
I. INTRODUCTION

1.1 Circuit Theory Fundamentals

In this course we study circuits with non-linear elements or devices (diodes and transistors).

We will use circuit theory tools to analyze these circuits. Since some of tools developed in

circuit theory apply only to “linear” elements (thus, linear circuit theory), let’s first examine

what we can use to analyze non-linear elements.

Circuit theory is an approximation to Maxwell’s electromagnetic equations to simplify anal-

ysis of complicated circuit. There are nine fundamental circuit elements in circuit theory,

denoted by their iv characteristics:

Resistor: v = Ri

Capacitor: i = C
dv

dt
or V =

1

jωC
I

Inductor: v = L
di

dt
or V = jωL I

Independent voltage source: v = vs = const. for any current

Independent current source: i = is = const. for any voltage

and four controlled sources: voltage-controlled voltage source, (similar to an independent

voltage source but with source strength depending on voltage on another element in the cir-

cuit), current-controlled voltage source, voltage-controlled current source, current-controlled

current source.

There are two other circuit elements that we will use and are special cases of the above

elements. They are:

Short Circuit: v = 0 for any current

Open Circuit: i = 0 for any voltage

As can be seen, “short circuit” is a special case of a resistor (with R = 0) or a special case

of a voltage source (with vs = 0) while “open circuit” is a special case of a resistor (with

R → ∞) or a special case of a current source (with is = 0).

It is essential to remember that the above circuit elements do NOT represent physical de-

vices, rather they are idealized elements, “cooked” up to simplify the analysis (because their

voltage-current relationship is linear).
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Any two-terminal network (a box/device with two wires coming out of it) whose voltage is

directly proportional to the current flowing through it, i.e., the element iv characteristics

equation is v = Ri, can be modeled as an “ideal” resistor. This means, that we can take this

box/device out of the circuit and a replace it with a resistor and the response of the circuit

does not change. Most importantly, we do NOT need to know what is inside the box, the

only parameters we need to now is its resistance value.

Similarly, if we have a black box whose voltage is a constant for all currents, it can be modeled

as an independent voltage source (without any knowledge of what is inside the box). You

actually have been doing this in the lab, modeling the power supply (which includes many

transistors, diodes, resistors, capacitors) with an independent voltage source.

On the other hand, physical elements (i.e., resistors in the lab) can only be modeled with one

of these ideal elements within a certain range of parameters and within a certain accuracy.

For example take a resistor in the lab. At high enough frequencies, it will exhibit capacitance

(i.e. its “resistance” drops as frequency increases). At high enough current, when the resistor

is hot enough, the ratio of v/i is not linear anymore. So, an “ideal” resistor used in circuit

theory is NOT a physical device. Rather, a resistor in the lab can be approximated by an

“ideal” resistor only for a range of currents or voltages (typically rated by its maximum

power), a range of frequencies, and even a range of environmental conditions (temperature,

humidity, etc.).

The bottom line is that the iv characteristics of a two-terminal network or device is the key

(not what is inside the box). If it follows the i− v characteristics equation of one of the five

elements above, we can use the corresponding “ideal” circuit element in our analysis.

The variables in a circuit are currents and voltages in each element. The physics of current

flow is captured in the iv characteristics of each element. Two general rules governs what

happens when these elements are connected to each other: Kirchhoff current low, KCL, which

is conservation of electric charge and Kirchhoff voltage law, KVL, which is a topology-driven

constraint (i.e., you get to the same place if you follow a closed loop). These two rules are

independent of internal physics of elements and can be applied to non-linear elements.

In each circuit with N elements, we have 2N unknowns (i and v of each element) and we

need 2N equations: N iv characteristics equations which describe the internal physics of

each element and N KVL and KCLs which depend only on how the elements are connected

to each other.

In the circuit theory, we learned that we can reduce the number of equations to be solved by

a large number using “Node-Voltage” and “Mesh-Current” methods. As these method really

are a compact form of writing KVL and KCLs, they equally apply to non-linear elements.
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Other important circuit theory tools include: 1) Thevenin and Norton Equivalent circuits, 2)

Proportionality and Superposition, and 3) Frequency domain (phasors) or s-domain analysis

of circuit with sinusoidal sources. These tools, however, only apply to linear elements and

we cannot use them for circuit with non-linear elements. Linear circuit analysis (including

these tools) are so convenient that in a lot of cases we build approximate “linear” models for

diodes and transistors so that we can apply the above rules in special cases. As such, short

descriptions of frequency domain and Thevenin equivalent circuits are given below.

Which Solution Method to Use?

By looking at the circuit you should be able to decide the best method to solve the circuit.

Basically, one wants to have the smallest number of equations. Assuming that we have

“reduced” the circuit (i.e., replaced parallel and series elements):

KVL & KCL: 2Nelement equations

Node-voltage Method: Nnodes − 1 − NIV S equations

Mesh-Current Method: Nloops − NICS equations

(IVS: independent voltage source, ICS: independent current source).

Obviously, one should use KVL & KCL only if there are only a few elements. Furthermore,

we are mostly interested in voltages in the circuits. As such, usually node-voltage method is

preferred as we will have a fair number of voltage sources and the answer is also a voltage.

1. You CANNOT mix and match the three methods above!

2. Apply the techniques consistently e.g., for example, always write KCL as sum of

currents flowing out of a node = 0. This minimizes the chance for error.

1.2 Frequency Domain

In principle, the voltages and currents in analog circuits are arbitrary functions of time (we

call them signals or waveforms). Analytical analysis of the circuit response to an arbitrary

input waveform is difficult and requires solution to a set of differential equations. Even

numerical analysis becomes difficult when there are a lot of circuit elements. Fortunately,

there are ways to find the response of a linear circuit to time-dependent signal. These

approaches are based on the following observations:

1. For circuits driven by sinusoidal sources, the forced response of the state vari-

ables (currents and voltages) are all sinusoidal functions with the same frequency

as the source.
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This is derived from the mathematical properties of sinusoidal functions. Forced response of

a set of linear differential equations (circuit equations) to a sinusoidal function is a sinusoidal

function. This property leads to special analysis tools for AC circuits using “phasors,” or

using Fourier transform. AC steady-state analysis of linear circuits are covered in ECE35/45.

When we use phasors, the circuit equation do not contain time anymore, but they include

frequency ω. As such, this is usually called analysis in “frequency-domain” to differentiate

that from “time-domain” analysis where we solve the differential equation to find the circuit

response.

2. Any arbitrary but periodic signal can be written as a sum of sinusoidal

functions using Fourier series expansion.

For example, a square wave with period T or frequency ω0 = 2πf = (2π)/T and amplitude

Vm can be written as:

v(t) =
4Vm

π

[

sin(ω0t) +
1

3
sin(3ω0t) +

1

5
sin(5ω0t) + ...

]

Signals with frequencies nω0 (n integer) are called harmonics of the fundamental frequency,

ω0. In general the amplitude of higher harmonics become smaller as n become larger. The

idea of decomposition of a periodic function to a sum of sinusoidal functions can be extended

to an arbitrary temporal function by using Fourier integrals. As such, in principle, any

function of time can be written as a sum of (or an integral of) sinusoidal functions.

3. Proportionality and superposition principles state that the response of a linear

circuit to a linear combination of sources is equivalent to the linear combination

of the circuit response to each individual source.

Basically, in a circuit with several independent sources, the value of any state variable equals

to the algebraic sum of the individual contributions from each independent source. So, in a

circuit with a time-dependent source, we can use Fourier series decomposition and replace the

source with a linear combination of several sinusoidal sources. We can then find the response

of the circuit to each sinusoidal source and then use proportionality and superposition to

find the response to the time-dependent source.

For example, suppose we want have a circuit driven by a source that can be decomposed into

vi(t) = A cos(100t)+B cos(300t). We want to know the voltage across an element, vo(t). We

solve the circuit with the source cos(100t) and find the voltage across the element interest,

suppose α cos(100t + φα). We then repeat the analysis with a source cos(300t) and find the

voltage across the element interest, suppose β cos(300t + φβ). The response of the circuit to

vi(t) = A cos(100t) + B cos(300t), then is vo(t) = Aα cos(100t + φα) + Bβ cos(300t + φβ).

The problem is actually much simpler than the example above. In principle, solution of AC

steady-state circuit is simple and we typically find the response the circuit with frequency,
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ω, as a parameter. We can then construct the response by replacing ω with frequencies

of interest in the response equation (e.g., set ω = 100 and 300 in the above example).

Another major simplification arises when the circuit response is frequency independent. In

that case, the circuit response can be directly applied to any time-dependent function. For

example, in the above example, if the circuit response to cos(100t) and cos(300t) sources were,

respectively, α cos(100t) and α cos(300t) (frequency independent), then the circuit response

is simply: vo(t) = αvi(t).

Therefore, in many circuit applications we focus on circuits driven by sinusoidal

sources. We solve these circuits in frequency domain. We try to find circuit

parameters with frequency ω as a parameter to facilitate construction of response

to an arbitrary function of time.

There are several ways to solve the circuit in frequency domain, all having the same mathe-

matical foundation. We can use phasors (which are really Fourier Transforms). Or, we can

use complex frequency domain which is sometimes called “s-domain” (s = σ+ jω). In junior

level courses and beyond, you will probably use complex frequency domain mainly. Circuit

analysis with phasors is sufficient for the work we do in this class (to convert from phasors

to s-domain), simply replace jω with s and −ω2 with s2.

Analysis in frequency domain is straight-forward. Resistors, capacitors, and inductors are

replaced by impedances, Z: Z = R for a resistor, Z = 1/(jωC) for a capacitor and Z = jωL

for an inductor. Impedances obey Ohm’s Law: V = ZI. Thus, with impedances the circuit

reduces to a “resistive” circuit and all analysis techniques of resistive circuits (node-voltage

method, mesh-current method, Thevenin Theorem, etc.) apply. The only difference is that

analysis is performed using complex variables.

1.3 Thevenin Theorem and Thevenin or Norton Equivalents

T

T

N
N

i
i

−

+
v

+

−

v

+

−

i

v
−
+ v

R

R
i

We know from linear circuit theory that the iv characteristics of a two-terminal network is

in the form of (using active sign convention):

v = vT − RT i; RT = RN ; iNRN = vT

(in frequency or s domain, we should replace RT with ZT ).
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This means that we only need to solve and/or measure the Thevenin equivalent of a two-

port terminal once. From then one, the two-port terminal can be replaced with either of its

Thevenin or Norton equivalents without affecting the response of the rest of the circuit.

An important corollary to the Thevenin Theorem is that if a two-terminal network does not

include an “independent source” it can be reduced to a single “resistance” (even if it includes

dependent sources).

How to calculate the Thevenin equivalent

You have seen a detailed discussion of Thevenin/Norton forms in your circuit theory course(s).

In summary, the best method is to calculate two of the the following three parameters: (1)

Open-circuit voltage, voc (found by setting i = 0) , (2) Short-circuit current, isc (found by

shorting the terminals of the two-terminal network, i.e., setting v = 0), and (3) Direct cal-

culation of RT which is the resistance seen at the terminals with the independent sources

“zeroed out” (i.e., their strengths set equal to zero). Remember, you should NOT “zero

out” dependent sources.

25 V

5 

20 3 A

4 i

+

−

v
−
+

Example 1: Find the Thevenin and

Norton Equivalent of this circuit:

v1

voc

25

25 V

5 

20 3 A

4

+

−

i = 0

−
+

RT

5 

20

4

v1

i sc

25

25 V

5 

20 3 A

4

−
+

1. voc: Using node-voltage method and noting that

since i = 0, by KVL, v1 = voc.

v1 − 25

5
− 3 +

v1

20
= 0

4v1 − 100 − 60 + v1 = 0

vT = voc = 32V

2. RT (zeroing the independent sources): From the

circuit, we have RT = 4 + (5 ‖ 20) = 4 + 4 = 8 Ω.

3. isc: Note that isc = v1/4.

v1 − 25

5
+

v1

4
− 3 +

v1

20
= 0

4v1 − 100 + 5v1 − 60 + v1 = 0

v1 = 16V → isc = iN = 0.25v1 = 4A

So, the Thevenin/Norton parameters are: vT = 32 V,

iN = 4 A, and RT = 8 Ω. (note vT = iNRT .)
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Thevenin Equivalent of two-terminal networks with controlled sources

4i
i

+

−
v

1.2k

2k

32 V
−
+

i 2

i 1
voc

4i

+

−1.2k

2k

32 V

i = 0

−
+

i 2

i 1

4i

1.2k

2k

32 V

i = isc

−
+

Example: Find the Thevenin equivalent of this two-

terminal network.

Finding voc: Since the circuit is simple, we proceed to

solve it with KVL and KCL (noting i = 0):

KCL: −i1 + i + 4i = 0 → i1 = 0

KCL: −i2 − 4i + i1 = 0 → i2 = 0

KVL: −32 + 2 × 103i2 + 1.2 × 103i1 + voc = 0

vT = voc = 32 V

Finding isc: Using KVL and KCL:

KCL: −i1 + i + 4i = 0 → i1 = 5isc

KCL: −i2 − 4i + i1 = 0 → i2 = isc

KVL: −32 + 2 × 103i2 + 1.2 × 103i1 = 0

−32 + 2 × 103isc + 6 × 103isc = 0 → iN = isc = 4 × 10−3 A = 4 mA

i 2

i 1

vx

4i

1.2k

2k i i x

−
+

Finding RT : We “zero” out all independent sources in

the circuit. The resulting circuit cannot be reduced to

a simple resistor by series/parallel formulas. We can

find RT , however, by attaching a “test” source, vx

to the terminals and calculate current ix (see figure).

Since the two-terminal network should be reduced to

a resistor (RT ), we should get RT = vx/ix.

Since the circuit is simple, we proceed to solve it with KVL and KCL (note ix = −i):

KCL: −i1 + i + 4i = 0 → i1 = 5i = −5ix

KCL: −i2 − 4i + i1 = 0 → i2 = i = −ix

KVL: 0 + 2 × 103i2 + 1.2 × 103i1 + vx = 0

−2 × 103ix − 6 × 103ix + vx = 0 → RT =
vx

iX
= 8 × 103 = 8 kΩ
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How to measure the Thevenin equivalent

Suppose we have given a box with two terminals and want to measure the Thevenin equiv-

alent of the circuit inside the box. In principle, we cannot use the above technique and try

to measure voc, isc, and RT . We cannot turn off the input signal and use a ohm-meter to

measure RT . Nor can we short the terminals and measure isc (there is a good chance that

we are going to ruin the circuit if we do that). In principle, we can use a volt-meter (or

scope) to measure voc but care should be taken as it is not known a priori if the internal

resistance of the volt-meter (or scope) is large enough to act as an open circuit (there are

other complications). There is also the issue of measurement error that one should consider.

i

+

−

v RL

−1/R
      T

v
T

i
N

i

v

slope of

+

+

+ +
+ +

+
+

The best way to measure the Thevenin Equivalent param-

eters (works for Resistive RT ) is to measure the iv charac-

teristics of the two-terminal network. We can do this by

attaching a variable load (a resistance) to the box, vary

the load which changes the output voltage and currents,

and measure several pair of i and i (here we do not use the

value of RL). Typically this is done with starting from a

“large” RL and gradually reducing the load.

These data point should lie on the iv line of the two-

terminal network. Values of vT , iN , and RT can be read

directly from the graph as shown. This method is spe-

cially accurate as one can use a “best-fit” line to the data

in order to minimize random measurement errors.

−

+

−

+

v

i

v

i

−
+

L

LT

T

R

Rv

R

A simpler, but less accurate version of the above method is

to measure the output voltage for TWO different values of

RL (i.e., RL1 and RL2 with v1 and v2, respectively). From

the circuit:

v

vT

=
RL

RT + RL

v1

vT

=
RL1

RT + RL1

and
v2

vT

=
RL2

RT + RL2

Dividing the two equations give:

v1

v2

=
RL1

RT + RL1

×
RT + RL2

RL2

which can be solved to find RT . Then, one of the above equations for v1 or v2 can then

be used to find vT . Typically, we choose RL2 to be very large, RL2 → ∞ (e.g., internal
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resistance of scope), then v2 = voc (open circuit voltage) and

v1

voc

=
RL1

RT + RL1

→
RT

RL1

=
voc

v1

− 1

Note that we should choose RL1 such that v1 is sufficiently different from voc for the mea-

surement to be accurate. Typically, experiment is repeated for several values of RL1 until

v1/voc is between 0.5 to 0.8).

How to find the Thevenin equivalent using PSpice:

You can use the same technique described above for computing the Thevenin parameters

with PSpice. Attach a “variable” load (“Parameter” in PSpice) to the circuit. Ask PSpice

to compute output voltage V as a function of load resistance RL. Plot the output current i

versus the output voltage v and you will have the iv characteristics of the circuit similar to

the figure above (Make sure that you have the current direction correctly!).

1.4 Circuit Components

It is not practical to design a complete circuit as a whole from scratch. It is usually much

easier to break the circuit into components and design and analyze each component sep-

arately. In this manner we can design “building blocks” (such as amplifiers, filters, etc.)

that can be used in a variety of devices. A typical analog circuit is composed of a “source,”

a “load” which is a two-terminal network (devices with two wire coming out) and several

“two-port networks” (devices with two wires going in and two wires coming out). Note that

these components “communicate” with each other only through the attaching wires, i.e.,

through currents and voltages.

2−port
Network

2−port
Network

Source Load

For two-terminal networks, the relationship between output voltage and current dictates how

this network behave. If we derive this relationship once for a given two-terminal-network, we

can solve any circuit which includes that two-terminal network without solving for internals

of the two-terminal network. For two-terminal networks containing only linear elements,

Thevenin theorem can be used to model such a network with two fundamental circuit ele-

ments. For two-terminal networks with non-linear elements, the relationship between output

voltage and current is non-linear (see for example Zener diode power supply of Sec. 2).
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In two-port networks the input signal (either input current or input voltage) is modified

by the circuit and an output signal (either output current or output voltage) is generated.

For most electronic circuits, we keep the currents low and modify voltages (as discussed

in Appendix). As such the relationship between output voltage and input voltage dictates

the response of the two-port network. This is called the transfer function. For two-port

networks with non-linear elements, this is a non-linear relationship (e.g., diode waveform

shaping circuits of Sec. 2). If a two-port network includes only linear elements, the network

can be modeled by four linear circuit elements (often 3) and its transfer functions is linear

(i.e., ratio of vo/vi does not depend on vi). In Sec. 5 we will show that linear amplifiers can

be characterized by three parameters and we will use this technique to divide the circuit into

components and simplify the analysis considerably. A more general version of this approach

is given in the Appendix.

1.4.1 How each sub-circuit sees other elements

The strategy of dividing a “linear” circuit into individual components works because of the

Thevenin Theorem. Recall that any two-terminal network can be replaced by its Thevenin

equivalent. In addition, if a two-terminal network does not include an “independent source”

it will be reduced to a single “impedance” (even if it includes dependent sources).

2−port
Network

2−port
Network

Source Load

Source see this two−terminal network
Load sees this
two−terminal network

T

i

i Load

+

−

T
i

v−
+

v

R

What Load sees: The load sees a two-

terminal network. This two-terminal network

contains an independent source. So it can be

reduced to its Thevenin equivalent.

Source LR

+

−
v

What Source sees: The source sees a two-

terminal network. This two-terminal network

does not contain an independent source. So it

can be reduced to a single impedance.
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2−port
Network

s

oi

vo L

i

i

+

−

+

−

s

v

i

−
+

v

R

RWhat each two-port network sees: Fol-

lowing the logic above, its obvious that each

two-port network sees a two-terminal network

containing an independent source in the input

side (can be reduced to a Thevenin form) and

a two-terminal network that does not contain

an independent source on the output side (so

it can be reduced to a single impedance).

The above observations indicate that we do not need to solve a complete circuit. For two-

terminal networks like the source, we only need to find their iv characteristics (or vT and

RT for linear circuits) to be able to predict its response when it is attached to any circuit

(here modeled as RL). For a two-port network, we only need to solve the circuit above with

vs, Rs, and RL as parameters. Then, wherever this two-port network appears in a circuit,

we can use these results.

1.5 Mathematics versus Engineering

You should have learned by now that one cannot achieve “mathematical” accuracy in prac-

tical systems. Firstly, our instruments have a finite accuracy in measuring values. When

a number (or measurement), A, has a tolerance of ǫ, it means that its value is between

A(1 ± ǫ) = A ± ǫA. This means that we cannot differentiate between any number in the

range A − ǫA to A + ǫA. We would say that all numbers in this range are “approximately

equal” to each other:

B ≈ A ⇔ A − ǫA ≤ B ≤ A + ǫA

and we can use B and A interchangeably as we cannot distinguish between them.

As an example, the scopes in ECE65 lab are accurate within 2%. So, if the scope (ǫ = 0.02)

reads a value of 1.352 V, the “real” value is anywhere between 1.352± 0.02× 1.352 or in the

range of 1.325 to 1.379. In this context any number between 1.325 and 1.379 is approximately

equal to 1.352 as we CANNOT differentiate among them by our measurements: 1.325 ≈

1.352 and 1.379 ≈ 1.325.

Corollary: In the example above, the 4th significant digits in 1.352 is totally meaningless

(see the range of numbers we cannot distinguish). It is a poor engineering practice to even

report this 4th significant digit! (Still some ECE65 students report their calculations to

8th significant digits, directly writing the number from their calculators!). Similarly, it is

poor engineering practice to report numbers in whole fractions (e.g., 4/3). No measuring

instrument measure any property in whole numbers!
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Secondly, each element/component/system is manufactured to a certain tolerance – the

smaller the tolerance, the more expensive is to build that component. For example, resistors

we will use in the Lab have a tolerance of 5%. This means that a 1 kΩ has a value of

1, 000 ± 5% = 1, 000 ± 50 Ω or somewhere between 950 and 1,050 Ω.

A corollary of this concept is that if you designed a circuit and found that you need a 1,010 Ω

resistor, you CANNOT put a 1 kΩ and a 10 Ω resistor (with 5% tolerance) in series. The

resultant combination would have a value between 959.5 and 1,060.5 Ω which is no better

than a 5% 1 kΩ resistor. If you need to have a 1,010 Ω resistor (i.e., more precision), you

should use 1% resistors (which are more expensive).

Concepts of infinity and zero are meaningless in abstract. They are used in the context of

“much bigger” and “much smaller.” For example, in the discussion of page 1-8 of measuring

Thevenin parameters, we noted v2 = voc = vT for RL2 → ∞, since

v2

vT

=
RL2

RT + RL2

However, from the above equation v2 ≈ voc = vT when RL2 ≫ RT . This means that we have

defined “infinite” RL2 as RL2 ≫ RT , i.e., with respect to another resistance. For example, if

RT = 1 Ω, even a RL2 = 100 Ω resistance would be infinite, while if RT = 1000 Ω, a 100 Ω

load resistance would actually be small.

Similarly, v2 = vT for RT = 0, However, from the above equation, v2 ≈ vT when RT ≪ RL2.

Again RT = 0 is defined as RT ≪ RL2. So, concepts of large and small (zero and infinite)

require a frame of reference, i.e., big or small compared to what, and should be stated as

“much smaller” or “much bigger” than · · ·.

Notions of much smaller (≪) and much greater (≫) are meaningful only in term of a given

or needed “relative” tolerance, ǫ. Consider quantity B = A+a. We use the concept of much

smaller, a ≪ A, to write B ≈ A. From the above definition of approximate, we should have

(assuming that a and A are positive):

B ≈ A → A − ǫA ≤ B ≤ A + ǫA

A − ǫA ≤ A + a ≤ A + ǫA → a ≤ ǫA

a ≪ A ⇔ a ≤ ǫA

Exercise: Show that with a tolerance of ǫ, A ≫ a means A ≥ (1/ǫ)a.

For most day-to-day use, a tolerance of 5% to 10% is more than sufficient. As a general rule,

we will use a tolerance of 10% in the analysis in ECE65 unless otherwise stated.
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