
Solution of First-Order Linear Differential Equation

The solution to a first-order linear differential equation with constant coefficients,

a1
dX

dt
+ a0X = f(t) ,

is X = Xn + Xf , where Xn and Xf are, respectively, natural and forced responses of the

system.

The natural response, Xn, is the solution to the homogeneous equation (RHS=0):

a1
dX

dt
+ a0X = 0

The functional form of Xn is Xn = Kest (K and s are constants). Value of s can be found

by substituting the functional form in the homogeneous differential equation:

a1
dKest

dt
+ a0Ke

st = 0

a1Kse
st + a0Ke

st = 0 → a1s+ a0 = 0 → s = − a0
a1

Constant K is found from initial conditions. As the initial condition applies to X not Xn,

K should be found after Xf is calculated.

Some functional forms of the forced solution, Xf , are given in the table below. To find

Xf , the functional form is substituted in the original differential equation and the constant

coefficients of the functional form are found.

Trial Functions for Forced Response

f(t)� Trial Function†

a A

at+ b At+B

atn + btn−1 + ... Atn +Btn−1 + ...
aeσt Aeσt

a cos(ωt) + b sin(ωt) A cos(ωt) +B sin(ωt)

� Constants a and b are used to define the general form of f(t).
† Constants A and B in trial functions are found from substitution in

the differential equation.
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Example: Solve the differential equation below with the initial condition of v(t=0)=1.

dv

dt
+ 5v = 10

The solution is v = vn + vf . vn is the solution to the homogeneous equation:

dv

dt
+ 5v = 0

Using the trial function vn = Ke
st, we find:

d

dt

(
Kest

)
+ 5Kest = 0

Ksest + 5Kest = 0 → s = −5
vn = Ke

−5t

K will be found later from the initial condition.

To find vf , we note that f(t) = 10 = constant. From the table of the trial functions, we

find that the functional form of vf = A = constant. Substituting for vf in the differential

equation, we get:

dv

dt
+ 5v = 10 → dA

dt
+ 5A = 10

0 + 5A = 10 → vf = A = 2

v = vn + vf = Ke
−5t + 2

We now use the initial condition, v(t = 0) = 1, to find K:

v(t = 0) =
[
Ke−5t + 2

]
t=0

= 1 → K + 2 = 1 → K = −1
v = −e−5t + 2
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First-Order Circuits

First order circuits include only one capacitor or inductor (after using series/parallel reduc-

tion). The solution of these circuits results in a “first-order” linear differential equation with

constant coefficients. It requires one initial condition.

First-order RL Circuits

Consider a first-order circuit containing only one inductor. The rest of the circuit contains

only resistors and voltage and current sources. Therefore, the rest of the circuit is a two-

terminal resistive subcircuit and can be reduced to a Thevenin or Norton form as shown.

Note that it is possible that the rest of circuit reduced to only a resistor, i.e., vT = 0.

the circuit
Rest of 

OR

LR

-

+

L

-

+

vL L
L

+

-

vL

Li
LiRLi

v Tv

T

N N
i

-

+

Solving the Thevenin equivalent circuit, we get:

KVL: RT iL + vL − vT = 0

i-v Eq.: vL = L
diL

dt

Substituting for vL in KVL, we arrive at the general form of differential equation that

describes first-order RL circuits:

L
diL

dt
+RT iL = vT

If we use the Norton form for the resistive subcircuit, we will arrive at

L

RN

diL

dt
+ iL = iN

which is exactly identical to the Thevenin form (RN = RT and vT = RT iN).
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First-order RC Circuits

Consider a first-order circuit containing only one capacitor. Similar to a first-order RL

circuit, we can reduce the rest of the circuit to a Thevenin or Norton form as shown.

Cthe circuit

C

Rest of 

OR

RCC

C

-

+

v

+

-

v C C

CR i i

+

-

v

i

C
Tv

T

N N
i

+

-

Solving the Thevenin equivalent circuit, we get:

KVL: RT iC + vC − vT = 0

i-v Eq.: iC = C
dvC

dt

Substituting for iC in KVL, we arrive at the general form of differential equation that de-

scribes first-order RC circuits:

RTC
dvC

dt
+ vC = vT

The Norton form will also lead to an equation similar to above.
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Natural Response of First-Order Circuits

t = t
0

LR

RT

Tv+

-

As the natural response of a circuit is generic to the cir-

cuit and is independent of the driving sources, we con-

sider the natural response (no sources) first.

In these circuits, the inductor or the capacitor is

“charged” with a voltage or current source, a switch

opens or closes removing the source from the circuit, and

letting the capacitor or inductor discharge in a resistor.

i

R L
+

-

vL

LNatural Response of RL Circuits

A generic RL circuit with an initial condition of iL(t = t
+
0 ) = i0

is shown. For t > t0, we have:

KVL: vL +RiL = 0

L
diL

dt
+RiL = 0

I.C.: iL(t = t
+
0 ) = i0

It is a good idea to write down the initial conditions (again) next to the differential equation.

Since the RHS of the equation is zero, there is no forced solution. The functional form of the

natural solution is iL = Kest. Substituting this functional form in the differential equation

(to find s), we get:

iL = Kest
diL
dt

= Ksest

LKsest +RKest = 0 → Ls+R = 0 → s = − R
L

iL = Ke−(R/L)t

Define time constant, τ , as τ =
−1
s

=
L

R
→ iL = Ke

− t
τ

Constant K is found from the initial condition, iL(t = t
+
0 ) = i0:

iL(t = t
+
0 ) = i0 = Ke

− t0
τ → K = i0e

+
t0
τ
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t +5τt
0

o

t
0

L

L

o

0

t

t

< 1% i

v

i

i
Thus:

iL = i0e
− t− t0
τ and vL = −Ri0e

− t− t0
τ

Current and voltage waveforms are plotted in the

figure. After several time constants (5τ is ade-

quate), the current and voltage decay away and

the circuit reaches its steady condition.

+

-

vC

Ci

C
R

Natural Response of RC Circuits

A generic RC circuit with an initial condition of vC(t =

t+0 ) = v0 is shown. For t > t0, we have:

KVL: Ric + vC = 0

RC
dvC

dt
+ vC = 0

I.C.: vC(t = t
+
0 ) = v0

Substituting this functional form for vC in the differential equation we find s = −1/(RC).

Define time constant, τ , as τ =
−1
s

= RC → vC = Ke
− t
τ

Constant K is found from the initial condition, vC(t = t
+
0 ) = v0 and we arrive at:

vC = v0e
− t− t0
τ and iC = −v0

R
e
− t− t0
τ

t +5τt
0

t
0

0

t

C

o

t

C

o

v

< 1% v

v

i
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First-Order Circuits with DC sources (Step Response)

t

u(t-t )

t
0

u(t)

0

1

1

t

Unit Step function is defined as:

{
u(t) = 0 for t ≤ 0−

u(t) = 1 for t ≤ 0+

Defining t′ = t− t0, one can see that u(t′) = u(t− t0) is:
{
u(t− t0) = 0 for t ≤ t−0
u(t− t0) = 1 for t ≤ t+0

Step functions are one way to illustrate switched circuit as is shown in the example below.

0
t = t

0
u(t-t  )C

R R

C

sv

sv+

-

+

-

Step response of an RC circuit

Consider the RC circuit above. The switch closes at time t = 0 and the capacitor has an

initial voltage of v0. For t > 0, KVL results in Ric + vC = vs, or:

RC
dvC

dt
+ vC = vs

I.C.: vC(t = 0+) = v0

We have found the natural solution to RC circuit to be:

vC,n = Ke
− t
τ and τ = RC

To find the forced response, vC,f , we note that the RHS of the differential equation is a

constant. Table of trial force functions on page 70 indicates that the forced response should

also be a constant, vC,f = A. Substituting for vC,f in the differential equation, we get:

RC
dA

dt
+ A = vs → vC,f = A = vs

vC = vC,n + vC,f = Ke
− t
τ + vs
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Constant of K is found from the initial condition: vC(t = 0+) = v0:

vC(t = 0+) = v0 = Ke
− 0

τ + vs = K + vs → K = v0 − vs

Thus, the capacitor voltage waveform is:

vC(t) = (v0 − vs)e
− t
τ + vs

If we wait long enough, (mathematically: t→∞, practically: 5τ) the circuit will reach DC

steady condition again, current in the capacitor becomes zero and its voltage reaches vs as

can be see either from the circuit or from the expression for vC(t).

0 0
t +5τ

t
0 0

t +5τ t

t

s

t

C

s

C

0

-v  /R

iv

v

v

If the switch was closed at time t = t0 instead of time zero, the capacitor voltage waveform

would be (let t′ = t− t0 and switch closing at t′ = 0):

vC(t) = (v0 − vs)e
− t− t0
τ + vs

Since v0 is the initial value of vC and vs is its final value , the above equation can be re-written

as:

vC
at Time t

=

[
Initial Value of

vC
− Final Value of

vC

]
× e−

t− t0
τ +

Final Value of

vC

In fact, all voltages and currents in the circuit (also called “state variables”) will have the

same waveform:

State Variable

at Time t
=

[
Initial Value of

State Variable
− Final Value of

State Variable

]
× e−

t− t0
τ +

Final Value of

State Variable
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Step response of an RL circuit
t = t

0
i

R L
+

-

vL

L

is
Consider the RL circuit shown. The switch closes at time t = t0
and the inductor has an initial current of i0. We can find the

inductor current waveform following the procedure similar to

one used for step response of RC circuits.

Alternatively, we can use the “state variable” formula identified above. Here the state

variable of interest is iL. The time constant of the circuit is τ = L/R. The final value of

the state variable is iL(t → ∞) when the switch is closed and circuit has reached a DC

steady state condition. Replacing the inductor with a short circuit, we find iL(t→∞) = is.

Substituting in the “state variable” formula above, we get

iL(t) = (i0 − is)e
− t− t0
τ + is

Procedure for Solving First-Order Circuits

1. If the initial conditions are not given, use DC steady-state analysis to find the initial

conditions (vc and iL)

2. Solve the time dependent circuit:

a) Direct solution using KVL and KCL, node-voltage and mesh current methods, etc.

b) Reduce the circuit to simple RC or RL circuits above and use the formulas.

12Ω

2Ω

6Ω

Ω

18 V

1 F

+

c

i

v

-

t = 0 12

12

+

-

Ω

2Ω

6Ω

Ω

cv

+

-

18 V

18 V
A

i

cv  =v 12

12 +

-

Example 1: The circuit is in DC steady-state for

t < 0. Find i for t > 0

As the initial conditions are not given, we need to

solve the DC steady-state circuit for t < 0 first.

We redraw the circuit at t < 0 (switch is closed)

and replace the capacitor with an open circuit.

We proceed with solving the circuit with node-

voltage method. As the 2 Ω resistor does not carry

any current, vA = vC . Then:

KCL at vA:
vC − 18

12
+
vc

6
+
vC

12
= 0

vC = 4.5 V for t < 0

No-jump condition leads to the initial condition for t > 0: vC(0
+) = vC(0

−) = 4.5 V. Note

that although we like to find i, the initial condition is obtained for vC as no-jump condition

only applies to vC and i may have a discontinuity at the switching time.
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-

12

12

12Ω

2Ω

6Ω

Ω

vc

vc

18 V

1 F

+

A

i

v

+

-

We now proceed to solve t > 0 circuit:

Method 1: Direct solution:

Both node-voltage and mesh-current methods

lead to 2 equations. As we are interested in vC ,

we proceed with node-voltage method:

KCL at vA:
vA

6
+
vA − vC

2
+
vA

12
= 0

2vA + 6vA − 6vC + vA = 0 → vA =
2

3
vC

KCL at vC :
vC − vA

2
+ iC = 0 → vC − vA

2
+

1

12

dvC

dt
= 0

where we substituted for iC from the capacitor i-v equation. The above are two equations

in our two node-voltages vA and vC . Substituting for vA from first into the second, we get:

6vC − 6
(
2

3
vC

)
+
dvC

dt
= 0

dvC

dt
+ 2vC = 0 and vC(0

+) = 4.5 V

As the RHS of the differential equation is zero, solution consists only of the natural solution.

Using the trial function of Kest, we find:

sKest + 2Kest = 0 → s = −2
vC(t) = Ke

−2t

and K is found from the initial condition:

vC(0
+) = 4.5 = Ke−2×0 → K = 4.5 → vC(t) = 4.5e−2t (V)

We can now calculate i from our node voltage equations:

vA(t) =
2

3
vC(t) = 3e−2t (V)

i(t) =
vA(t)

12
= 0.25e−2t (A)
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Method 2: Reduction to Thevenin form:

In this method, we reduce the circuit into a simple RC circuit by separating the capacitor

from the circuit and finding Thevenin equivalent of the remaining two-terminal subcircuit:

12
1 F

i

2Ω

6Ω12Ω

12
1 F

12
1 F6Ω

2Ω

6 || 12 =
Ω4

We have solved this circuit before and the solution is:

vC(t) = vC(t = t
+
0 ) e
− t− t0
τ with τ = RC

t0 = 0 and vC(t = t
+
0 ) = vC(0

+) = 4.5 and τ = RC =
6

12
= 0.5

vC(t) = 4.5e−2t (V)

We now need to go back to the original circuit to calculate i, for example, by writing the

node-voltage equations and use vC to find the other parameters as was done above.

i

t = 1 s

10 V10 V
25150 mH Ω

5050 ΩΩ

L

+

−

+

−

ii
10 V

Ω

50Ω

LL i=0
75+

−

Example 2: The circuit is in DC steady-state

for t < 1 s. Find iL for t > 1

We redraw the circuit at t < 1 (switch is in the

upper position) and replace the inductor with

a short circuit. We also replace the 50 and

25 Ω resistors in series with a 75 Ω resistor.

As the 75 Ω resistor is in parallel with a short

circuit, it will carry a current of zero. Then,

by KCL, the current in the 50 Ω resistor will

be iL. Then,

KVL: −10 + 50iL = 0 → iL = 0.2 A

No-jump condition leads to the initial condition for t > 1: iL(t = 1+) = iL(t = 1−) = 0.2 A.

We now proceed to solve t > 0 circuit:
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i
Ω

50Ω

L10 V
75

−10 V

150 mH
+

−

v
L

vL

+

−

Method 1: Direct solution:

Node-voltage method leads to one equation as

opposed to mesh-current method that leads to

2 equations. So, we proceed with node-voltage

method:

KCL at vL:
vL

75
+ iL +

vL − (−10)
50

= 0

2vL + 150iL + 3vL + 30 = 0 → 5vL + 150iL = −30
i-v Eq.: vL = 150× 10−3

diL

dt

5× 150× 10−3
diL

dt
+ 150iL = −30

5× 10−3
diL

dt
+ iL = −0.2 and iL(t = 1+) = 0.2 A.

As the RHS of the differential equation is not zero, we need to find both the natural and

forced solutions. The natural solution can be found by using trial function of iL,n = Ke
st:

5× 10−3sKest +Kest = 0 → s = −200
iL,n(t) = Ke

−200t

To find iL,f , we note that the RHS of the differential equation is a constant. Using the

Table of trial functions for forced solution on page 70, we find iL,f = A. Substituting in the

differential equation, we get:

5× 10−3
dA

dt
+ A = −0.2 → iL,f = A = −0.2

iL(t) = iL,n + iL,f = Ke
−200t − 0.2

Constant K is found from the initial conditions:

iL(t = 1+) = 0.2 = Ke−200 − 0.2 → K = 0.4e+200

iL(t) = 0.4e−200(t−1) − 0.2 (A)

Method 2: Reduction to Thevenin form:

In this method, we reduce the circuit into a simple RL circuit by separating the capacitor

from the circuit and finding Thevenin equivalent of the remaining two-terminal subcircuit:
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i

i

i

50Ω
L

L
−0.2

50 || 75= 150 mH
Ω30

Ω

50Ω

L10 V
75150 mH Ω75150 mH= 0.210

50

+

−

We have solve this circuit before and the solution is:

iL(t) = (i0 − is)e
− t− t0
τ + is

t0 = 1

i0 = iL(t = t
+
0 ) = +0.2 and is = −0.2

τ =
L

R
=

150× 10−3

30
= 5× 10−3

iL(t) = [0.2− (−0.2)]e−200(t−1) + (−0.2)
iL(t) = 0.4e−200(t−1) − 0.2 (A)

o
v1

C

i

vc

c

ic

i=0

u(t)
+
−

v
+

−

R

+

−

+ −

Example 3: Integrator Find vo if vC(t = 0) = 0.

We replace the OpAmp with its circuit model. As

the current flowing into the OpAmp is zero, the

current in the resistor is the same as iC . We also

note the connection between output and inverting

input terminal so negative feedback exists:

Negative Feedback: vn = vp = 0

Ohm’s Law: RiC = v1 − vn = v1
Capacitor i-v: ic = C

dvC

dt
= C
d(vn − vo)
dt

= −C dvo
dt

Substituting for iC from Ohm’s law into capacitor i-v equation, and integrating the resulting

equation we get:

v1

R
= −Cdvo

dt
→

∫ t
0

dvo

dt′
dt′ = − 1

RC

∫ t
0
v1(t

′)dt′

vo(t) = − 1

RC

∫ t
0
v1(t

′)dt′

since vC(t = 0) = vo(t = 0) = 0. As can be seen, this is an integrator circuit–the output

voltage is proportional to the integral of the input voltage waveform.
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o
v1

ic

ic

i=0

u(t)

C

vc +
−

v
+

−

R

+

−

+ −

Example 4: Differentiator: Find vo if vC(t = 0) = 0.

We replace the OpAmp with its circuit model. As

the current flowing into the OpAmp is zero, the

current in the resistor is the same as iC . We also

note the connection between output and inverting

input terminal so negative feedback exists:

Negative Feedback: vn = vp = 0

Ohm’s Law: RiC = vn − vo = −vo
Capacitor i-v: ic = C

dvC

dt
= C
d(v1 − vn)
dt

= C
dv1

dt

Substituting for iC from Ohm’s law into capacitor i-v equation, we get:

− vo
R

= C
dv1

dt
→ vo(t) = −RCdv1

dt

As can be seen, this is a differentiator circuit–the output voltage is proportional to the

derivative of the input voltage waveform.

The above two circuits, the integrator and the differentiator, together with inverting and

non-inverting summers are the building block of analog computers.

Example: Design an OpAmp circuit to find vo(t) = 10vs(t) +
∫ t
0 vs(t

′)dt′.

os

B

A

c

C= 1/R

+
−

R

v

+
−

R

R

v

R

R

+
−

R

v

v

vA = − ∫ t0 vs(t′)dt′

vo = −vA − vB
= 10vs(t)+

∫ t
0 vs(t

′)dt′

vB = −10vs(t)
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Example: Design an OpAmp circuit which solves the differential equation:
d2vo

dt2
+ 2
dvo

dt
+ vo = vs(t).

Rewrite the equation in the form:

d2vo

dt2
= −2dvo

dt
− vo + vs(t)

The block diagram of the circuit is:

Inverting 
Amp.

Inverting
Summer

dt
0dv

v
0 dt

0dv
v
0

vs −vs

0dv
2

dt2
Integrator Integrator

and the circuit itself is:

s

o

C= 1/R
C= 1/R+

−

R

Rv

v+
−

RR

R

0.5 R +
−

R

+
−

R
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