ECE100 Midterm Exam #1 Fall 2012

- For all numerical answers, be sure to include units
- For plots, use a straight-line approximation.
- Label all relevant values for frequency, magnitude, phase, slope, intercept, etc.

Question #1

For the circuit shown at right:

- a) Write an expression for the transfer function in terms of R, L, and C, and identify the type of filter.
- b) Assume the inductor has a value of 100 μ H. Choose values of R and C that produce a 2nd order Butterworth filter with a cutoff frequency of $\omega_0=10^6$ rads/sec.

 R_2

c) Sketch a Bode plot of this transfer function.

Question #2

The Sallen-Key filter shown at right has a transfer function of V_{out} 1

 $\frac{V_{out}}{V_{in}} = \frac{1}{1 + sC_1(R_1 + R_2) + s^2R_1R_2C_1C_2}$

- a) Assuming that $R_1=R_2$, and $C_1=C_2$, find the cut-off frequency and damping coefficient.
- b) Now also assume that the op-amp has a finite output resistance R_o which is small compared to the other resistors. Derive an expression for the gain in the high-frequency limit.
- c) If $R_0=100\Omega$, what resistor values ensure a high-frequency gain of less than -40dB?

Question #3

For the voltage follower circuit,

- a) Assuming the op-amp has finite gain, A, but is otherwise ideal, derive an expression for the transfer function of this circuit.
- b) Next, assuming that the op-amp has frequency-dependent gain A(s)=G/s and finite differential input resistance R_d, derive an expression for the input impedance of the circuit.
- c) Describe the input impedance in terms of an effective circuit, and find the value of any effective circuit parameters for $R_d=10k\Omega$, $G=10^6$ rad/sec, $R_1=10k\Omega$, $R_2=90k\Omega$

Question #4

For the circuit shown at right, assume the op-amp gain is A(s)=G/s

- a) Write an expression for the loop gain, AB.
- b) Sketch a Bode plot of the loop gain for R=20 Ω , L=100 μ H, C=1 μ F, and G=10⁶ rad/sec.
- c) Sketch a Nyquist plot of the loop gain, and explain why it is stable or unstable.

Vort

R