
Subcircuit Interfaces and Maximum Power Transfer

Large electrical and electronic circuits are usually divided into smaller sub-circuits to simplify

design and analysis. The strategy of dividing a circuit into individual components works

because of the Thevenin Theorem.
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What Load sees: The load sees a two-

terminal network. This two-terminal net-

work contains an independent source. So it

can be reduced to its Thevenin equivalent.
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What each two-port network sees:

Following the logic above, its obvious that

each two-port network sees a two-terminal

network containing an independent source

on the input side (can be reduced to a

Thevenin form) and a two-terminal net-

work that does not contain an independent

source on the output side (so it can be re-

duced to a single resistor).
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Subcircuit Interfaces & Maximum Power Transfer

An important part of strategy of dividing

a circuit into individual components is un-

derstanding of the interaction and interface

between the subcircuits.

Following the above discussion, one notes that the interface between different subcircuits can

be reduced to the simple circuit shown (For example, take the circuit as seen by the load in

the previous page and replace load with its equivalent, a resistor). Then,

0 1 2 3 4 5 6

RL/Rs

I Load
V Load
P Load

iL =
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Rs +RL

vL = RLiL =
RL

Rs +RL
vs

PL = vLiL =
RL

(Rs +RL)2
v2s

Values of iL, vL, and PL are plotted in the

figure. We can see that the load current

is maximum when RL = 0 (or effectively,

RL/RS � 1) and the voltage on the load

is maximum when RL →∞ (or effectively,

RL/RS � 1).

In some cases, we are interested in transferring maximum power from a given source (Rs
and vs are known) to a load (e.g., an amplifier driving a speaker). We see from the above

the equations that the power transferred to the load is in fact zero when the load current is

maximum (RL = 0 leading to vL = 0) or when the voltage on the load is maximum (RL →∞
leading to iL = 0). Maximum power transfer occurs somewhere in between as can be seen

from the figure. To find the value of RL which results in maximum power transfer vs and Rs
are known), we find derivative of PL with respect to RL and set it equal to zero.

dPL

dRL
=

Rs −RL
(Rs +RL)3

v2s

dPL

dRL
= 0 → RL = Rs

So the power transfer to the load is maximum when RL = Rs, and the maximum transfered

power is

PL|Max =
v2s

4RL
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Real Sources

In an ideal voltage source, the voltage is constant no

matter what current is drawn from the source. In a

real, practical voltage source (like a battery), how-

ever, the output voltage typically decreases as more

and more current is drawn, as is shown in the figure.

Typically a real source is “rated” for currents below

a current i which corresponds to a voltage v ≥ 95%vs
(region near vs in the figure). For this region, it is a

good approximation to model the i-v characteristics

of a real source with a straight line. The equation of

this line is (using active sign convention):

v = vs − Rsi
The above approximate i-v characteristics of a real source is a

Thevenin form and, therefore, a real source can be modeled with an

ideal voltage source , vs, and a resistance Rs. Rs is called the inter-

nal resistance of the source (it is not a real resistor inside the real

source!) and is typically small (an ideal voltage source has Rs = 0).

The same arguments can be applied to “real” current sources. An

approximate model for a real current source is in Norton form. Rs
is again the internal resistance of the source (and again, it is not a

real resistor inside the real source!). For a “real” current source, Rs
is typically large (an ideal current source has Rs →∞).

Dependent or Controlled Sources

Most analog electronic devices include amplifiers. These are four-terminal devices (two input

and two output terminals). The voltage or current in the output terminals are proportional

to voltage or current of the input terminals. We need a new circuit element in order to model

amplifiers. These elements are “controlled” or “dependent” sources. There are four type of

“controlled” sources
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Note that the element located in the input with the controlling current or voltage can be

any element: a short circuit, an open circuit, or a resistor.

When one encounters a circuit containing a controlled source, the first step is always to find

the “controlling” voltage and current (v1 or i1 in the above figures). In some circuits, the

control voltage or current is not located near the controlled source in order to simplify circuit

drawing. This does not mean that the controlling element is separate from the controlled

source. It is essential to always remember that controlled sources are four terminal elements.

This means, for example, that you cannot have a subcircuit which include the controlled

source but not its controlling element!

Controlled sources behave similar to ideal (or independent) sources. For example, in the

voltage-controlled voltage source in the above figure, the output voltage is µv1 no matter

what current is drawn from the circuit. All analysis method developed so far (KVL and

KCL, node-voltage and mesh current methods, superposition, etc.) can be used for circuits

containing controlled sources, and by treating the controlled source similar to an ideal source.

In node-voltage and mesh current methods, we need to write an “auxiliary equation” which

relates the controlling parameter to node-voltage or mesh current methods as is seen in the

examples below.

Example: Find vo using KVL and KCL:
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KVL RSix +RP ix − vs = 0 → ix =
vs

RS +RP

KVL RCio +RLio + rix = 0 → io = − rix
RC +RL

Substituting for ix from first equation in the second and noting vo = RLio, we get:

vo = RLio = RL

[
− r

RC +RL
× vs

RS +RP

]

vo =

[ −rRL
(RS +RP )(RC +RL)

]
vs
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Example: Find v1 using node-voltage and mesh-current methods.
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Node-voltage method:

Circuit has 5 nodes and two voltage sources

(one independent and one controlled volt-

age source). Thus, the number of node-

voltage equations is NNV = 5− 1− 2 = 2.

Following our procedure for node-voltage

method, we choose the reference node to

be the one with most voltage sources at-

tached to it. Then, we can write down the

voltage at two of our nodes which are con-

nected to voltage sources:

vA = 16 vC = 8i1

We then proceed with writing KCL at the other two nodes:

Node vB:
vB − 8i1

2
+
vB − vD

4
− 1.25 = 0 → 3vB − vD = 5 + 16i1

Node vD:
vD − 0

4
+
vD − 16

2
+
vD − vB

4
− 0.75v1 = 0 → −vB + 4vD = 32 + 3v1

Two above equations are two equations in two unknowns (vB and vD). But they also contain

the control parameters i1 and v1. We need to write two “auxiliary equations” relating these

control parameters to our node voltages:

i1 =
vD − 16

2
v1 = vB − 8i1 → v1 = +vB − 4vD + 64

We now substitute for control parameters i1 and v1 in our node-voltage equations to get:

3vB − vD = 5 + 8(vD − 16) → 3vB − 9vD = −123

−vB + 4vD = 32 + 3(+vB − 4vD + 64) → −4vB + 16vD = 224

Which can be solved to find the node voltages vB = 4 V and vD = 15 V. The control

parameters are: i1 = −0.5 A and v1 = 8 V
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Mesh-current method:

The circuit has four meshes and

two current sources. So the num-

ber of mesh equations is NMC =

4 − 2 = 2. Following our proce-

dure for mesh-currrent method, we

can write down two mesh currents

using the current sources:

iC = 0.75v1 iB − iD = 1.25 → iD = iB − 1.25

We then proceed with writing KVL at the meshes (one mesh and one supermesh):

Mesh iA: +4iA − 16 + 2(iA − iB) = 0 → 6iA − 2iB = 16

Supermesh iB and iD: −8i1 + 2(iD − iC) + 4(iB − iC) + 2(iB − iA) + 16 = 0

−8i1 + 2(iB − 1.25− 0.75v1) + 4(iB − 0.75v1)

+2(iB − iA) + 16 = 0

−2iA + 8iB = −13.5 + 8i1 + 4.5v1

Two above equations are two equations in two unknowns (iA and iB). But they also contain

the control parameters i1 and v1. We need to write two “auxiliary equations” relating these

control parameters to our node voltages:

i1 = iB − iA
v1 = 2(iC − iD) = 2(0.75v1 − iB + 1.25) → v1 = 4iB − 5

We now substitute for control parameters i1 and v1 in our mesh-current equations to get:

3iA − iB = 8

−2iA + 8iB = −13.5 + 8(iB − iA) + 4.5(4iB − 5) → iA − 3iB = −6

Which can be solved to find the mesh currents: iA = 3.75 A and iB = 3.25 A. The control

parameters are: i1 = −0.5 A and v1 = 8 V
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Thevenin Equivalent of Subcircuits with Controlled Sources

Two-terminal subcircuits containing controlled sources reduce to Thevenin form. However,

care should be taken in doing so. We discussed three methods to find equivalent of a

subcircuit. Our first method, source transformation and circuit reduction, does not work

with controlled sources. The second method, directly find i-v characteristics of the subcircuit

works but is cumbersome (we may have to use for some subcircuits with controlled sources).

The third method was to find two of three parameters: RT (by killing independent sources),

vt = voc and iN = isc. Most of the times, the best choice for subcircuits containing controlled

sources is to find vt = voc and iN = isc as described in the example below.
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Example: Find the Thevenin equivalent of this subcircuit.

Since the circuit has a controlled source, it is preferred

to calculate voc and isc.
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Finding voc

Since the circuit is simple, we proceed to solve it with

KVL and KCL (noting i = 0):

KCL: −i1 + i+ 4i = 0 → i1 = 0

KCL: −i2 − 4i+ i1 = 0 → i2 = 0

KVL: −32 + 2× 103i2 + 6× 103i1 + voc = 0

vT = voc = 32 V
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Finding isc

Since the circuit is simple, we proceed to solve it with

KVL and KCL:

KCL: −i1 + i+ 4i = 0 → i1 = 5isc

KCL: −i2 − 4i+ i1 = 0 → i2 = isc

KVL: −32 + 2× 103isc + 6× 103isc = 0 → iN = isc = 4× 10−3 A = 4 mA

Therefore, vT = 32 V, iN = 4 mA, and RT = vT/iN = 8 kΩ.

While finding voc and isc is preferred method for most circuits, in some cases, the Thevenin

equivalent of the subcircuit is only a resistor (you will find voc = 0 and isc = 0), or only a

voltage source (you will find voc 	= 0 but finding isc leads to inconsistent or illegal circuits),

or only a current source (you will find isc 	= 0 but finding voc leads to inconsistent or

illegal circuits). For these cases, one has to either find RT directly and/or directly find i-v

characteristics of the subcircuits as is shown below for the circuit of previous example.
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Finding RT

To find RT , we kill all independent sources in the circuit. The resulting circuit cannot be

reduced to a simple resistor by series/parallel formulas. This is why finding voc and isc is the

preferred choices for subcircuits containing controlled sources. We can find RT by attaching

an ideal voltage source with a known voltage of v and calculate i. Since the subcircuit should

be reduced to a resistor (RT ), we should get i = −v/(constant) where the constant is RT .

(Negative sign comes from active sign convention used for Thevenin subcircuit).
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Since the circuit is simple, we proceed to

solve it with KVL and KCL:

KCL: −i1 + i+ 4i = 0 → i1 = 5i

KCL: −i2 − 4i+ i1 = 0 → i2 = i

KVL: 0 + 2× 103i+ 6× 103i+ v = 0

i = − v

8× 103

Therefore, RT = 8× 103 Ω = 8 kΩ.

Note that we could have attached an ideal “current” source with strength of i to the problem,

proceeded to calculate v, and woould have got v = −8× 103i.

Finding i-v Characteristics Equation:

As mentioned above, in some cases, we have to directly find the i-v characteristics equation in

order to find the Thevenin equivalent of a subcircuit. The procedure is similar to finding RT .

Attach an ideal voltage source to the circuit. Assume v is known and proceed to calculate i

in terms of v. Alternatively, one can attach an ideal current source, assume i is known and

find v in terms of i. The final expression should look like v = vT − iRT and vT and RT can

be read directly:
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Since the circuit is simple, we proceed to

solve it with KVL and KCL:

KCL: −i1 + i+ 4i = 0 → i1 = 5i

KCL: −i2 − 4i+ i1 = 0 → i2 = i

KVL: −32 + 2× 103i+ 6× 103i+ v = 0

v = 32− 8× 103i

which is the characteristics equation for the subcircuit and leads to vT = 32 V, RT =

8× 103 Ω = 8 kΩ, and iN = vT/RT = 4 mA.
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