
Dynamic or Time-Dependent Circuits

In this section we discuss circuits that include capacitors and inductors. The i-v charac-

teristics of these two elements include derivatives or integral of either i or v resulting in

time-dependent circuits.

Capacitor

A typical capacitor is made of two parallel conducting plates separated by an insulator. If we

connect a capacitor to a voltage source, as is shown above, electrons travel from the voltage

source to the capacitor and charge one of the plates with excess electrons. The electric field

from these electrons repel electrons from the opposing plate and equal but positive charge

develops on that plate. The repelled electrons from the positive plate travel to the source.

As such, the total charge stored in a capacitor is zero but consists of two separated amount

of equal charges with different polarity. In this manner, a capacitor can store energy in the

form of electric field between the two plates, which in circuit theory language, is proportional

to the voltage between the two plates.

For most parallel plate capacitors, the voltage across the capacitor is directly proportional to

the charge accumulated in the capacitor. The constant of proportionality is the capacitance.

Note that the total charge stored in a capacitor is zero, the charge mentioned here is the

charge on one of the plates (the plate marked with + of voltage v).

C =
q

v
Capacitance C, Unit: Farad (F)

Most commercial capacitors are in µF (10−6 F), nF (10−9 F), and pF (10−12 F) range.

i

-

+

v

As the number of electrons flowing into the negative plate is equal to the

number of electrons flowing out of the positive plate, the current flowing into

one plate of capacitor is exactly equal to the current flowing out of the other

plate. The i-v characteristics equation for a capacitor (using passive sign

convention) is

q = Cv → i =
dq

dt
= C

dv

dt
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Note that the current i flows as long as the voltage (and charge, q = Cv) changes in time.

At the DC steady-state condition, dv/dt = 0 and capacitor current, i = 0, and capacitor

acts as an open circuit.

Energy stored in a capacitor, W , can be found from the definition of electric power:

dW

dt
= P = vi

W (t)−W (t0) =
∫ t
t0
Pdt′ =

∫ t
t0
vidt′ =

∫ t
t0
Cv
dv

dt′
dt′

W (t)−W (t0) =
1

2
C[v2(t)− v2(t0)]

Since at t0 → −∞, the voltage across and energy stored in the capacitor are zero, we get:

W (t) =
1

2
Cv2(t)

Note: Unless the voltage waveform across the capacitor is specified, we need an initial

condition (voltage at some time t0) in order to calculate current, voltage, and power of a

capacitor. (The condition of v(t0 → −∞) = 0 is not usually useful.)

W (J)

t

2
t

2
t

1
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v (V)

Example: Consider a 1-F capacitor with v(t = 0) = 2 V. The

current flowing in the capacitor is shown below. Find the voltage

across the capacitor and its stored energy as a function of time.

Integrating the i-v characteristics equation of capacitor in time (from

t0 to t) , we get

v(t)− v(t0) = 1

C

∫ t
t0

i(t)dt

The current waveform is given and is i(t) = 1 (for t > 0). The

initial condition is specified at time t0 = 0 to be v(t0) = v(0) = 2.

Thus,

v(t)− 2 =
1

1

∫ t
0
1dt = t → v(t) = t+ 2 V

The graph of v(t) is shown. The energy stored in the capacitor is:

W =
1

2
Cv2 = 0.5(t+ 2)2 J

MAE140 Notes, Winter 2001 62



Time dependent circuits either have a time-dependent source (we will examine circuit with

sinusoidal sources later) and/or have a source which is “switched” on or off at some time.

In all switching circuits, we assume that switch is thrown instantaneously. This means that

for these switched circuit, the voltage or current waveform will have a discontinuity in time.

For example, consider the circuit shown. The switch is initially closed and is opened at time

t0. For t < t0, the switch is closed. By KCL, i = is and a voltage of v = Ris appears across

the resistor. For t > t0, i = 0 and v = 0. There is a discontinuity in voltage and current at

time t = t0 when the switch is thrown.
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Values of current and voltage at the exact switching time

is undefined. The values are known just prior to the

throwing the switch and just after that. We denote that

time just prior to throwing the switch as t−0 (t−0 = t0 − ε
with ε being infinitesimally small). We denote the that

time just after throwing the switch as t+0 (t
+
0 = t0+ε). In

this sense, current and voltage are well defined at t−0 and

t+0 . In the circuit shown, both current and voltage have a

discontinuity at t = t0 as i(t
−
0 ) �= i(t+0 ) and v(t−0 ) �= v(t+0 ).

This behavior is in general true for all resistive circuit. There is a discontinuity in both

voltage and current waveforms at the time that the switch is thrown. This is not true

for circuits with capacitors (or inductors). For capacitors, the i-v characteristics equation

i = Cdv/dt implies that if there were a discontinuity in the voltage, an infinite amount of

current should flow through the capacitor. Therefore, the voltage waveform across a

capacitor should be continuous. This means that if a switch is thrown at time t0, we

should have v(t−0 ) = v(t
+
0 ). Note the capacitor current waveform can have a discontinuity.
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Example: The switch in this circuit is opened at time

t0 = 5 s. Find the voltage across the C = 20 F capacitor

if is = 2 A and the voltage across the capacitor is v(t1 =

1 s) = 0.1 V

Since the initial condition is specified at t = 1 s, we

consider the circuit for t ≥ 1 s. For 1 < t < t0 = 5, the

switch is closed and, by KCL, the current in the capacitor

is i = is = 2 A. For t0 = 5 < t, the switch is open and, by

KCL, the current in the capacitor is i = 0. The resulting

current waveform is shown in the figure.

To find the voltage waveform, we integrate the i-v char-

acteristics of the capacitor. We need to consider 1 < t <

t0 = 5 and t0 = 5 < t regions separately as the current

has different functional form.

For t1 = 1 < t < t−0 = 5, we integrate the capacitor i-v

characteristics equation from time t1 to t

i = C
dv

dt∫ t
t1

dv

dt′
dt′ =

1

C

∫ t
t1
i(t′)dt′

v(t)− v(t1) = 1

20

∫ t
1
i(t′)dt′ = 0.05

∫ t
1
2dt′ = 0.05× 2t′|t1 = 0.1(t− 1)

v(t) = 0.1 + 0.1(t− 1) = 0.1t

So in the time interval t1 = 1 < t < t0 = 5, voltage across the capacitor starts at v(t1 =

1 s) = 0.1 V and increases to v(t−0 = 5 s) = 0.5 V.

For t+0 = 5 < t, we integrate the capacitor i-v characteristics equation from time t0 to t

(i = 0), and use no-jump condition: v(t+0 ) = v(t
−
0 ) = 0.5 V.

v(t)− v(t+0 ) =
1

20

∫ t
5
i(t′)dt′ = 0

v(t) = v(t+0 ) = 0.5

Note that the voltage across the capacitor was continuous while the current waveform in-

cluded a jump at the switching time.
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Capacitors in Series

The equivalent to a subcircuit consisting of several capacitors in series

can be found using the same procedure as that used for series/parallel

resistors–we need to find the i-v characteristics of the subcircuit.

KCL: capacitors in series all carry current i

KVL: v = v1 + v2 + v3

i-v Eqs.: i = C1
dv1
dt

i = C2
dv2
dt

i = C3
dv3
dt

Differentiating the KVL equation in time and substituting from capacitor i-v characteristics

equations, we get:

dv

dt
=
dv1

dt
+
dv2

dt
+
dv3

dt
=
i

C1
+
i

C3
+
i

C3

i =
(
1

C1
+

1

C3
+

1

C3

)−1 dv
dt

which is the i-v characteristics of the subcircuit. This is similar to the i-v characteristics

of a single capacitor, i = Ceqdv/dt. Thus, a set of capacitors in series reduce to one

capacitor with a value of

1

Ceq
=

1

C1
+

1

C2
+

1

C3
+ ...

1
C

+

i

v

-

i i i
1

C2 C 3

2 3

Capacitors in Parallel

KCL: i = i1 + i2 + i3

KVL: capacitors in parallel all have voltage v

i-v Eqs.: i1 = C1
dv

dt
i2 = C2

dv

dt
i3 = C3

dv

dt

Substituting from capacitor i-v characteristics equations in KCL, we get:

i = C1
dv

dt
+ C2

dv

dt
+ C3

dv

dt
= (C1 + C2 + C3)

dv

dt

This is similar to the i-v characteristics of a single capacitor, i = Ceqdv/dt. Thus, a set of

capacitors in parallel reduce to one capacitor with a value of

Ceq = C1 + C2 + C3 + ...
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Inductor

A typical inductor is made of a a wire wrapped

around a core of magnetic material. As current

flows through the wire, a magnetic field is pro-

duced. As such, an inductor can store energy in

the form of magnetic field.

i

-

+

v

The i-v characteristics equation for an ideal inductor is given by Faraday’s

Law (wire in an ideal inductor has no resistance):

v = L
di

dt
Inductance L, Unit: Henry (H)

using passive sign convention.

Energy stored in an inductor, W , can be found from the definition of electric power:

dW

dt
= P = vi

W (t)−W (t0) =
∫ t
t0
Pdt′ =

∫ t
t0
vidt′ =

∫ t
t0
Li
di

dt′
dt′ =

1

2
L[i2(t)− i2(t0)]

Since at t0 → −∞, the current through and energy stored in the inductor are zero, we get:

W (t) =
1

2
Li2(t)

Note: Unless the current waveform in the inductor is specified, we need an initial condition

(current at some time t0) in order to calculate current, voltage, and power of an inductor.

(The condition of i(t0 → −∞) = 0 is not usually useful.)

For inductors, the i-v characteristics equation v = Ldi/dt implies that if there were a dis-

continuity in the current waveform, an infinite amount of voltage should appear across the

inductor. Therefore, the current waveform in an inductor should be continuous.

This means that if a switch is thrown at time t0, we should have i(t−0 ) = i(t
+
0 ). Note the

inductor voltage waveform can have a discontinuity.

Inductors in series & parallel

Following similar procedure as that used for capacitors in series and in parallel, one finds

that a set of inductors in series or in parallels reduce to one inductor with the value:

Inductors in Series: Leq = L1 + L2 + L3 + ...

Inductors in Parallel:
1

Leq
=

1

L1
+

1

L2
+

1

L3
+ ...
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Observation on circuits containing capacitors and inductors

1. Circuits containing one or more capacitors and/or inductors are called dynamic circuits.

Voltage and currents in dynamic circuits are, in general, functions of time, i.e., their

value change as time progresses.

2. All analysis method (KVL, KCL, circuit reduction, node-voltage and mesh current

methods) can be applied to dynamic circuits with no modification.

3. Application of the analysis methods to a dynamic circuit results in a set of linear dif-

ferential equations (as opposed to a set of algebraic equations for resistive circuits).

Solution of these equations requires initial conditions–one for each capacitor or induc-

tor.

4. Two-terminal subcircuits containing capacitors and/or inductors cannot be reduced to

Thevenin or Norton forms.

Switched Circuits

Time dependent circuits either have a time-dependent source and/or have a source which

is “switched” on or off at some time. Most circuits have both, like a circuit attached to

the wall outlet with a switch. The voltage source in the circuit is a time-dependent voltage

(sinusoidal voltage with a frequency of 60 Hz). When the switch is off, the voltages and

currents in the is zero. After the switch is thrown, the voltages and currents rise from zero

and after some time start to follow the source voltage waveform in a steady manner and

forget that they started from zero values. The evolution of circuit voltages and current in

time, thus, can be divided into two distinct time scales. 1) A transient response starting

with the throw of the switch and 2) A steady response to the time dependent sources (some

circuit theory books call this “AC steady state”). We will see shortly that the transient

response of the circuit is completely set by the circuit elements themselves and not by the

“source.” This transient response also “dies” away after some prescribed time.

Because of these two distinct responses of a time-dependent circuit, transient and steady

responses can be studied separately. We will first examine the transient response of circuits

after a switch is thrown. We use DC sources for this case as it will make the mathematics

much simpler. We will later examine the “steady” response of circuits to time-dependent

sources.
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An example of a switched circuit is shown below. It is usually assumed that the circuit has

been in the first state (t < t0) for a long time and the response of the circuit for t > t0 is

needed.
0

t = t
0

R C

t < t
0

R C C

t > t

R

ss ii si

The solution to the circuit for t > t0 leads to a set of linear differential equations. These

equations require a set of initial conditions (one for each capacitor and inductor). These

initial conditions are found by solving the circuit for t < t0 and using the “no-jump” condi-

tions for voltages across capacitors and currents in inductors at the switching time. So, the

procedure for solving switched circuits with DC sources is:

1. Solve DC steady-state case for t < t0. Determine vc(t
−
0 ) and iL(t

−
0 ).

2. Use no-jump conditions to find the initial condition for the second circuit: vc(t
+
0 ) =

vc(t
−
0 ) and iL(t

+
0 ) = iL(t

−
0 ).

3. Solve the time dependent circuit for t > t0.

DC Steady-State Analysis

In a dynamic circuit with DC sources, voltages and currents reach constant values after “long

time.” (We will find how long is a “long time” shortly). This state of the circuit is called

“DC Steady State.” By definition, all time derivatives vanish at DC steady state condition:

For a capacitor, i = C
dv

dt
= 0 (for any v). Thus, a capacitor acts as an open circuit in

DC steady State.

For an inductor, v = L
di

dt
= 0 (for any i). Thus, an inductor acts as a short circuit in

DC steady State.

Therefore, to analyze a circuit in DC steady state condition, we replace capacitors with open

circuit and inductor with short circuit and proceed to solve the resulting “resistive” circuit.
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t = t
0Example: This circuit has been in DC steady state and

the switch is opened at time t = t0. Find the initial

conditions for the dynamic circuit for t > t0.

First, we mark vC and iL on the original circuit (those

are our initial conditions). We draw the circuit for t0 < t

(closed switch) and replace the capacitor with an open

circuit and the inductor with a short circuit (mark them

clearly) and put vC and iL on the circuit. We then pro-

ceed to solve the “resistive” DC steady state circuit.

The resulting circuit is current divider and iL and vC can

be found readily from current-divider formulas. Alterna-

tively, using node-voltage method, we have:

vC − 0

50
+
vC − 0

200
− 1 = 0

4vC + vC − 200 = 0 → vC = 40 V

iL =
vC − 0

50
= 0.8 A

Note that since the circuit is in DC steady state, values of vC and iL are constant in time.

Using the no-jump conditions for vC and iL, we can find the initial conditions for the time-

dependent circuit:

vC(t = t
+
0 ) = 40 V → iL(t = t

+
0 ) = 0.8 A
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