
Circuit Reduction Techniques

Combination of KVLs, KCLs, and i-v characteristics equations result in a set of linear equa-

tions for the circuit variables. While the above set of equation is complete and contains all

necessary information, even small circuits require a large number of simultaneous equations

to be solved as seen previously. We learned that we can use i-v characteristics equations

when we are marking the circuit variables and reduce the number of equations to be solved

to only number of KCLs and KVLs. We will learn later two methods, node-voltage and

mesh-current, which reduce the number of equations to be solved further to either number

of KCLs or number of KVLs. This is the best we can do in this direction.

As it is easier to solve smaller sets of equations (e.g., it is easier to solve two sets of two

equations in two unknown as compared to a set of 4 equations in 4 unknowns), one can break

up the circuit into smaller pieces and solve each individually and assemble back the whole

circuit. We can use this principle to combine circuit elements and make a much smaller

circuit. These techniques are described below.
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Recall that we are using lumped circuit ele-

ments, i.e., circuit elements communicate to out-

side world and other circuit elements only through

i and v. Conversely, the outside world (the rest of

the circuit) communicate with the circuit element

through i and v. This means, for example, that

a resistor in a circuit is viewed by the rest of the

circuit as a “black box” with an i-v characteristics

of v = Ri. The rest of the circuit does not know

what is inside the box. In fact, we can replace the

resistor with any black box (containing whatever)

with the same i-v characteristics of v = Ri and

the rest of the circuit behaves exactly the same.

Alternatively, if a black box containing many cir-

cuit elements is attached to a circuit and has an

i-v characteristics of v = 5i, we can replace this

black box with a 5 Ω resistor with no change in

the circuit behavior.

This observation allows the circuit to be divided into two or many parts and each solved

independently. We define a box containing several element a subcircuit or a device. The

above figure shows a two-terminal device or subcircuit. Note that in many circuit theory

text book (including our textbook) circuit and subcircuit are used interchangeably.
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Subcircuits play an important role in linear circuit theory. Thevenin theorem states that

any subcircuit containing linear circuit element has an i-v characteristics of Av + Bi = C

(where A, B, and C are constants) and it can be reduced to a subcircuit containing at

most two linear circuit elements (Thevenin and Norton Forms). We will discuss Thevenin

Theorem later. Below, we explore subcircuits in the context of elements that are in series

or in parallel. In each case, we find the i-v characteristics of the subcircuit and use that to

find the equivalent element.

baKCL:  i  = i
Shared Node

b
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Elements in Series

Two elements are called in series if they and only they

share a common node. Alternatively, series-connected

elements carry the same current.
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Two Resistors in Series

KCL: i = i1 = i2

KVL: −v + v1 + v2 = 0
i-v: v1 = R1i1 = R1i

v2 = R2i2 = R2i

Substituting from i-v characteristics equations in KVL, we get

v = R1i+R2i = (R1 +R2)i

v = Reqi Req = R1 +R2

So, a subcircuit containing two resistors in series has an i-v characteristics of the form

v = Reqi and is equivalent to a resistor, Req = R1 +R2.

The above can be easily extended: k resistors in series are equivalent to one resistor with

Req = Σ
k
j=1Rj .
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A Resistor in Series with a Current Source

KCL: i = i1 = is

KVL: −v + v1 + v2 = 0 → v = R1is + v2

The i-v characteristics of ICS states that its current is is, independent of its voltage (v2).

Above equations show that the i-v characteristics of subcircuit is i = is and is independent
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of voltage v = v1 + v2 (as value of v1 can be anything). The equivalent subcircuit is an

independent current source with strength is.
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A Resistor in Series with a Voltage Source

This is the Thevenin form and cannot be reduced further.
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A Voltage Source in Series with a Voltage Source

KVL: −v + vs1 + vs2 = 0 → v = vs1 + vs2

The i-v characteristics of IVS states that their voltages are vs1 and vs2, respectively, inde-

pendent of their currents. Above equation shows that the i-v characteristics of subcircuit is

v = vs1 + vs2 and is independent of current i. The equivalent subcircuit is an independent

voltage source with strength vs1+ vs2 (algebraic sum of two). Note that it is prudent to use

KVL to find the strngeth of the equivalent source.
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A Voltage Source in Series with a Current Source

KCL: i = is1 = i2

KVL: −v + v1 + vs2 = 0 → v = v1 + vs2

The i-v characteristics of ICS states that its current is is1, independent of its (v1). Above

equations show that the i-v characteristics of subcircuit is i = is1 and is independent of

voltage v = v1 + vs2 (as value of v1 can be anything). The equivalent subcircuit is an

independent current source with strength is1.

Note: A current source in series with any element reduced to a current source. Series

element all have the same current and the current source requires the current through to be

equal to its strength.
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s1iA Current Source in Series with a Current Source

KCL: i = is1 = is2

A current source in series with any element reduces to a current source. However, in the case

of two current sources in series, KCL requires is1 = is2. Thus, two current sources can be

attached in series only if is1 = is2. If so, the equivalent subcircuit is an independent current

source with strength is = is1 = is2.

This constraint in allowable circuit configuration arises because we are dealing with idealized

circuit elements. We will discuss real sources later and will see that two real or practical

current sources can be attached in series even if they have different strength (although the

result may be a lot of sparks and two burnt out current sources!)
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Elements in Parallel

Two element are called in parallel if they share both

nodes. Alternatively, parallel-connected elements have

the same voltage.
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Two Resistors in Parallel

KCL: −i+ i1 + i2 = 0
KVL: v = v1 = v2

i-v: v1 = R1i1 v2 = R2i2

Substituting from i-v characteristics equations in KCL, and using v = v1 = v2, we get

i =
v

R1
+
v

R2
=
(
1

R1
+
1

R2

)
× v

i =
v

Req
→ 1

Req
=

1

R1
+

1

R2

So, a subcircuit containing two resistors in parallel has an i-v characteristics of the form

v = Reqi and is equivalent to a resistor, 1/Req = 1/R1 + 1/R2.

The above can be easily extended: k resistors in series are equivalent to one resistor with

1/Req = Σ
k
j=11/Rj.
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A Resistor in Parallel with a Current Source

This is the Norton form and cannot be reduced further.

We will show later that Norton and Thevenin forms are equivalent.
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A Resistor in Parallel with a Voltage Source

KCL: −i+ i1 + i2 = 0
KVL: v = v1 = vs

The i-v characteristics of IVS states that its voltage is vs, independent of its current, i2.

Above equations show that the i-v characteristics of subcircuit is v = vs independent of

current i. The equivalent subcircuit is an independent voltage source with strength vs.
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A Current Source in Parallel with a Current Source

KCL: −i+ is1 + is2 = 0 → i = is1 + is2

The i-v characteristics of ICSs state that their currents are is1 and is2, respectively, indepen-

dent of their voltage, v. Above equations show that the i-v characteristics of subcircuit is

i = is1 + is2 independent of value of voltage v. The equivalent subcircuit is an independent

voltage source with strength is = is1 + is2.
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A Current Source in Parallel with a Voltage Source

KCL: −i+ i1 + i2 = 0
KVL: v = vs = v2

The i-v characteristics of IVS states that its voltage is vs, independent of its current, i1.

Above equations show that the i-v characteristics of subcircuit is v = vs and is independent

of current i = i1 + is (as value of i1 can be anything). The equivalent subcircuit is an

independent voltage source with strength vs.

Note: A voltage source in parallel with any element reduces to a voltage source. Parallel

elements all have the same voltage and the voltage source requires its voltage across to be

equal to its strength.
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A Voltage Source in Parallel with a Voltage Source

KVL: v = vs1 = vs2

A voltage source in parallel with any element reduces to a voltage source. However, in the

case of two voltage sources in parallel, KVL requires vs1 = vs2. Thus, two voltage sources

can be attached in parallel only if vs1 = vs2. If so, the equivalent subcircuit is an independent

voltage source with strength vs = vs1 = vs2. This constraint in allowable circuit configuration

arises because we are dealing wit idealized circuit element. We will discuss real sources later.

Summary of Two-terminal Equivalent Subcircuits

Series Parallel

R1 and R2 Resistor (Req = R1 +R2) Resistor (1/Req = 1/R1 + 1/R2)

R and IVS (vs) Thevenin Form� IVS (vs)

R and ICS (is) ICS (is) Norton Form�

IVS (vs1) and IVS (vs2) IVS (vs = vs1 + vs2) IVS (vs = vs1 = vs2)
†

IVS (vs1) and ICS (is2) ICS (is2) IVS (vs)

ICS (is1) and ICS (is2) ICS (is = is1 = is2)
† ICS (is = is1 + is2)

� Thevenin and Norton forms are equivalent.
† Connection is allowed only if vs1 = vs2 or is1 = is2.

T

N

TT

Norton FormThevenin Form

T

v
T

i

R
N

NNEquivalent if R   =R    and v  = i   R 

R

+

-

Thevenin and Norton Forms

and Source Transformation

Thevenin and Norton forms are equivalent.

One can replace one with the other. This is

called “source” transformation and is helpful

in rearranging other elements in the circuit

and sometime arriving at more element being

in series and parallel. Watch out for polar-

ities of the IVS and the ICS and follow the

diagrams on the left!

MAE140 Notes, Winter 2001 17



A B C
+ + +− − −a b c

+ + +− − −
C A B

c ba

v+ −

i

i

v vv

v vv

Three or More Element in Series

Position of elements in series can be in-

terchanged without any effect on the cir-

cuit. The reason is that KCL ensures that

all elements carry the same current i, the

voltage across each element is uniquely set

by its i-v characteristics and value of i,

and the voltage over all of the elements,

v = va + vb + vc = vc + va + vb is the same

if we interchange the position of the ele-

ments.

To simplify circuits with 3 or more elements in series:

1. Check if there is a current source. If so, all series elements can be replaced with a

current source of the same strength. Note that if there are more than one current

source, you should check for illegal connections of two current sources in series.

2. Rearrange elements and group resistors and voltage sources together. Replace resistors

with a resistor, Req = ΣRj and voltage sources with a voltage source with strength

vs = Σvsj . It is prudent to use KVL to ensure that you get the correct algebraic sum

of Σvsj .

5 V 2 A

2 A

10 Ω 20 Ω

+ −

Example:

Four elements are in series.

One current source exists.

The equivalent element is a current source.

5 V 2 V20 Ω10 Ω

5 V 2 V20 Ω10 Ω

vs+ −

3 VΩ30 

−+ − +

−+ − +

−+

Example:

Four elements are in series.

No current source exists.

Group resistors and IVSs together.

Req = 10 + 20 = 30 Ω

KVL: + 5− 2− vs = 0 → vs = 3 V
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Three or More Element in Parallel

a

A B

b
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i i i i ii

Position of elements in parallel can be interchanged without any effect on the circuit because

the ideal wires can be stretched without any impact on the circuit. (Imagine lifting element

A out of the paper, moving it behind element C and putting it back on the paper.)

To simplify circuits with 3 or more elements in parallel:

1. Check if there is a voltage source. If so, all parallel elements can be replaced with

a voltage source of the same strength. Note that if there are more than one voltage

source, you should check for illegal connections of two voltages sources in parallel.

2. Rearrange elements and group resistors and current sources together. Replace resistors

with a resistor, 1/Req = Σ 1/Rj and current sources with a current source with strength

is = Σisj. It is prudent to use KCL to ensure that you get the correct algebraic sum

of Σisj .

Application of Circuit Reduction Techniques

Circuit reduction techniques are powerful methods to simplify the circuit as they reduce the

number of elements (and therefore, the number of equations to be solved simultaneously).

However, when several circuit element are combined, the circuit variables associated with

those elements are lost in the process of transformation. In principle, one should solve the

simplifies circuit and find the remaining circuit variables. Then, one should go back to the

original circuit to find the “lost” circuit variables. Two examples below show this process.

Because of this extra step, circuit reduction techniques do not always lead to simpler circuits

and they should be used judiciously.

MAE140 Notes, Winter 2001 19



1

1

2 2

+ −

−

+

i

1 2

i

v

R

v R

vs

vs

R R+

+

−

+

−

Example: Find v2 if R1 = R2 = 1 kΩ and vs = 5 V.

Resistors R1 and R2 are in series, so we can replace them

with an equivalent resistor Req = R1 + R2 = 2 kΩ. The

resultant circuit is shown. From the point of view of the

rest of the circuit (i.e., IVS) nothing has changed and

so the current i remains the same. However, the circuit

variables in the reduced part, v1 and v2 do not appear in

the reduced circuit. To find v2, we first solve the reduced

circuit to find i:

KVL: −vs + iReq = 0→ i =
vs

Req
=

5

2, 000
= 2.5 mA

We then use the value of i in the original circuit to find v2:

v2 = R2i = 1, 000× 2.5× 10−3 = 2.5 V

+ -

+

2

-

i
1

0

+

-

i
1

0

v
15 A

100 V

10 A

v

100 V

40 V

15 A

v

10 A
+

-

+

-

+-Example: Find v0 and i1.

In this circuit, we have two sources in parallel and two

sources in series. The problem unknowns are voltage and

current of the sources that are in parallel. So, it is not

prudent in the first step to combine them. Rather, we

combine the two sources in series.

A current source in series with a voltage source reduces

to a current source with the same strength as is shown.

i1 can now be found by KCL and v0 by KVL:

KCL: −i1 − 10− 15 = 0 → i1 = −25 A
KVL: −100 + v0 = 0 → v0 = 100 V

Note that if we had reduced the two sources in parallel in the original circuit, we would

have reached a circuit which was trivial and not helpful in finding v0 and i1 (try it!). So,

circuit reduction should be used judiciously. Example below shows a circuit that can be

solved without any circuit reduction and, in fact, circuit reduction makes the solution more

difficult.

Example: In the circuit above, find v0 and v2.

Both v0 and v2 an be found by KVL:

KVL: −100 + v0 = 0 → v0 = 100 V

KVL: −100− 40− v2 = 0 → v2 = −140 V
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Some Practical Resistive Circuits
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Voltage Divider:

The two resistors can be replaced by an equivalent resistor,

Req = R1 +R2. Thus:

vs = Reqi → i =
vs

Req

v1 = iR1 =
R1

Req
vs

v2 = iR2 =
R2
Req
vs

Also,
v1

v2
=
R1

R2

This circuit is called a voltage divider as the two resistors divide the voltage of the IVS

between them proportional to their values. This circuit can be extended by adding more

resistors to the circuit and get more reference voltages.

This circuit is used extensively in electronic circuits. The basic reason is that power supplies

are bulky and/or expensive. Typically, one power supply with one voltage is provided. On

the other hand, more than one voltage may be needed for the circuit to operate properly.

Example: A battery operated radio has a 9 V battery. Part of radio circuits require a 6 V

supply. Design a voltage divider circuit to supply 6 V voltage to these circuits.

The desired circuit is the voltage divider circuit above with vs = 9 V and v2 = 6 V. Then,

v2 =
R2

Req
vs → 6 =

R2

R1 +R2
9 → R2

R1 +R2
=
6

9

This is one equation in two unknowns and one is free to choose one parameter. For example,

choosing R1 = 1 kΩ we get R2 = 2 kΩ.
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2

1
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−

+

i

−

v

vs

R

R

v

iL

Load

+

−

Voltage dividers are affected by the load current drawn

from them (see figure). The voltage divider formula can

only be used for the circuit shown on the right if il � i
(prove it!). We will discuss the impact of the load on

voltage dividers when we discuss real sources.
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Current Divider:

The two resistors can be replaced by an equivalent resistor,

1/Req = 1/R1 + 1/R2. Thus:

v = Reqi

v = i1R1 → i1 =
v

R1
=
Req

R1
is

v = i2R2 → i2 =
v

R2
=
Req

R2
is

Also,
i1

i2
=
R2

R1

This circuit is called a current divider as the two resistors divide the current of the ICS

between them (inversely proportional to their values). This circuit can be extended by

adding more resistors to the circuit and get more reference currents.

Wheatstone Bridge

A typical Ohm-meter measures the resistance of a resistor by using the Ohm’s Law. It applies

a known voltage of vs across the resistor, measures the current flowing through the resistor,

and its dial are set to convert the measured value of current into the value of resistance by

using R = vs/imeasured. (This is why one cannot measure the value of a resistor while it is

attached in a circuit, Ohm-meter works only if the resistor is not attached to anything but

the meter.)

A typical digital multi-meter measure resistance within an accuracy of about 1%. In some

cases, higher accuracy is needed. Resistor bridges are used for this purpose and they are

made of two voltage divider circuits put in parallel with each other. The bridges operate

based on the fact that while it is difficult to measure the difference between 1 and 1.01 V

or 1 and 1.01 A distinctly (they are only 1% apart and within the accuracy of meter), it is

easy to measure 0.01 V.
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v
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R R

R R

v

v

A B
+

−

A most widely used bridge is the Wheatstone bridge

shown. It consists of two voltage divider circuits with

a voltmeter measuring the voltage between points A and

B (denoted by vm). We note from voltage divider formu-

las:

v2 =
R2

R1 +R2
vs

vB =
RB

RA +RB
vs
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KVL: −v2 + vm + vB = 0 → vm = v2 − vB = vs
(
R2

R1 +R2
− RB
RA +RB

)

A Wheatstone bridge is used in two modes. To measure the value of a resistor accurately,

and to monitor to change in a resistance accurately.

Measuring resistance accurately: Suppose the unknown resistance is RB. Two known

and accurate resistors R1 and RA are chosen. An accurate but variable resistor is used for

R2. Typically, a resistor box or a decade box is used. The dials on the box switch some

accurate resistor in parallel or in series to get the desired resistor value accurately. The

bridge is setup and is powered up. The variable resistor R2 is varied until the meter read

zero voltage for vm. Then:

vm = vs

(
R2

R1 +R2
− RB

RA +RB

)
= 0

R2

R1 +R2
=

RB

RA +RB
→ R1 +R2

R2
=
RA +RB
RB

R1

R2
=
RA

RB

RB = RA
R2

R1

Note that we do not need to know value of vs to find RB. This way, RB is measure within

the accuracy of resistors,R1, R2, and RA.

Measuring resistance changes accurately: In certain sensors, the resistance of the

sensor changes proportional to external forces or conditions. For example, a strain gauge

measures the elongation (strain) of a solid material caused by applied forces (stress). A

typical strain gauge consists of a thin film of conducting material deposited on an insulating

substrate and bonded to a test member. When the test article is under stress, its dimension

changes (e.g., its length L changes to L + ∆L. The resistance of the strain gauge (the

conducting film) change according to

∆R = 2RG
∆L

L

where RG is the resistance of gauge when no stress is applied, ∆R is the change in the gauge

resistance, and factor of 2 comes from the fact that as the material is elongated its cross

section is reduced. Usually, we like to measure strain values, ∆L/L, that can be as small

as 10−4 (which means the changes in gauge resistance is of the same order and cannot be
measured by a simple ohm-meter).
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Wheatstone bridge is used to measure ∆R in the following configuration. The strain gauge,

RG is put in place of R2. R1 is replaced by a similar strain gauge which is under no stress and

is used as a reference. The resistances RA and RB are chosen such that bridge is balanced

(vm = 0) when no stress is applied. Following the equations for a balanced bridge, we get:

R1

R1 +RG
=

RB

RA +RB

Typically, R1 = RG which implies RA = RB.

When stress is applied to the system, the strain gauge resistance changes to R2 = RG+∆R

and a voltage vm appears on the bridge. Then,

vm = vs

(
RG +∆R

R1 +RG +∆R
− RB

RA +RB

)

Using R1 = RG and RA = RB, we get:

vm = vs

(
RG +∆R

2RG +∆R
− 1
2

)

vm = vs
2RG + 2∆R− 2RG −∆R

2(2RG +∆R)

vm = vs
∆R

2(2RG +∆R)

vm = vs
∆R

4RG

where in the last equation, we have ignored ∆R in the denominator since ∆R << RG. Using

the relationship between ∆R and strain (∆L), we get

∆L

L
=
∆R

2RG
= 2
vm

vs

Note that in this application an accurate voltage source, vs, is needed.
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