a disc on a rigid plane, or between
two identical discs, and have determined stress distributions near the impact
region. In particular, the transition from supersonic to subsonic regimes has been
studied in detail. A key feature of the impact of a body on a rigid plane or
between two identical discs is that the spreading of the contact region does not
involve the inertia of the disc at times of impact t! tW. The dynamics of the
contact region is determined and its spreading velocity scales with time as tK1=2.
This behaviour is different from the case of impact between a rigid punch and an
elastic medium, where the spreading velocity depends on the inertia of the punch
(Tsai 1971; Bedding & Willis 1976; Thompson & Robinson 1977).

For the present problem, a transonic transition occurs at times t�Z2Rv=c2

which corresponds to a size rZ2xCZ4Rðv=cÞ of the impacted region, which
could be relevant if the impact speed v is large enough. At the endpoints, the
stress has been found to be singular as xK1=4. While this singularity does not
induce a finite non-zero energy release rate, it corresponds to large stress
concentrations. Moreover, figure 4 shows that just below t� the stress distribution
in the supersonic regime increases rapidly when approaching the endpointsGxC
and may exceed the elastic limit of the material. On the contrary, in the subsonic
regime, the stress tends to zero at these points. Therefore, although a permanent
deformation can be produced by exceeding the elastic limit even in the quasi-
static loading, the dynamic part of the impact will reinforce this behaviour.
The impact phenomenon changes in ways which depend upon the mechanical
properties of both the projectile and the target. Thus, it can be also conjectured
that such a wave propagation singularity might have some effects on the origin of
the coefficient of restitution. Moreover, the divergence of the pressure field at the
transonic point might contribute to the wear of materials subjected to dynamical
contact loadings.

The total force over the contact region in the supersonic regime can be
calculated quite simply from (3.8). Noting that the pressure in the supersonic
regime vanishes outside the contact region, we have

PðtÞZ
ðN
KN

pðx; 0; tÞdx Z pFð0; 0; tÞZ 2ffiffiffi
p

p t1=2fV ðtÞSðtÞ: ð5:1Þ

This is the same result mentioned by Borodich & Gomatam (1998) in the
supersonic stage of contact. No such simple form appears possible for the
subsonic regime.
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The extension of the present analysis to an elastic solid is conceptually
straightforward. The Cagniard–de Hoop method still works, because the waves
are non-dispersive, but the space-time diagram becomes more complicated as two
different waves are released at the two sonic instants. However, the results can
still be expressed in terms of simple convolution integrals and asymptotic limits
can be calculated. The subsonic calculations are significantly more complicated,
however. Once again the method remains the same, but the equivalent result to
(4.6) is no longer a single integral, but rather a triple integral. As mentioned
earlier, we expect the transonic behaviour here to carry through to the full elastic
problem.

While the present analysis was restricted to two-dimensional impact problems,
the results should persist in three dimensions, especially the singular behaviour
at the transonic point and the stress distribution in the contact region should be
similar. Moreover, the general results of the present acoustic model should be
relevant to the elastodynamic problem if one restricts oneself to the analysis of
the supersonic–subsonic transition regimes. Finally, this study may provide a
general framework for dynamic impact problems where the transition from
supersonic to subsonic regimes is involved. Effectively, although the fraction of
the impact energy which is radiated as waves is generally very small, it may be
important in some applications such as seismology (Rosakis 2002) or the kinetics
of granular materials.

We thank Y. Pomeau and W. R. Young for enlightening discussions. We also thank a referee for
helpful comments and references. The Laboratoire de Physique Statistique de l’Ecole Normale
Supérieure is associated with the CNRS (UMR 8550) and Universities Paris VI and Paris VII.
S.G.L.S. was supported as a visiting professor at the University Paris VII during part of this work
and also partly by a Lindemann Trust Fellowship administered by the English Speaking Union
while at the Scripps Institution of Oceanography.
Appendix A. Asymptotic behaviour of pL near the contact point

We first carry out the change of variable xZ lðt0ÞCz in (4.8), so that to the left
of the contact line (where eO0),

pKZK
e1=2

p

ðtK1=2Ke

0
pSðtKzKe; lðt0ÞCzÞzK1=2 dz

zCe
: ðA 1Þ

Consider the integral

J Z

ðA
0
FðzÞzK1=2 dz

zCe
; ðA 2Þ

where we allow A and FðzÞ to depend on e. The results of §3c show that

FðzÞZaa log bazCOðzÞ; ðA 3Þ
for small z, where aa and ba are factors depending on the terms in (3.34). Using
standard methods, we obtain

J Z eK1=2paa log baeCI ðAÞK2aaA
K1=2ðlog baAC2ÞCOðe1=2Þ; ðA 4Þ

where the integral I ðAÞ is given by

I ðAÞh
ðA
0

FðzÞKaa log baz

z3=2
dz: ðA 5Þ
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In our case, AZ tKð1=2ÞKe. From §3c, expanding A in e gives an Oðe ln eÞ
correction to (A). The remaining Oð1Þ part of (A 4) is exactly the definition of
the Hadamard finite-part integral

4¼
tK1=2

0
FðzÞ dz

z3=2
Z

ðtK1=2

0

FðzÞKaa log baz

z3=2
dz

K
2aaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tK1=2

p log ba tK
1

2

� �� �
C2

� �
: ðA 6Þ

The full asymptotic result for the subsonic pressure in the contact region is
hence the combination of (3.27), (3.30), (A 1) and (A 4):

pKZKpaa log baeK
e1=2

p
4¼

tK1=2

0
FðzÞ dz

z3=2
COðeÞC 2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
x2K1

p log
2

b

CIc COðb2cln bc; a
3; acÞ; ðA 7Þ

(once again the OðbcÞ terms have cancelled). We can now replace ba and bc by b
in the aa, ba and Ic terms, making an error of Oðb2Þ. But then the logarithmic
and constant terms cancel. The finite-part integral is to be computed now using a
and b, i.e. expressing pS using (3.38) near the contact line. The final result is

pKZK
e1=2

p
4¼

tK1=2

0
pSðtKz; lðtÞCzÞ dz

z3=2
COðe; b2 ln b; a3; acÞ: ðA 8Þ
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