Question 1 (10 points) Assume silicon diodes. For the Zener diode, $V_z = 6 V$. - a) Find the transfer function, V_{o} for all V_{i} - b) Plot the transfer function. Label the values of V_i and V_o at any points where the slope is discontinuous. # Question 2 (10 points) Find the small signal Thevenin resistance at the node indicated. Assume discrete silicon diodes at 300°K. # Question 3 (10 points) Assume silicon BJTs with β =200. - a) Determine the state of both transistors. - b) Find V_o ### Question 4 (10 points) Design the following bias circuit so that I_C will be stable with respect to variations in β from 100 to 200, and variations in V_{BE} of +/- 0.1 V. Also design the circuit so that I_C = 10 mA and V_{CE} = 6 V. Determine the values of R_1 , R_2 , R_C , and R_E that meet these design goals. ## Question 5 (10 points) For the transistor below, assume $k_p{'}(W/L) = 1 \text{ mA/V}^2$, $V_{tp} = -1 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. You may ignore channel width modulation for determining bias conditions. For this amplifier circuit, - a) Find the voltage gain, A_V - b) Find the input resistance, R_i - c) Find the output resistance, R_o ## Question 6 (10 points) For the transistor below, assume $k_n'(W/L) = 1 \text{ mA/V}^2$, $V_{tp} = 1 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. You may ignore channel width modulation for determining bias conditions. Determine the low frequency cutoff for this amplifier. Assume $R_{sig} = 0$.