
IV. Transistors (Biasing & Small-Signal Model)

4.1 Introduction

Amplifiers are the main component of any analog circuit. Not only they can amplify the

signal, they can be configured into may other useful circuits with a proper “feedback” (you

will see this in 100 for OpAmps). In this course, we focus on simple transistor amplifiers.

Transistor amplifiers utilizing BJT or MOSFET are similar in design and analysis. As such,

we discuss them together. However, first we need to review some concepts which are essential

in the design and analysis of the amplifier circuits.

Consider the circuit below with a NPN BJT. The operating point of the BJT is shown in

the iCvCE space.
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Let us add a sinusoidal source with an amplitude of ∆VBB in series with VBB. In response to

this additional source, the base current will become IB + ∆iB leading to a collector current

of IC + ∆iC and a CE voltage of VCE + ∆vCE .
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Assume that without the sinusoidal source the base current is 150 µA, IC = 22 mA, and

VCE = 7 V (the Q point). If the amplitude of ∆iB is 40 µA, then with the addition of the

sinusoidal source IB + ∆iB = 150 + 40 cos(ωt) µA and iB varies from 110 to 190 µA.

As the BJT operating point should remain on the load line, the collector current and CE

voltage change with changing base current while remaining on the load line. For example

when base current is 190 µA, the collector current is 28.6 mA and CE voltage is about

ECE65 Lecture Notes (F. Najmabadi), Spring 2010 4-1



4.5 V. As can be seen from the figure above, the collector current will approximately be

IC + ∆iC = 22 + 6.6 cos(ωt) mA and CE voltage is VCE + ∆vCE = 7 − 2.5 cos(ωt) V.

This example shows that the signal from the sinusoidal source ∆VBB is greatly amplified

and appears as signals in collector current and CE voltage.

It is also clear from the figure that this happens as long as the BJT stays in the active state.

As the amplitude of ∆iB is increased, the swings of BJT operating point along the load line

become larger and larger. At some value of ∆iB, BJT will enter either the cut-off (when

iB + ∆iB ≤ 0) or saturation state and the output signals will not be a sinusoidal function.

The above circuit, however, has several major issues:

1) The input signal, ∆VBB , is in series with the VBB DC voltage. As typically the input

signal is the output from another two-port network, this DC voltage will also appear in the

output of the previous two-port network, making two-port networks dependent on the next

and system design difficult. Similarly, the output signal is usually taken either across RC

as RC × iC or as vCE. These output voltages have DC components which is of no interest

and can cause problems in the design of the next two-port network. Basically, we have two

choices: a) We can use capacitors to “add” or “subtract” the DC bias to/from the signal.

This is called capacitive coupling (discussed in Sec. 4.2) and is the preferred method for most

“discrete” circuits. b) Alternatively, we need to include the DC bias voltages in the amplifier

design and analysis. This is the preferred method for ICs as capacitors take too much space

on a chip. Unfortunately, this make circuit design considerably more difficult.

2) We have to ensure that the transistor is always in the active state or “biased” properly

(Discussed in Sec. 4.3 and Sec. 4.5)

3) By definition amplifiers should be linear, i.e., they should not alter the shape of the

signal. However, transistors are non-linear devices. We will discuss how a non-linear device

can produce a linear response in Sec. 4.4.

4.2 Capacitive Coupling

For DC voltages (ω = 0) a capacitor is an open circuit (infinite impedance). For AC voltages,

impedance of a capacitor, |Z| = 1/(ωC), can be made sufficiently small by choosing an

appropriately large value for C (the higher the frequency, the lower the C value that one

needs). This property of capacitors can be used to add or separate AC and DC voltages.

Example below highlights this effect.
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Consider the circuit below which includes a DC source of 15 V

and an AC source of vi = Vi cos(ωt). We are interested to calcu-

late voltages vA and vB. The best method to solve this circuit is

superposition. The circuit is broken into two circuits. In circuit

1, we “kill” the AC source and keep the DC source. In circuit 2,

we “kill” the DC source and keep the AC source. Superposition

principle states that vA = vA1 + vA2 and vB = vB1 + vB2.
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Consider the first circuit. It is driven by a DC source and, therefore, the capacitor will act

as open circuit. The voltage vA1 = 0 as it is connected to ground and vB1 can be found by

voltage divider formula: vB1 = 15R1/(R1 + R2). As can be seen both vA1 and vB1 are DC

voltages.

In the second circuit, resistors R1 and R2 are in parallel. Let RB = R1 ‖ R2. The circuit

is a high-pass filter: VA2 = Vi and VB2 = Vi(RB)/(RB + 1/jωC). If we operate the circuit

at frequency above the cut-off frequency of the filter, i.e., RB ≫ 1/ωC, we will have VB2 ≈

VA2 = Vi and vB2 ≈ vA2 = Vi cos(ωt). Therefore, for ω ≫ 1/RBC

vA = vA1 + vA2 = Vi cos(ωt)

vB = vB1 + vB2 =
R1

R1 + R2

× 15 + Vi cos(ωt)

Obviously, the capacitor is preventing the DC voltage to appear at point A, while the voltage

at point B is the sum of DC signal from 15-V supply and the AC signal.

Using capacitive coupling, we can reconfigure our previous amplifier circuit to confine the

DC bias voltages within the circuit (neither the input nor the output voltages contain the

bias voltages)
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Several important points:

1. Notation: As voltages/currents in analog transistor circuits are sums of bias values and

responses to the signal, we will use the following notation. Upper case letters with upper

case subscripts (e.g. VBE, IB) denote the bias components. Lower case letters with lower case

subscripts (e.g. vbe, ib) denote the signal components. Lower case letters with upper case

subscripts (e.g. vBE , iB) denote the total value: vBE = VBE + vbe, etc. Note that although

the bias component is generally a DC value, it is defined as the value when the signal is zero

(not the DC value of current/voltages as the signal may have a DC component!).

2. In the above example to demonstrate the capacitive coupling concept, we used superpo-

sition to find the circuit response. We could do so because the circuit was linear. However

transistor is a non-linear element. We CANNOT use superposition to find the response to

bias or signal independently (although the method we will use looks a lot like superposition).

We will see this when we discuss small-signal model.

3. In general, a signal is a time dependent function. We discussed in Sec. 1 that we can

decompose a signal into a sum of sin-waves using Fourier transform and only consider the re-

sponse the circuit to sinusoidal signals. As we saw in the example above, coupling capacitors

act as high-pass filters (each capacitor having its own cut-off frequency or pole). As such,

the response of the amplifier to the signal would also include these poles. Typically, we com-

pute the response of the amplifier at frequencies above these poles (called “mid-frequency

response”). At these frequencies, coupling capacitors can be assumed to be short-circuit.

We separately calculate values of poles introduced by each coupling capacitors and deduce

the lower cut-off frequency of the amplifier.

4) The input signal can have a DC component (ω = 0 component in the Fourier decompo-

sition). If we use coupling capacitors, the DC component of the signal is lost. This type of

amplifiers is called an AC amplifier (it only amplifies AC signals). In order to amplify the

DC component of the signal, we need to avoid using coupling capacitors. Such a circuit is

typically called a DC amplifier (although it amplifies both DC and AC signals!)

4.3 Biasing

The purpose of biasing is to ensure that the BJT remains in the active state (or MOS in

saturation) at all times. The major issue faced in biasing is that the location of the bias

point can be very sensitive to transistor parameters (i.e., manufacturing, temperature). As

such, we will develop circuits that “force” the bias point to be independent of the transistor

parameters to a large extent through feedback. As such, a simple model, such as the BJT

large-signal piecewise linear model of page 3-6 is quite adequate for bias calculations. Also,

the Early effect in BJTs and Channel-width modulation effect in MOS are usually ignored.
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Because the BJT has to remain in the active state (or MOS in saturation), the location of

the Q point determines the maximum size of the output signal. For example, consider the

BJT load line discussion of page 4-1. The output voltage is vCE = VCE + vce (note VCE is

always positive but vce can be negative). For BJT to remain in active state, we need:

vCE = VCE + vce ≥ VD0 → vce ≥ −(VCE − VD0)

iC > 0 and CE-KVL → vCE = VCE + vce < VCC → vce < VCC − VCE

The first equation limits “negative” vce values as VCE ≥ VD0. If |vce| is raised above VCE−VD0

(by increasing the input signal amplitude), BJT will enter saturation. This is a universal

limit and does not depend on how a transistor biased. The second equation limits positive

vce values (or BJT will enter the cut-off state). This latter condition depends on how the

transistor is biased (through CE-KVL). The limit above, vce < VCC − VCE , is derived for

circuit of page 4-1.

It is clear that if the signal amplitude is raised above either of these limits, the output will

depart from a linear response (top and/or bottom of the signal would be clipped). In this

case, amplifier is said to be “saturated” (or hit the rails).

Similarly the maximum amplitude of the output signal in a MOS amplifier can be found:

vDS ≥ vGS − Vt → vds > vgs − (VDS − VGS + Vt) ≈ −(VDS − VGS + Vt)

iD > 0 and DS-KVL → vds < ...

The first equation limits “negative” vds values (assuming |vds| ≫ |vgs|) and is universal. If

|vds| is raised above VDS − VGS + Vt, MOS will enter the triode state. The second equation

limits positive vds value (or MOS will enter cut-off state) and depends on DS-KVL.

Above considerations generally imply that locating the Q point in the middle of the load

line (i.e., VCE = 0.5VCC for BJT) would lead to the largest possible output signal.

Another consideration for choosing the Q point is the power dissipation in the transistor

when there is no signal (and amplifier is not doing anything!). For BJT, the bias point power

dissipation is VCEIC . Locating the Q point close to IC = 0 (cut-off) or VCE = 0 (saturation)

would lead to the smallest power dissipation (but also the smallest output signal). For MOS,

the bias point power dissipation is VDSID. Locating the Q point close to ID = 0 (cut-off)

or VDS = VGS − Vt (saturation) would lead to the smallest power dissipation (but also the

smallest output signal). Typically, power dissipation is a concern only in the “power” stages

of an amplifier and special classes of amplifiers are utilized to minimize power dissipation

(see for example Sedra and Smith, 6th Ed., Chapter 11).
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4.3.1 BJT Fixed Bias

This is the simplest bias circuit and is usually referred to as “fixed bias” as a fixed voltage is

applied to the BJT base. As we like to have only one power supply, the base circuit is also

powered by VCC . Assuming that BJT is in active state, we have:

R
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V
CC

R
B

I C
I B

VCE
VBE

+
_ _

+

BE-KVL: VCC = IBRB + VBE → IB =
VCC − VBE

RB

IC = βIB = β
VCC − VBE

RB

CE-KVL: VCC = ICRC + VCE → VCE = VCC − ICRC

VCE = VCC − β
RC

RB
(VCC − VBE)

For a given circuit (known RC , RB, VCC , and BJT β) the above equations can be solved to

find the Q-point (IB, IC , and VCE). Alternatively, one can use the above equations to design

a BJT circuit to operate at a certain Q point. (Note: Do not memorize the above equations

or use them as formulas, they can be easily derived from simple KVLs).

Example 1: Find values of RC , RB in the above circuit with β = 100 and VCC = 15 V so

that the Q-point is IC = 25 mA and VCE = 7.5 V.

Since the BJT is in the active state (VCE = 7.5 > VD0), IB = IC/β = 0.25 mA. BE-KVL

and CE-KVL result in:

BE-KVL: VCC + RBIB + VBE = 0 → RB =
15 − 0.7

0.250
= 57.2 kΩ

CE-KVL: VCC = ICRC + VCE → 15 = 25 × 10−3RC + 7.5 → RC = 300 Ω

Example 2: Consider the circuit designed in example 1. What is the Q point if β = 200.

We have RB = 57.2 kΩ, RC = 300 Ω, and VCC = 15 V but IB, IC , and VCE are unknown.

Assuming that the BJT is in the active state:

BE-KVL: VCC + RBIB + VBE = 0 → IB =
VCC − VBE

RB
= 0.25 mA

IC = β IB = 50 mA

CE-KVL: VCC = ICRC + VCE → VCE = 15 − 300 × 50 × 10−3 = 0

As VCE < VD0 the BJT is not in the active state (since IC > 0, it should be in saturation).
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The above examples show the problem with our simple fixed-bias circuit as the β of a

commercial BJT can depart substantially from its average value given in the manufacturers’

spec sheet (due to manufacturing or more importantly due to a change in temperature).

In a given BJT, IC increases by 9% per ◦C for a fixed VBE (because of the change in β).

Consider a circuit which is tested to operate perfectly at 25◦C. At 35◦C, β and IC will

be roughly doubled and the BJT can be in saturation! In fact, the circuit has a build-in

positive feedback. If the temperature rises slightly, the corresponding increase in β makes IC

larger. Since the power dissipation in the transistor is VCEIC , the transistor may get hotter

which increases transistor β and IC further and can cause a “thermal runaway.”

The problem is that our biasing circuit fixes the value of IB (independent of BJT parameters)

and, as a result, both IC and VCE are directly proportional to BJT β (see formulas in the

previous page). A biasing scheme should be found that make the Q-point (IC and VCE)

independent of transistor β and insensitive to the above problems → Use negative feedback!

4.3.2 BJT Emitter Degeneration Bias with a Voltage-Divider
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The key to this biasing scheme is the emitter resistor which pro-

vides negative feedback. It is called “emitter degeneration” as the

presence of RE makes the circuit to behave very differently than

when RE is not present (even as an amplifier). This biasing scheme

can be best analyzed and understood if we replace the voltage di-

vider (portion in the dashed box) with its Thevenin equivalent:

VBB =
R2

R1 + R2

VCC and RB = R1 ‖ R2

The emitter resistor, RE , provides the negative feedback. Suppose

IC becomes larger than the designed value (e.g., larger β due to an

increase in temperature). Then, VE = REIE will increase. Since

VBB and RB do not change, KVL in the BE loop shows that IB

should decrease. This will reduce IC back towards its design value.

If IC becomes smaller than its design value opposite happens, IB

has to increase which will increase and stabilize IC .

Analysis below shows that the Q point is indeed independent of BJT β:

IC = βIB, IE = (β + 1)IB

BE-KVL: VBB = RBIB + VBE + IERE → IB =
VBB − VBE

RB + (1 + β)RE
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CE-KVL: VCC = RCIC + VCE + IERE → VCE = VCC − IC

[

RC +
1 + β

β
RE

]

Choose RB such that RB ≪ (1 + β)RE (this is the condition for the feedback to be effective):

IB ≈
VBB − VBE

(1 + β)RE
, IC ≈ IE ≈

VBB − VBE

RE

VCE ≈ VCC −
RC + RE

RE

(VBB − VBE)

where we have use (1 + β)/β ≈ 1. Note that now both IC and VCE are independent of β.

Another way to see how the circuit works is to consider BE-KVL: VBB = RBIB+VBE+IERE .

If we choose RB ≪ (1+β)RE ≈ (IE/IB)RE or RBIB ≪ IERE (the feedback condition above),

the KVL reduces to VBB ≈ VBE + IERE , forcing a constant IE independent of the BJT β.

As IC ≈ IE this will also fixes the Q point of BJT. If the BJT parameters change (different

β due to a change in temperature), the circuit forces IE to remain fixed and changes IB

accordingly. This biasing scheme is one of several methods which fix IC and VCE and forces

the BJT to adjust IB (through negative feedback) to achieve the proper bias.

Another important point follows from VBB ≈ VBE + IERE. As VBE is not a constant and

can change slightly (can drop to 0.6 or increase to 0.8 V for a Si BJT), we need to ensure

that IERE is much larger than possible changes in VBE . As changes in VBE = VD0 is about

0.1 V, we need to ensure that VE = IERE ≫ 0.1 or VE > 10 × 0.1 = 1 V.
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Example: Design a stable bias circuit with a Q point of IC = 2.5 mA and VCE = 7.5 V.

Transistor β ranges from 50 to 200.

Step 1: Find VCC : As we like to have the Q-point to be located in the middle of the load

line, we set VCC = 2VCE = 2 × 7.5 = 15 V.

Step 2: Find RC and RE :

VCE = VCC − IC(RC + RE) → RC + RE =
7.5

2.5 × 10−3
= 3 kΩ

We are free to choose either RC or RE (we will see that the amplifier response sets the values

of RC and RE). However, we need VE = IERE > 1 V or RE > 1/IE = 400 Ω. Let’s choose

RE = 1 kΩ which gives RC = 3 − RE = 2 kΩ (both commercial values).

Step 3: Find RB and VBB: We need to set RB ≪ (1 + β)RE . As any commercial BJT has

a range of β values and we want to ensure that the above inequality is always satisfied, we

should use the minimum β value:

RB ≪ (1 + βmin)RE → RB = 0.1(1 + βmin)RE = 0.1 ∗ 51 ∗ 1, 000 = 5.1 kΩ

VBB ≈ VBE + IERE = 0.7 + 2.5 × 10−3 × 103 = 3.2 V

Step 4: Find R1 and R2

RB = R1 ‖ R2 =
R1R2

R1 + R2

= 5.1 kΩ

VBB

VCC
=

R2

R1 + R2

=
3.2

15
= 0.21

The above are two equations in two unknowns (R1 and R2). The easiest way to solve these

equations are to divide the two equations to find R1 and use that in the equation for VBB:

R1 =
5.1 kΩ

0.21
= 24 kΩ

R2

R1 + R2

= 0.21 → 0.79R2 = 0.21R1 → R2 = 6.4 kΩ

Reasonable commercial values for R1 and R2 are and 24 kΩ and 6.2 kΩ, respectively.

The voltage divider biasing scheme is used frequently in BJT amplifiers. However, as VB > 0,

a coupling capacitor is needed to attach the input signal to the amplifier circuit. As a

result, this biasing scheme leads to an “AC” amplifier (cannot amplify DC signals). In some

applications, we need “DC” amplifiers. Biasing with two voltage sources, discussed below,

can solve this problem.
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4.3.3 BJT Emitter Degeneration Bias with 2 Voltage Sources

R
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R
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V
CC

R
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This scheme is similar to the voltage-divider method. We have only

changed location of the zero voltage node. We should get the same

currents through and voltages across each element as before if we re-

place VBB with VEE in the previous expressions and replace VCC with

VCC +VEE (Understand why!). We should find that this is a stable bias

point as long as RB ≪ (1 + β)RE .

BE-KVL: RBIB + VBE + REIE − VEE = 0

RB
IE

1 + β
+ REIE = VEE − VBE → IE =

VEE − VBE

RE + RB/(1 + β)

Similar to voltage-divider case, if we choose RB such that, RB ≪ (1 + β)RE:

IC ≈ IE ≈
VEE − VBE

RE

= const

CE-KVL: VCC = RCIC + VCE + REIE − VEE

VCE = VCC + VEE − IC(RC + RE) = const

Note that above formulas are the same as those of page 4-7 (with VBB → VEE and VCC →

VCC +VEE). Again, IC and VCE are independent of β and bias point is stable. Similar to the

voltage-divider case, we need to ensure that REIE ≥ 1 V to account for variations in VBE .

Since the condition for stable bias is RB ≪ (1 + β)RE , it appears that the best choice for

RB would be RB = 0, eliminating RB from the circuit altogether (connecting the BJT base

to the ground). Indeed this is the preferred method if the signal is directly coupled to the

circuit (see figure left below, when vSig = 0, the BJT base will be grounded). However,

RB is necessary if a coupling capacitor were used. At the bias condition when the coupling

capacitor is an open circuit, the BJT base would not be connected to the ground if RB did

not exist and the bias would not work. In the case of a coupling capacitor, value of RB

should be chosen as the largest possible value that would satisfy RB ≪ (1 + β)RE as RB

appears as a load for the previous stage (we will discuss this issue in depth later).
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4.3.4 MOS Fixed Bias

VDDVGG

R RDG

The fixed-bias scheme for MOS is similar to the BJT fixed bias, but

there are some differences: a) Two voltage sources are required as IG =

0; 2) RG is not necessary for biasing but is necessary when if coupling

capacitors were used (see discussion of previous page).

GS-KVL: VGS = VGG

ID = 0.5k′

n(W/L)n(VGS − Vt)
2 = 0.5k′

n(W/L)n(VGG − Vt)
2

DS-KVL: VDD = IDRD + VDS → VDS = VDD − 0.5k′

n(W/L)nRD(VGG − Vt)
2

Similar to the BJT β, both Vt and k′

n(W/L)n vary due to the manufacturing variation and

temperature. For example, as temperature is increased, both Vt and k′

n decrease: decreasing

k′

n decreases ID while decreasing Vt raises ID. The net effect (usually) is that ID decreases.

While the “thermal runaway” is not a problem in MOS, the bias point is not stable.

4.3.5 MOS Bias with Source Degeneration VDD

R2 RD

R1
RS

ID

R
D

R
S

V
DD

R
G

V
GG−

+

Similar to the BJT bias circuits, addition of a resistor RS provides the

negative feedback necessary to stabilize the bias point. If we replace

the voltage divider with its Thevenin equivalent, we get:

VGG =
R2

R1 + R2

VDD

RG = R1 ‖ R2

GS-KVL: VGG = VGS + RSID

ID = 0.5k′

n(W/L)n(VGG − Vt)
2

DS-KVL: VDD = IDRD + VDS + IDRS

If we substitute for ID from the MOS characteristics equation in GS-

KVL, we get a quadratic equation for VGS that can be solved to find

VGS (and ID). The value of VDS can then be find from DS-KVL.

The negative feedback action can be seen by noting that since VGS = VGG − RSID, any

decrease in ID would increase VGS which would result in an increase ID. Similarly, any

increase in ID would decrease VGS and decreases ID. As a result, ID will stay nearly constant

(it is not nearly constant like IE in a BJT, rather ID variations become much smaller by the

negative feedback).
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Another difference between voltage-divider bias for MOS with that of BJT is that in the case

of BJT, we have to ensure that RB ≪ (1 + β)RE for negative feedback to be effective. This

generally limits the value of R1 and R2. In a MOS, IG = 0 and no such limitation exists.

Therefore, R1 and R2 can be taken to be large (MΩ) which is important in the amplifier

response as is discussed later.
DDV

RD

RS

−VSS

R1

iD
Similar to the BJT case, two voltage sources can be used. Again, we

can eliminate RG from the circuit if the signal can be coupled directly

to the transistor.

4.3.6 Self Bias

RB

CI

RC

1I

VCC

This is another stable biasing scheme. This scheme uses Rc as the

feedback resistor. The interesting property of this biasing scheme is

that the transistor is always in active state. We write a KVL through

BE and CE terminals:

VCE = RBIB + VBE = RBIB + VD0 > VD0

Since VCE > VD0, BJT is always in the active state with iC/iB = β. Noting (by KCL) that

I1 = IC + IB:

BE-KVL: VCC = RCI1 + RBIB + VBE = RCIC + (RB + RC)
IC

β
+ VD0

IC =
VCC − VD0

RC + (RC + RB)/β

If, (RB + RC)/β ≪ RC or RB ≪ (β − 1)RC , we will have:

IC ≈
VCC − VD0

RC

and the bias point is stable as IC is independent of β.

To see the negative feedback effect, rewrite BE-KVL as:

IB =
VCC − VD0 − RCIC

RB

Suppose that the circuit is operating and BJT β is increased (e.g., an increase in the tem-

perature). In this case IC will increase which raises the voltage across resistor RC (RCIC).
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From the above equation, this will lead to a reduction in IB which, in turn, will decrease

IC = βIB and compensate for any increase in β. If BJT β is decreased (e.g., a decrease

in the temperature), IC will decrease which reduces the voltage across resistor RC (RCIC).

From the above equation, this will lead to an increase in IB which, in turn, will increase

IC = βIB and compensate for any decrease in β.

The issue with this bias scheme is that it automatically includes a feedback (i.e., a connec-

tion) between the input and output of the transistor through RB which has an important

impact on the amplifier response.

RG

GI  = 0

DI

DI

RD

VDDMOS fixed bias case is shown. Similar to the BJT case, this con-

figuration ensures that MOS is always in saturation. Since IG = 0,

VDS = VGS > VGS − Vtn. The bias parameters can be found from:

DS-KVL: VDD = IDRD + VGS

ID = 0.5k′

n(W/L)n(VGG − Vt)
2

where we have used VDS = VGS. The above two equations can be solved to find a unique set

of ID and VGS (or alternatively, for a given bias we can calculate RD).

Note that as IG = 0, value of RG does not affect the bias parameters. However, RG cannot

be removed from the circuit (i.e., replaced with a short circuit) as in this case, the gate

and drain will be directly connected to each other leading to a two-terminal element (see

Problem 23).

4.3.7 Biasing with Current Mirrors

R
E

R
B

V
CC

R
C

−VEE

I R
E

R
B

V
CC

R
C

−VEE

I

The stable biasing techniques above (emitter or source

degeneration) essentially operate the same way: They

set IE (and IC ≈ IE) in the BJT or IS = ID in MOS

independent of the transistor parameters. In principle,

the same objective can be achieved (and with a higher

accuracy) if we could bias the transistor with a current

source as is shown for a BJT. We need to bias the

transistor with two voltage sources, however.

By using a current source, no bias resistor is needed and we only need to include resistors

necessary for signal amplification. As such, biasing with a current source is the preferred

way in most integrated circuits as resistors take a lot of space on the chip compared to

transistors. Note that if we use an ideal current source, a “by-pass” capacitor is needed in

parallel to the current source. If such a capacitor were not included, the collector current
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will remain fixed at ic = I regardless of the signal. The capacitor allows the signal to by-pass

the current source. We will see that we can design circuits that act as a current source for

bias voltage but not for the signal. For these circuits, no bypass capacitor is needed. An

example of such a circuit is a current mirror.

Consider the circuit shown with two identical transistors.

Because Iref flows in Q1, it should be ON. As VCE1 =

VBE1 = VD0, Q1 has to be in the active state. Since both

bases and emitters of transistors are connected together,

KVL leads to VBE1 = VBE2. Then, BJT equations (Page 3-

3) indicate that IC1 = IC2 ≡ IC if we ignore the Early effect.

Similarly, IB1 = IB2 ≡ IB and, therefore, IE1 = IE2 ≡ IE .

Assuming that Q2 is in the active state

i E

i C

vBE1
vBE2

i C

−VEE

i E

VC2

i B i B

2i   B

_ _++
1Q

refI

Q2

Io

IB =
IC

β
, Io = IC = βIB

KCL: Iref = IC + 2IB = (β + 2)IB

Io

Iref

=
β

β + 2
=

1

1 + 2/β

For β ≫ 1, Io ≈ Iref (with an accuracy of 2/β). This circuit is called a “current mirror”

as the two transistors work in tandem to ensure that current Io remains the same as Iref

no matter what circuit is attached to the collector of Q2. As such, the circuit behaves as

a current source and can be used to bias BJT circuits, i.e., Q2 collector is attached to the

emitter circuit of the BJT amplifier to be biased.

i E

i C

vBE1
vBE2

i C

−VEE

i E

R
C

V
CC

_ _++
1Q Q2

IorefI

Note that we had assumed that Q2 is in the active state. This

requires that VCE2 = VC2 + VEE ≥ VD0 or VC2 ≥ VEE + VD0.

Value of Iref can be set in many ways. The simplest is by using

a resistor Rc as is shown. By KVL, we have:

VCC = RCIref + VBE1 − VEE

Iref =
VCC + VEE − VD0

RC

= const
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VC2

1Q Q2

Io

refI
Q3

5 V

−5 V

1k

10k2k

Example: Find the bias point of Q3 (Si BJTs with β = 100).

Q1 and Q2 from a current mirror. Therefore, Io ≈ Iref as long

as Q2 is in the active state. BE-KVL for Q1 gives Iref :

BE1-KVL: 5 = 2 × 103Iref + VBE1 + (−5)

Iref = 4.65 mA

Therefore, IE3 = Io ≈ 4.65 mA and Q3 is ON with VBE3 =

VD0 = 0.7 V. Assuming Q3 active:

IB3 = IE3/(1 + β) = 46 µA, IC3 = IE3 − IB3 = 4.60 mA

BE3-KVL: 0 = 10 × 103IB3 + VBE3 + VC2 → VC2 = −1.16 V

CE3-KVL: 5 = 103IC3 + VCE3 + VC2 = 4.6 + VCE3 − 1.16 → VCE3 = 1.56 V

As VCE3 > VD0 = 0.7 V, assumption of Q3 in active is justified. We also need to show that the

current mirror acts properly, i.e., Q2 is in active. We find VCE2 = VC2 − (−5) = 3.84 > VD0.

In the simple current mirror circuit above, Io ≈ Iref with a relative accuracy of 2/β and

Iref is constant with an accuracy of small changes in VBE1. Variations of the above simple

current mirror, such as Wilson current mirror and Widlar current mirror, have Io ≈ Iref even

with a higher accuracy and also compensate for the small changes in VBE (See Problems).

Wilson current mirror is especially popular because it replace Rc with a transistor.

The right hand part of the current mirror circuit can be duplicated such that one current

mirror circuit can bias several BJT circuits as is shown. In fact, by coupling output of two or

more of the right hand BJTs, integer multiples of Iref can be made for biasing circuits which

require a higher bias current as is shown below (left figure). Similarly, a current mirror can

be constructed with the PNP transistors (right figure below).

R
C

V
CC

−VEE

IorefI Io 2Io

2i   B

V CC

vEB1
vEB2

i C i C
VC2

+
_

+
_

1Q Q2

Io

refI
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Similar current mirror circuits can be constructed with MOSFETs. MOS allows greater

flexibility. Assume Q1 and Q2 are constructed on the same chip and close to each other such

that both have the same k′

n and Vt.
V

DD

Io
V

D2

refI

Q1 Q2

−V
  SS

From the circuit, as IG1 = 0, ID1 = Iref . Also, I0 = ID2 and

VGS2 = VGS1 ≡ VGS. Note that Q1 is always in saturation

because VDS1 = VGS1 > VGS1 − Vt. Assume Q2 in saturation:

Iref = ID1 = 0.5k′

n(W/L)1(VGS − Vt)
2

Io = ID2 = 0.5k′

n(W/L)2(VGS − Vt)
2

Io

Iref
=

(W/L)2

(W/L)1

As such, we can set Io to any desired value by controlling (W/L)2. (Note that if Q1 and Q2

were identical, Io = Iref .) For Q2 in saturation, we need:

VDS2 = VD2 − (−VSS) > VGS2 − Vt → VD2 > −VSS + VGS2 − Vt

V
DD

Io
V

D2

refI

Q1 Q2

R

−V
  SS

Similar to simple BJT current mirror, value of Iref can be set

by using a resistor R as is shown. By KVL, we have:

VDD = RIref + VGS1 − VSS

Iref = ID1 = 0.5k′

n(W/L)1(VGS1 − Vt)
2

The above equations can be solved to find VGS1 and Iref (or

alternatively, for a desired Iref one can find VGS1 and R).

Similar to a BJT current mirror, the right hand part of the current mirror circuit can be

duplicated such that one current mirror circuit can bias several MOS circuits as is shown.

MOS allows much greater flexibility as by adjusting (W/L) of each transistor, arbitrary bias

currents can be generated. Similarly, a current mirror can be constructed with the PMOS

transistors (right figure below).

V
DD

V
D2

Io2 Io3 Io4refI

Q1
Q2 Q3 Q4

  SS
−V

refI Io

V
DD

V
D2

Q1 Q2

−V
  SS
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4.4 Small Signal Model

In previous sections, we have studies three type of non-linear elements/devices: diode, BJT,

and MOS. In general a circuit containing these elements is non-linear and will have a non-

linear transfer function. For example, consider the clipper circuit below. For a diode with

VD0 = 0.7 V, we found that input voltages above 0.7 V will be clipped (see below). Figure

below shows the response of the circuit when vi = 5 cos(ωt). Obviously as output and input

waveforms have different shapes, the system response is non-linear.

vo

++

−

R

_
vi

v i v o v D 0D 0
Now, consider the same circuit with vi = 5 + 0.05 cos(ωt). For distinction, we call the

0.05 cos(ωt) part of the input voltage the signal (similar to ∆VBB signal that we applied to

a BJT in page 3-1) and the constant large 5 V the bias voltage.

Solve this circuit with our constant-voltage-drop model, we find that as vi > 0.7 = VD0 at

all times, diode is always ON and vo = VD0 = 0.7 V.

Now let’s simulate the same circuit with PSpice (1N4148 diode, R = 750 Ω, and 1 kHz).

PSpice results for this circuit is very close to what one see in the lab. The figure below shows

the simulation result with vO ≈ 0.69 V, very close to the estimate from the piecewise linear

model.
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Now, let’s zoom on the vo plot from PSpice. We see that the output waveform is actually

composed of two parts: A DC part and a sine wave (similar to the input signal): vo =

692.1 + 0.6 sin(ωt) mV. Interestingly, if we simulate the same circuit with vi = 5 V (no

signal), the output voltage would be exactly 692.1 mV.

This simulation (or experiment) indicates that when we add a small signal to the DC bias

input voltage, a similar shape signal appears at the output. Moreover, if double the signal

amplitude: vi = 5 + 0.1 cos(ωt) and run the simulation, we find the output signal amplitude

is also doubled: vo = 692.1 + 1.2 sin(ωt) mV as is shown below.
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This behavior (sine-in sine-out) and proportionality (double the input, output is doubled)

is indicative of a linear system behavior. This is surprising as diode is a non-linear element.

The reason for this behavior is that the input signal represents a small change in the input

and the output signal represents a corresponding small change in the output voltage.

This is called the small signal behavior: For small signals, non-linear circuit elements behave

as linear ones. This is the reason we can build linear circuits with diodes and transistors.

Note that for this work, the non-linear element should be always in ONE particular state

(i.e., in the above examples, diode was always ON).

This small-signal behavior can be understood by noting that any non-linear function can be

approximated in the “neighborhood” of a point by its tangent line at that particular point.

Mathematically, this approximation is based on Taylor series expansion. Consider function

f(x). Suppose we know the value of the function and all of its derivative at some known

point X0. Then, the value of the function in the “neighborhood” of X0 can be found from

the Taylor Series expansion as:

f(X0 + ∆x) = f(X0) + ∆x
df

dx

∣

∣

∣

∣

∣

x=X0

+
(∆x)2

2!

d2f

dx2

∣

∣

∣

∣

∣

x=X0

+ ...

If ∆x is small (i.e., close to our original point of X0), the high order terms of this expansion

(terms with (∆x)n, n = 2, 3, ...) usually become very small:

f(X0 + ∆x) ≈ f(X0) + ∆x
df

dx

∣

∣

∣

∣

∣

x=X0

As can be seen, the value of the function at a point close to X0 is approximated by the

tangent line to f(x) at X0. Let’s apply this approximation to a diode.
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4.4.1 Diode Small Signal Model

Consider the diode iv characteristics equation in which

the diode current is a function of its voltage, iD(vD) [sim-

ilar to f(x)] and we apply vD = VD + vd to the diode

with vd being a small signal, VD the “large” bias voltage

and vD the total voltage across the diode (here, the DC

voltage VD is X0 and the small signal vd is ∆x). Then,

following Taylor series expansion, we get:

iD(VD + vd) ≈ iD(VD) + vd ×
diD
dvD

∣

∣

∣

∣

∣

vD=VD

= ID + vd ×
diD
dvD

∣

∣

∣

∣

∣

vD=VD

Where we have defined the bias current, ID ≡ iD(VD) (i.e., when the signal is zero). Then,

id = iD − ID is the response of the diode to the signal vd:

iD(VD + vd) = ID + id ≈ ID + vd ×
diD
dvD

∣

∣

∣

∣

∣

vD=VD

→ id = vd ×
diD
dvD

∣

∣

∣

∣

∣

vD=VD

We see that the diode response (id) to a small signal vd is linear. Moreover the response of

the diode to a small signal is like a resistor (id = vd/rd) with

rd ≡ (diD/dvD|vD=VD
)−1

Note that rd is inverse of the slope of a line tangent to iDvD characteristics of the diode at

the bias point, i.e., we are approximating the diode characteristic plot with a line tangent

to its bias point as is shown in the above figure.

Value of rd can be found from the full expression for the diode current:

iD = Ise
vD/nVT →

diD
dvD

=
1

nVT

× Ise
vD/nVT

diD
dvD

∣

∣

∣

∣

∣

vD=VD

=
1

nVT

× Ise
VD/nVT =

ID

nVT

rd =
nVT

ID
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where we have used the fact that ID = iD(VD) = Is exp(VD/nVT ). Note that the value of rd

depends on the value of bias current, ID, and rd changes with temperature (through VT ).

It is essential to remember that the small signal model applies only to the response of the

diode to small signals, i.e., the circuit solution should be divided into two parts,

1) Bias Analysis (zero signal) where we should use a large-signal model (e.g., constant-voltage

drop model) to find bias voltages and currents (ID for example),

2) Small-Signal Analysis (zero out the bias values and use the small signal model of the

diode, i.e., rd resistor) to compute the small-signal response.

If needed, the total response of the circuit then is the sum of Bias and Small-Signal responses.

vo

++

−

R

_
vi

Let’s analyze the circuit that we had simulated with PSpice

before (1N4148 diode, R = 750 Ω, and 1 kHz) with vi = 5 +

0.05 cos(ωt) mV. by KVL:

vi = iDR + vD

vo−
+

++

−

R

_
vi

0.7

To find the bias point, we set the signal to be zero (vi = 5 V).

Using the large signal constant voltage drop model, it is easy to

show that the diode will be ON and VD = 0.7 V. The diode bias

current is

5 = 750ID + 0.7 → ID = 5.73 mA

vord

++

−

R

_
vi

We now compute the response to the small signal. In this case,

we need to zero out that the bias voltage (vi = 0.05 sin(ωt) V)

and use the diode small-signal model. We first compute the

value of rd from the bias current (n = 2 for discrete Si diodes):

rd =
nVT

ID
=

2 × 25 × 10−3

5.73 × 10−3
= 8.73 Ω

vd =
rd

rD + R
× 0.05 sin(ωt) = 0.58 sin(ωt) mV

Therefore, vo = vD = VD + vd = 700 + 0.58 sin(ωt) mV which is very close to simulation

results of vo = 692 + 0.6 sin(ωt) mV.

Similarly, we can find the response to the PSpice simulation with vi = 5 + 0.1 cos(ωt)

to be vo = 700 + 1.16 sin(ωt) mV which is again close to our simulation results of vo =

692 + 1.2 sin(ωt) mV.
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VC
RC

C1

RL
vo−

+ vi

C2R

−

+

+

−

VC
RC

RL
vo

R

−

+

+

−

RC

C1

rd RL−
+

v i vo

C2R

−

+

Example: Voltage-controlled Attenuator

In this circuit, vi is a small signal sine wave, VC is a

DC source which biases the diode (and its value can be

changed). Capacitors are large (i.e., their impedance is

small at the frequency of the signal).

Bias: We zero the signal (vi become a short circuit).

Because the voltage source, VC , is a DC source, capacitors

become open circuits (See circuit). Then,

ID =
VC − V D0

RC

Because of C2, no voltage appears at vo.

Small Signal Analysis: Setting bias voltage, VC to zero

will make VC source to be grounded. We replace the

diode with its small-signal model, rd. We note that RC ,

rd, and RL are in parallel (Caps are both short circuit).

The, defining Rp = RC ‖ rd ‖ RL, we get:

vo

vi
=

Rp

Rp + R

For rD ≪ RC and rD ≪ RL, Rp ≈ rd and

vo

vi
=

rd

rd + R

rd =
nVT

ID
=

nVT RC

VC − VD0

Thus, if VC increases, it will decrease rd and decrease vo for a given vi. Alternatively, reducing

VC , increases rd and vo.

An application of this circuit is in a speakerphone. A frequent problem is that some speakers

speak quietly (or are far from the microphone) and some speak loudly (or are close). If vi is

the output of the microphone and vo is attached to a high-gain amplifier and phone system,

control voltage can compensate for changes in vi (VC , for example, can be the output of a

peak detector circuit with vi as the input, large vi makes VC larger and decreases vo/vi in

the voltage-controlled attenuator).
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4.4.2 MOS Small Signal Model

We can develop similar small-signal models for transistors. Let’s first take the simpler case

of a MOS. We assume that MOS is always in the saturation state. As we discussed before,

each transistor has 4 independent parameters, two currents (iG and iD for MOS) and two

voltages (vGS and vDS for NMOS). The iv characteristics equations gives the value of the

two currents in terms of the two voltages. For NMOS, we have

iG(vGS, vDS) = 0

iD(vGS, vDS) = 0.5k′

n(W/L)n(vGS − Vtn)2(1 + λvDS)

Let’s assume MOS bias point parameters are ID, VGS and VDS (note IG = 0). If we apply a

small signal to the transistor, MOS current and voltages are modified according to:

iD = ID + id vGS = VGS + vgs vDS = VDS + vds

where id, vds, and vgs are signal related quantities.

We will now follow a procedure similar to the diode small signal model, i.e., use a Tyler series

expansion. The only difference for a transistor is that iD is a function of TWO variables. In

this case, we should use Taylor series expansion around a point (X0 and Y0). Keeping only

first order terms:

f(X0 + ∆x, Y0 + ∆y) ≈ f(X0, Y0) + ∆x
∂f

∂x

∣

∣

∣

∣

∣

X0,Y0

+ ∆y
∂f

∂y

∣

∣

∣

∣

∣

X0,Y0

For MOS, iD(vGS, vDS), i.e., iD is a function of vGS and vDS (similar to f(x, y)). Thus,

iD(VGS + vgs, VDS + vds) = iD(VGS, VDS) +
∂iD
∂vGS

∣

∣

∣

∣

∣

Q

vgs +
∂iD
∂vDS

∣

∣

∣

∣

∣

Q

vds

Since iG(VGS + vgs, VDS + vds) = IG + ig and iD(VGS + vgs, VDS + vds) = ID + id, we find the

signal components to be:

ig = 0 and id =
∂iD
∂vGS

∣

∣

∣

∣

∣

Q

vgs +
∂iD
∂vDS

∣

∣

∣

∣

∣

Q

vds

Defining

gm ≡
∂iD
∂vGS

∣

∣

∣

∣

∣

Q

= 2 × 0.5k′

n(W/L)n(vGS − Vtn) (1 + λvDS)|Q

gm =
2

VGS − Vtn
×
[

0.5k′

n(W/L)n(VGS − Vtn)2(1 + λVDS)
]

=
2ID

VGS − Vtn
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and

1

ro
≡

∂iD
∂vDS

∣

∣

∣

∣

∣

Q

= λ × [0.5k′

n(W/L)n] (vGS − Vtn)2

∣

∣

∣

Q

1

ro

=
λID

1 + λVDS

→ ro =
VA + VDS

ID

≈
VA

ID

where VA = 1/λ. Substituting gm and ro in the MOS small signal equations we get:

ig = 0 and id = gmvgs +
vds

ro

It is useful to relate the above equations to circuit elements so that we can solve MOS circuits

with circuit-analysis tools. The first equation ig = 0 indicates that there is an “open circuit”

between gate and source terminals. As id = is, the second equation applies between drain

and source terminals. Furthermore, this equation is like a KCL: current id is divided into

two parts. The first term, gmvgs, is a voltage-controlled current source (as its value does

not depend on vds). The second term, vds/ro is the Ohm’s law for a resistor ro. Thus, the

small-signal model for a NMOS is:

vgs

mg vgs

ro

S

G

_

+

D

gm =
2ID

VGS − Vtn

ro =
VA + VDS

ID
≈

VA

ID

Similarly, we can derive a small-signal model for a PMOS. The small-signal model for a

PMOS looks exactly like an NMOS (we do NOT need to replace vgs with vsg) with

gm =
2ID

VSG − |Vtp|

ro =
VA + VSD

ID
≈

VA

ID

We will use this MOS small-signal model to analysis MOS amplifiers in the next section.
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4.4.3 BJT Small Signal Model

The small-signal model for BJT can be similarly constructed. The BJT iv characteristics

equations gives values of iB and iC in terms of vBE and vCE : For NPN transistors:

iB =
IS

β
evBE/nVT

iC = ISevBE/nVT

(

1 +
vCE

VA

)

Let’s assume that BJT is biased to be in active state and the bias point parameters are IB,

IC , VCE and VBE . If we apply a small signal to the BJT, transistor currents and voltages

are modified according to:

iB = IB + ib iC = IC + ic vBE = VBE + vbe vCE = VCE + vce

where ib, ic, vbe, and vce are signal related quantities. The, using Taylor series expansion

(note iB(vBE) while iC(vBE , vCE):

iB(VBE + vbe) = iB(VBE) +
diB

dvBE

∣

∣

∣

∣

∣

Q

vbe

iC(VBE + vbe, VCE + vce) = iC(VBE , VCE) +
∂iC

∂vBE

∣

∣

∣

∣

∣

Q

vbe +
∂iC

∂vCE

∣

∣

∣

∣

∣

Q

vce

Since iB(VBE) = IB and iB(VBE + vbe) = IB + ib, we get

ib =
diB

dvBE

∣

∣

∣

∣

∣

Q

vbe ≡
vbe

rπ

1

rπ

≡
diB

dvBE

∣

∣

∣

∣

∣

Q

=
1

nVT

×
IS

β
eVBE/nVT =

IB

nVT

→ rπ =
nVT

IB

Similarly, since iC(VBE , VCE) = IC and iC(VBE + vbe, VCE + vce) = IC + ic, we get

ic =
∂iC

∂vBE

∣

∣

∣

∣

∣

Q

vbe +
∂iC

∂vCE

∣

∣

∣

∣

∣

Q

vce ≡ gmvbe +
vce

ro

gm ≡
∂iC

∂vBE

∣

∣

∣

∣

∣

Q

=
1

nVT
× IS eVBE/nVT

(

1 +
VCE

VA

)

=
IC

nVT

1

ro
≡

∂iC
∂vCE

∣

∣

∣

∣

∣

Q

=
1

VA
× IS eVBE/nVT =

IC

VA(1 + VCE/VA)
=

IC

VA + VCE
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Thus, response of BJT to small signals can be written as (setting vbe = vπ):

ib =
vbe

rπ
and ic = gmvbe + vce/ro

Similar to MOS, we relate the above equation to circuit elements to derive a small-signal

circuit model for the BJT. The first equation is the statement of Ohm’s law between base

and emitter terminals (resistor rπ between B and E). The right equation is a KCL with a

voltage-controlled current source and a resistor (similar to NMOS model).

vπmg

vπ

E

CB

−

+
πr ro

rπ =
nVT

IB

gm =
IC

nVT

ro =
VA + VCE

IC

Similarly, we can derive a small-signal model for a PNP which looks exactly like a NPN with

ro = (VA + VEC)/IC . Typically, VCE/VA ≪ 1. In this case, IC ≈ βIB and

rπ =
nVT

IB

gm =
IC

nVT
=

IC

IB
×

IB

nVT
≈

β

rπ

ro =
VA(1 + VCE/VA)

IC
≈

VA

IC

B i π C

π

E

πr ro

β i

(above formulas are correct for both NPN and PNP transistors).

Since gmvπ = β(vπ/rπ) = βiπ, an alternative model for BJT

can be developed using a current-controlled current source as is

shown.

We will use BJT small-signal models to analysis BJT amplifiers

in the next section.
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4.5 Exercise Problems

Problem 1. Find the bias point of the transistor (Si BJT with β = 100 and VA → ∞).

Problem 2. Find parameters and state of transistor of problem 1 if β = 200.

Problems 3-6. Find the bias point of the transistor (Si BJTs with β = 200 and VA → ∞).

Problems 7-8. Find the bias point of the transistor (Si BJTs with β = 100 and VA → ∞).

Problem 9. In the circuit below with a SI BJT (VA → ∞), we have measured VE = 1.2 V.

Find BJT β and VCE.

30k

20k

2.5 V

500

15 V

50k

100k
5k

3k

v
o

v
i

0.47   Fµ

18k

22k 1k

9 V

v
i

v
o

47   Fµ

µ4.7   F

270

240

15 V

34 k 1 k

5.9 k

Problem 1 Problem 3 Problem 4 Problem 5

vo

vi

16 V

1.5k

6.2k

510nF

30k

510

500

2.5 V

Q2

Q1

32k

18k

−3V

2.3k

2.3k

3V

V E

30k

5V

5V−

5k

5k

Problem 6 Problem 7 Problem 8 Problem 9

Problem 10. Find VE and VC (SI BJT with β → ∞ and VA → ∞).

Problem 11. Find R such that VDS = 0.8 V (k′

n(W/L) = 1.6 mA/V2, Vtn = 0.5 V, and

λ = 0).

Problem 12. Find the bias point of the transistor below (k′

p(W/L) = 1 mA/V2, Vtp = −1 V,

and λ = 0.

Problem 13. Find VD and VS (k′

n(W/L) = 1 mA/V2, Vtn = 2 V, and λ = 0).
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V E

V C

3V

1.6k

22k
1mA

R

1.8 V

10 V

10M 6k

10M 6k

V D

V S

2mA

4k

10V

−10V

Problem 10 Problem 11 Problem 12 Problem 13

Problem 14. Find the bias point of the transistor (Vtn = 1 V, k′

n(W/L) = 0.5 mA/V2,

λ = 0, and large capacitors).

Problem 15. Find the bias point of the transistor (Vtn = 3 V, k′

n(W/L) = 0.4 mA/V2,

λ = 0 and large capacitors).

Problem 16. Find the bias point of the transistor (Vtp = −4 V, k′

p(W/L) = 0.4 mA/V2,

λ = 0 and large capacitors).

Problem 17. Find the bias point of the transistor Vtn = 0.5 V, (k′

n(W/L) = 1.6 mA/V2,

and λ = 0).

vi

vo

Cc

1k

110k 2k

51k

12 V

vi

vo

Cc

Cb1M

1k1M

1k

20 V

vo

vi

Cc

500k

1.3M

18 V

10k

1.8 V

−1.8 V

1k

1k

Problem 14 Problem 15 Problem 16 Problem 17

Problem 18 to 20. Compute Io assuming identical transistors.

I ref

I o

Q1 Q2

Q3

V CC

−VEE

I ref
I o

Q1 Q2

Q3

−VEE

I ref
I o

Q1 Q2

Q3

−VSS

Problem 18 Problem 19 Problem 20
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Problem 21-22. Assume that the diode is forward biased (bias circuit is NOT shown).

Replace the diode with its small signal model and find the Thevenin Equivalent resistance

between the indicated terminal and the ground in terms of rd.

Problem 23-24. This configuration is called a diode-connected transistor, making the MOS

into a two terminal device. A) Show that MOS will be always in saturation if iD > 0, B)

Replace the MOS with its small signal model and show that for small signal, the diode-

connected transistor reduces to a resistor.

Problem 25-26. Assume that the MOS is biased and is in saturation (bias circuit is NOT

shown). Replace the MOS with its small signal model (and zero out Bias voltage VG) and

find the Thevenin Equivalent resistance between the indicated terminal and the ground in

terms of gm and ro.

R1

R
D1

R1

R
D1

D2 RT RT
VG

RT

Problem 21 Problem 22 Problem 23 Problem 24 Problem 25

Problem 27-28. This is the BJT version of the diode-connected transistor, making the BJT

into a two-terminal device. A) Show that BJT will be always in active if iC > 0, B) Replace

the BJT with its small signal model and show that for small signal, the diode-connected

transistor reduces to a resistor.

Problem 29-30. Assume that the BJT is biased and is in active (bias circuit is NOT

shown). Replace the BJT with its small signal model and find the Thevenin Equivalent

resistance between the indicated terminal and the ground in terms of gm and ro.

VG

R1

RT

RT RT
RB

RT

RB

RT

R

Problem 26 Problem 27 Problem 28 Problem 29 Problem 30
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4.6 Solution to Selected Exercise Problems

Problem 1. Find the bias point of the transistor (Si BJT with β = 100 and VA → ∞).

30k

20k

2.5 V

500

500

12k

1.5 V

2.5 V

This is a fixed bias scheme (because there is no RE) with a voltage divider

providing VBB (It is unstable to temperature changes, see problem 2).

Assuming BJT (PNP) in the active state and replacing R2/R1 voltage

divider with its Thevenin equivalent:

RB = 30 k ‖ 20 k = 12 k, VBB =
30

30 + 20
× 2.5 = 1.5 V

EB-KVL: 2.5 = VEB + 12 × 103IB + 1.5

IB = (2.5 − 1.5 − 0.7)/(12 × 103) = 25 µA

IC = βIB = 2.5 mA

EC-KVL: 2.5 = VEC + 500IC

VEC = 2.5 − 500 × 2.5 × 10−3 = 1.25 V

Since VEC ≥ 0.7 V and IC > 0, assumption of BJT in active is justified.

Bias Summary: VEC = 1.25 V, IC = 2.5 mA, and IB = 25 µA.

Problem 4. Find the bias point (Si BJT with β = 200 and VA → ∞).

v
o

v
i

0.47   Fµ

18k

22k 1k

9 V

VBB

RB

1k

9V

Assume BJT (NPN) in active. Replace R1/R2 voltage divider

with its Thevenin equivalent (note capacitors are open):

RB = 18 k ‖ 22 k = 9.9 k, VBB =
22

18 + 22
× 9 = 4.95 V

BE-KVL: VBB = RBIB + VBE + 103IE IB =
IE

1 + β
=

IE

201

4.95 − 0.7 = IE

(

9.9 × 103

201
+ 103

)

IE = 4 mA ≈ IC , IB =
IC

β
= 20 µA

CE-KVL: VCC = VCE + 103IE

VCE = 9 − 103 × 4 × 10−3 = 5 V

Since VCE ≥ 0.7 V and IC > 0, assumption of BJT in active is justified.

Bias Summary: VCE = 5 V, IC = 4 mA, and IB = 20 µA.
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Problem 5. Find the bias point (Si BJT with β = 200 and VA → ∞).

v
i

v
o

47   Fµ

µ4.7   F

270

240

15 V

34 k 1 k

5.9 k

VBB

RB

270 + 240

15V

1k

= 510

Assume BJT (NPN) is in active. Replace R1/R2 voltage divider

with its Thevenin equivalent. Since capacitors are open, the

emitter resistance for bias is 270 + 240 = 510 Ω.

RB = 5.9 k ‖ 34 k = 5.0 k, VBB =
5.9

5.9 + 34
15 = 2.22 V

BE-KVL: VBB = RBIB + VBE + 510IE IB =
IE

1 + β
=

IE

201

2.22 − 0.7 = IE

(

5.0 × 103

201
+ 510

)

IE = 3 mA ≈ IC , IB =
IC

β
= 15 µA

CE-KVL: VCC = 1000IC + VCE + 510IE

VCE = 15 − 1, 510 × 3 × 10−3 = 10.5 V

Since VCE ≥ 0.7 V and IC > 0, assumption of BJT in active is justified.

Bias Summary: VCE = 10.5 V, IC = 3 mA, and IB = 15 µA.

Problem 6. Find the bias point (Si BJT with β = 200 and VA → ∞).

vo

vi

16 V

1.5k

6.2k

510nF

30k

510

V CC V
D0

6.2k

30k

−

+

−

+

VBB

RB

510

1.5k

16V

Assuming that the BJT is in the active state, the base voltage has to be large enough to

forward bias the BE junction and, therefore, the diode would also be forward biased. We

can find the Thevenin equivalent of the voltage divider part by noting (see circuit above:)

VBB = Voc =
6.2

30 + 6.2
(VCC − VD0) + VD0 = 2.74 + 0.83VD0 (V)

RB = RT = 30 k ‖ 6.2 k = 5.14 k
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BE-KVL: VBB = RBIB + VBE + 510IE

2.74 + 0.83VD0 = 5.14 × 103
IE

201
+ VD0 + 510IE

IE =
2.74 − 0.17VD0

536
= 4.9 mA ≈ IC , IB =

IC

β
= 24 µA

CE-KVL: VCC = 1, 500IC + VCE + 510IE

VCE = 16 − 2, 010 × 4.9 × 10−3 = 6.15 V

Since VCE ≥ 0.7 V and IC > 0, assumption of BJT in active is justified. Note that the

dependence of IE to VD0 is reduced by a factor of 6 ı.e., IE now scales as 2.74 − 0.17VD0

instead of 2.74− VD0 (the case with no diode). As such, changes in VD0 due to temperature

has a much smaller impact on this circuit (and REIE ≥ 1 V condition can be relaxed.)

Bias Summary: VCE = 6.15 V, IC = 4.9 mA, and IB = 24 µA.

Problem 7. Find the bias point (Si BJTs with β = 100 and VA → ∞).

500

2.5 V

Q2

Q1

32k

18k

500

Q2

Q1

2.5 V

1.6 V

11.5k

Assume Q1 in active. Replace R1/R2 voltage divider with its Thevenin

equivalent:

RB = 18 k ‖ 32 k = 11.5 k, VBB =
32

32 + 18
× 2.5 = 1.6 V

BE-KVL: VBB = RBIB1 + VBE1 + VBE2

IB1 =
1.6 − 1.4

11.5 × 103
= 17.4 µA

IC1 = βIB1 = 1.74 mA,

IE1 = (β + 1)IB1 = 1.76 mA

CE-KVL: 2.5 = 500IC1 + VCE1 + VBE2

VCE1 = 2.5 − 500 × 1.74 × 10−3 − 0.7 = 0.93 V

Since VCE1 ≥ 0.7 V and IB1 > 0, assumption of Q1 active is justified. For Q2, we note

that VCE2 = VBE2 = 0.7 V and IE2 = IE1 = 1.76 mA. So, Q2 should be in active and

IB2 = IE2/(1 + β) = 17.4 µA and IC2 = 1.74 mA.

Bias Summary: VCE1 = 0.93 V, IC1 = 1.74 mA, and IB1 = 17.4 µA.
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Problem 8. Find the bias point of the transistor (Si BJT with β = 100 and VA → ∞).

−3V

2.3k

2.3k

3V
Assume BJT (PNP) in active.

EB-KVL: 3 = 2.3 × 103IE + VEB

IE = (3 − 0.7)/(2.3 × 103) = 1 mA

IB = IE/(β + 1) = 10 µA

IC = βIB = 0.99 mA

EC-KVL: 3 = 2.3 × 103IE + VEC + 2.3 × 103IC − 3

VEC = 2.4 V

Since VEC ≥ 0.7 V and IC > 0, assumption of BJT in active is justified.

Bias Summary: VEC = 2.4 V, IC = 1 mA, and IB = 10 µA.

Problem 9. In the circuit below with a SI BJT (VA → ∞), we have measured VE = 1.2 V.

Find BJT β and VCE.

V E

30k

5V

5V−

5k

5k

Assume BJT (PNP) in active:

Ohm Law: 5 × 103IE = 5 − VE = 3.8 → IE = 0.76 mA

EB-KVL: VE = VEB + 30 × 103IB

IB = (1.2 − 0.7)/(30 × 103) = 16.7 µA

IC = IE − IB = 0.74 mA

β =
IC

IB

=
0.74 × 10−3

16.7 × 10−6
≈ 47

EC-KVL: VE = VEC + 5 × 103IC − 5

1.2 = VEC + 5 × 103 × 0.74 × 10−3 − 5 → VEC = 2.4 V

Since VEC ≥ 0.7 V and IC > 0, assumption of BJT in active is justified.
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Problem 10. Find VE and VC (SI BJT with β → ∞ and VA → ∞).

V E

V C

3V

1.6k

22k
1mA

Assume Q1 in active. Since β → ∞, then IB → 0 (this does not

mean that BJT is in cut-off, rather IB is so small that it can be

ignored in calculations).:

IE = 1 mA IC = IE − IB = 1 mA

BE-KVL 0 = 22 × 103IB + VBE + VE → VE = −0.7 V

KVL 3 = 1.6 × 103IC + VC → VC = 1.4 V

and VCE = VC − VE = 1.4 − (−0.7) = 2.1 V. Since VCE > 0.7 V and IE > 0, assumption of

BJT in active is justified.

Bias Summary: IC = 1 mA and VCE = 2.1 V.

Problem 14. Find the bias point of the transistor (Vtn = 1 V, k′

n(W/L) = 0.5 mA/V2,

λ = 0, and large capacitors).

vi

vo

Cc

1k

110k 2k

51k

12 V

1k

2k

12 V

34.8k

3.8 V

Replacing R1/R2 voltage divider with its Thevenin equivalent, we get:

RG = 51 k ‖ 110 k = 34.8 k, VGG =
51

51 + 110
× 12 = 3.80 V

Assume NMOS is in the active state,

ID = 0.5k′

n(W/L)(VGS − Vtn)2 = 0.5 × 0.5 × 10−3(VGS − 1)2

GS-KVL: 3.8 = 34.8 × 103IG + VGS + 1, 000ID = VGS + 1, 000ID

Substituting for ID in GS-KVL, we get:

3.8 = VGS + 0.25(VGS − 1)2 → 0.25V 2

GS + 0.5VGS − 3.55 = 0

Two roots: 2.9 and −4.9. As the negative root is unphysical, VGS = 2.9. Then,

GS-KVL: 3.8 = VGS + 1, 000ID → ID = 0.9 mA

DS-KVL: 12 = 2, 000ID + VDS + 1, 000ID = VDS + 2.7 → VDS = 9.3 V

As VDS = 9.3 > VGS − Vtn = 2.9 − 1 = 1.95, our assumption of NMOS in active is correct.

Bias Summary: VGS = 2.9 V, VDS = 9.3 V, and ID = 0.9 mA.
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Problem 15. Find the bias point of the transistor (Vtn = 3 V, k′

n(W/L) = 0.4 mA/V2,

λ = 0 and large capacitors).

vi

vo

Cc

Cb1M

1k1M

1k

20 V

1k

1k

500k

10 V

20 V

Replacing R1/R2 voltage divider with its Thevenin equivalent, we get:

RG = 1 M ‖ 1 M = 500 k, VGG =
1

1 + 1
× 20 = 10 V

Assume NMOS is in the active state,

ID = 0.5k′

n(W/L)(VGS − Vtn)2 = 0.5 × 0.4 × 10−3(VGS − 3)2

GS-KVL: 10 = VGS + 103ID

Substituting for ID in GS-KVL, we get:

10 = VGS + 0.2(VGS − 3)2 → V 2

GS − VGS − 41 = 0

Two roots: 6.92 and −5.92. As the negative root is unphysical, VGS = 6.92.

GS-KVL: 10 = 6.92 + 103ID → ID = 3.08 mA

DS-KVL: 20 = 103ID + VDS + 103ID → VDS = 20 − 2 × 103 × 3.08 × 10−3 = 13.8 V

Since VDS = 13.8 ≥ VGS −Vtn = 6.92− 3 = 3.92 V, our assumption of NMOS in active state

is justified.

Bias summary: VGS = 6.92 V, VDS = 13.8 V, and ID = 3.08 mA
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Problem 16. Find the bias point of the transistor (k′

p(W/L) = 0.4 mA/V2, Vtp = −4 V,

and λ = 0 and large capacitors).

vo

vi

Cc

500k

1.3M

18 V

10k

361k

13 V

18 V

10k

Replacing R1/R2 voltage divider with its Thevenin equivalent, we get:

RG = 1.3 M ‖ 500 k = 361 k, VGG =
1.3

1.3 + 0.5
× 18 = 13 V

Assume PMOS is in the active state,

ID = 0.5k′

n(W/L)(VSG − |Vtp|)
2 = 0.5 × 0.4 × 10−3(VGS − 4)2

SG-KVL: 13 = VSG + 104ID

Substituting for ID in SG-KVL, we get:

13 = VSG + 2(VSG − 4)2 → 2V 2

SG − 15VSG + 19 = 0

Two roots: −5.9 and −1.6. Since VSG = 1.6 < |Vtp| = 4 V required for NMOS to be ON,

this root is unphysical. So, VSG = 5.9 V.

SG-KVL: 13 = VSG + 104ID = 5.9 + 104ID → ID = 0.71 mA

SD-KVL: 18 = VSD + 104ID → VSD = 18 − 104 × 0.71 × 10−3 = 10.9 V

Since VSD = 10.9 ≥ VSG − |Vtp| = 5.9 − 4 = 1.9 V, our assumption of PMOS in active is

justified.

Bias summary: VSG = 5.9 V, VSD = 10.9 V, and ID = 0.71 mA
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Problem 18. Compute Io assuming identical transistors.

i C i C

i B i B

i B3

2iB

I ref

I o

Q1 Q2

Q3

V

−V

CC

EE

Because both bases and emitters of the transistors Q1 and Q2

are connected together, KVL leads to vBE1 = vBE2. As BJT’s

are identical, they should have similar iB (iB1 = iB2 = iB)

and, therefore, similar iE = iE1 = iE2 and iC = iC1 = iC2.

Using iC = βiB and iE = (β + 1)iB to illustrate the impact

of β:

iB =
iE

β + 1
Io = iC =

βiE
β + 1

KCL: iE3 = 2iB =
2iE

β + 1

iB3 =
iE3

β + 1
=

2iE
(β + 1)2

KCL: Iref = iC + iB3 =
βiE

β + 1
+

2iE
(β + 1)2

Io

Iref
=

β

β + 2/(β + 1)
=

1

1 + 2/β(β + 1)
≈

1

1 + 2/β2

As can be seen, this is a better current mirror than our simple version as Io ≈ Iref with an

accuracy of 2/β2. Similar to our simple current-mirror circuit, Iref can be set by using a

resistor Rc.
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Problem 19. Compute Io assuming identical transistors.

i C

i E3i C

i B i B

2iB

i B3

I ref
I o

Q1 Q2

Q3

−VEE

Because both bases and emitters of the transistors Q1 and Q2

are connected together, KVL leads to vBE1 = vBE2. As BJT’s

are identical, they should have similar iB (iB1 = iB2 = iB)

and, therefore, similar iE = iE1 = iE2 and iC = iC1 = iC2.

Using iC = βiB and iE = (β + 1)iB to illustrate the impact

of β:

iB =
iE

β + 1

KCL: iE3 = 2iB + ic =
2iE

β + 1
+

βiE
β + 1

=
β + 2

β + 1
iE

iB3 =
iE3

β + 1
=

β + 2

(β + 1)2
iE

KCL: Iref = iC + iB3 =
βiE

β + 1
+

β + 2

(β + 1)2
iE =

β(β + 1) + β + 2

(β + 1)2
iE

Io = iC3 =
β

β + 1
iE3 =

β(β + 2)

(β + 1)2
iE

Io

Iref

=
β(β + 2)

β(β + 1) + β + 2
=

β(β + 2)

β(β + 2) + 2
==

1

1 +
2

β(β + 2)

≈
1

1 + 2/β2

This circuit is called the Wilson current mirror after its inventor. It has a reduced β depen-

dence compared to our simple current mirror and has a greater output impedance compared

to the current mirror of problem 2.

Problem 20. Compute Io assuming identical transistors.

I ref
I o

Q1 Q2

Q3

−VSS

This is the MOS version of the Wilson current mirror. Solu-

tion is similar to those of Problems 18 and 19. The advantage

of this current mirror over the simple current mirror of Prob-

lem 18 is its much larger output resistance.
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Problem 21. Assume that the diode is forward biased (bias circuit is NOT shown). Replace

the diode with its small signal model and find the Thevenin Equivalent resistance between

the indicated terminal and the ground in terms of rd.

R1

R
D1 rd1RT

R=⇒ =⇒ RT = rd1 + R

Problem 23. This configuration is called a diode-connected transistor, making the MOS

into a two terminal device. A) Show that MOS will be always in saturation if iD > 0, B)

Replace the MOS with its small signal model and show that for small signal, the diode-

connected transistor reduces to a resistor.

RT
vgs

mg vgs

ro

vx

i xG

_

+

D

S

−
+RT

A) Since vDS = vGS > vGS − Vtn, NMOS will be in saturation if iD > 0.

B) The figure to the right above is the small-signal equivalent of the diode-connected NMOS.

Calculation of RT is not straight-forward because of the controlled current source. We need

to attach a voltages source vx to the circuit, calculate ix with RT ix = vx.

From the circuit vgs = vx, noting ix = (1/RT )vx,

KCL at D: ix =
vx

ro
+ gmvgs = vx

(

1

ro
+ gm

)

1

RT
=

1

ro
+

1

1/gm
→ RT = ro ‖ (1/gm)

Problem 24. This configuration is called a diode-connected transistor, making the MOS

in to a two terminal device. A) Show that MOS will be always in saturation if iD > 0,

B) Replace the MOS with its small signal model and show that for small signal, the diode-

connected transistor reduces to a resistor.

A) Since vSD = vSG > vSG − |Vtp|, PMOS will be in saturation if iD > 0.

B) Since the small signal model of PMOS and NMOS are identical, result of problem 23

applies here, i.e., RT = ro ‖ (1/gm).
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Problem 25. Assume that the MOS is biased and is in saturation (bias circuit is NOT

shown). Replace the MOS with its small signal model (and zero out Bias voltage VG) and

find the Thevenin Equivalent resistance between the indicated terminal and the ground in

terms of gm and ro.

VG

RT

vgs

mg vgs

ro

G

_

+

D

S

RT RT

The figure to the right above is the small-signal equivalent of the circuit. Note that since

bias voltage VG is “zeroed,” the gate is now connected to the ground making vgs = 0. In this

case, the controlled current source becomes an open circuit and RT = ro.

Problem 26. Assume that the MOS is biased and is in saturation (bias circuit is NOT

shown). Replace the MOS with its small signal model (and zero out Bias voltage VG) and

find the Thevenin Equivalent resistance between the indicated terminal and the ground in

terms of gm and ro.

VG

R1

RT

vgs

mg vgs

ro

vx

i x

vs

i x

G

_

+

D

S

−
+

RT

R

The figure below is the small-signal equivalent of

the circuit. Note that since bias voltage VG is

“zeroed,” the gate is now connected to the ground

(note vgs 6= 0). Because of the controlled current

source, we need to attach a voltages source vx to

the circuit, calculate ix with RT ix = vx. Note that

by KCL, current ix has to flow in the resistor R:

Ohm Law: vs = ixR

vgs = vg − vs = −Rix

KCL at D: ix =
vx − vs

ro
+ gmvgs

ixro = vx − (ixR) + rogm(−Rix)

ix(ro + R + gmroR) = vx → RT = ro + R + gmroR
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Problem 27. This is the BJT version of the diode-connected transistor, making the BJT

into a two-terminal device. A) Show that BJT will be always in active if iC > 0, B) Replace

the BJT with its small signal model and show that for small signal, the diode-connected

transistor reduces to a resistor.

RT

vπmg

vπ

vx

i xC

−

+

B

E

πr ro
RT

−
+

A) Since vCE = vBE = VD0, BJT will be in active if iC > 0.

B) The figure to the right above is the small-signal equivalent of the diode-connected BJT.

Because of the controlled current source, we need to attach a voltages source vx to the circuit,

calculate ix with RT ix = vx.

From the circuit vπ = vx, noting ix = (1/RT )vx,

KCL: ix =
vx

ro
+ gmvπ +

vx

rπ
= vx

(

1

ro
+ gm +

1

rπ

)

1

RT
=

1

ro
+

1

1/gm
+

1

rπ
→ RT = ro ‖ rπ ‖ (1/gm)

Problem 29. Assume that the BJT is biased and is in active (bias circuit is NOT shown).

Replace the BJT with its small signal model and find the Thevenin Equivalent resistance

between the indicated terminal and the ground in terms of gm and ro.

RB

RT
vπmg

vπ

C

−

+

B

E

πr ro
RT

RB

The figure to the right above is the small-signal equivalent of the circuit. Because there is

no sources in the left hand part of the circuit, vπ = 0. In this case, the controlled current

source becomes an open circuit and RT = ro.
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