
Mesh-Current Method

The mesh-current is analog of the node-voltage method. We solve for a new set of variables,

mesh currents, that automatically satisfy KCLs. As such, mesh-current method reduces

circuit solution to writing a bunch of KVLs.

Note: Mesh-current method only works for planar circuits: circuits that can be drawn on

a plane (like on a paper) without any elements or connecting wires crossing each other as

shown below. Note that in some cases a circuit that looks non-planar can be made into a

planar circuit by moving some of the connecting wires (see figure)
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Mesh-current method is best explained in the context of example circuit below.
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• A mesh is defined as a closed path (a loop) that con-

tains no closed path within it.

• Mesh current is the current that circulates in the

mesh i.e.,

a) if an element is located on a single mesh (such as R1,

R2, vs1, and vs2) it carries the same current as the mesh

current,

b) If an element is located on the boundary of two meshes

(such as R3), it will carry a current that is the algebraic

sum of the the two mesh currents:

i3 = i1 − 22

i′3 = i2 − i1

In this way, KCLs are automatically satisfied. In addition, as we can write current in each

element in terms of mesh currents, we can use i-v characteristics of element to write the
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voltage across each element in terms on mesh currents. Therefore, we need only to write

KVLs in terms of mesh currents.

In the circuit above, KVLs give:

Mesh 1: R1i1 +R3(i1 − i2)− vs1 = 0 → (R1 +R3)i1 −R3i2 = vs1
Mesh 2: R3(i2 − i1) +R2i2 + vs1 = 0 → −R3i1 + (R2 +R3)i2 = −vs2

or in matrix form,

[
R1 +R3 −R3
−R3 R2 +R3

]
•
[
i1
i2

]
=

[
vs1
−vs2

]
→ R • i = vs

Which is similar in form to matrix equation found for node-voltage method. i is the array

of mesh currents (unknowns), vs is the array of independent voltage sources, and R is the

resistance matrix and is symmetric. The diagonal element, Rjj, is the sum of resistance

around mesh j and the off-diagonal elements, Rjk, are the sum of resistance shared by

meshes j and k.
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Example Find i and v.

Using mesh-current method:

Mesh 1: 2i1 + 9 + 3(i1 − i2)− 16 = 0

Mesh 2: 6i2 + 6 + 3(i2 − i1)− 9 = 0

{
5i1 − 3i2 = 7

−3i1 + 9i2 = 3
→

{
i1 = 2 A

i2 = 1 A

The problem unknowns, i and v can now be found from the mesh currents:

i = i1 − i2 = 1 A

v = 2i1 = 4 V

Mesh currents method for circuits with current sources

Because of i-v characteristics of a current source does not specify its voltage, we have to

modify mesh-current method. This is best seen in the example below:

MAE140 Notes, Winter 2001 34



i1

i3i2

2Ω 2Ω

10 V 2A

6Ω

1 A

+

−

From the circuit, we note:

• If a current source is located on only one mesh (1-A ICS

in the circuit), the mesh current can be directly found

from the current source and we do not need to write any

KVL:

i1 = −1 A

• If a current source is located on the boundary between two meshes (2-A ICS in the circuit),

KVL on these meshes (mesh 2 or 3 in the above circuit) contain the voltage across the 2-A

ICS which is unknown. We need two equations to substitue for the two KVLs on meshes

2 and 3 that are not useful now. The first one is found from the i-v characteristics of the

current source (its current should be 2 A):

i3 − i2 = 2 A

The second equation can be found by noting that KVL can be written over any closed loop.

We define a supermesh as the combination of two meshes which have a current source on

their boundary as shown in the figure. While KVL on mesh 2 or on mesh 3 both include

the voltage across the 2-A current source that is unknown, KVL on the supermesh does not

include that:

Supermesh 2&3: 2(i2 − i1) + 2(i3 − i1) + 6i3 − 10 = 0 → −4i1 + 2i2 + 8i3 = 10




i1 = 1

i2 − i3 = −2
2i2 + 8i3 = 10 + 4i1 = 6

→




i1 = 1

i2 = i3 − 2

2(i3 − 2) + 8i3 = 10

i3

1i  = −1

2      3i  = i  − 2
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1 A

+

−

which results in i1 = 1 A, i2 = −1 A, and i3 = 1 A,

Note that we could have used i1 = 1 and i2 = i3 − 2

equations directly on the meshes as shown in the figure

and wrote only the KVL on the supermesh:

supermesh 2&3: 2[(i3 − 2)− (−1)) + 2[i3 − (−1)] + 6i3 − 10 = 0

i3 = 1 A → i2 = 1− 2 = −1 A
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Recipe for Mesh-Current Method

1. Check if circuit is planar.

2. Identify meshes, mesh currents, and supermeshes.

a) Rearrange the circuit if possible to position current source on a single mesh.

b) Use i-v characteristic equations of ICS to find mesh currents and reduce the number

of unknowns.

3. Write KVL at each mesh and supermesh.

4. Solve for mesh currents.

5. Calculate problem unknowns from mesh currents. If you need to calculate the voltage

across a current source you may have to write KVL around a mesh containing the

current source.

6. For consistency and elimination of errors, always mark all mesh currents in clockwise

direction and write down KVLs in the same direction.

Comparison of Node-voltage and Mesh-current methods

Node-voltage and mesh-current are powerful methods that simplify circuit analysis substan-

tially. They are methods of choice in almost all cases (except for very simple circuits or

special circuits). Examination of the circuit can also tell us which of the two methods are

best suited for the circuit at hand. We always want to reduce the circuit equations into the

smallest number of equations in smallest number of unknowns. The number of equations

from node-voltage method, NNV and mesh current method, NMC are given by:

NNV = Nnode − 1−NV S
NMC = Nmesh −NCS

where NV S and NCS are numbers of voltage and current sources, respectively. Thus, always

inspect the circuit, find NV S and NCS, and proceed with the method that results in the

smallest number of equations to solve.

Note: You need to check to ensure that the circuit is a planar circuit. If it is not one cannot

use mesh-current method and should use node-voltage method.
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Additive properties and Superposition

In solving any linear circuit, we always end up with a set of simultaneous linear equations

of the form

A • x = s
A : matrix of resistances or conductances

x : array of circuit variables, i and/or v, (unknowns)

s : array of independent sources

Linear algebra tells that if we know the solution to A • x = s1 to be x1 (i.e., A • x1 = s1)
and if we know the solution to A • x = s2 to be x2 (i.e., A • x2 = s2), then the solution to

A • x = s1 + s2 is x = x1 + x2 because:

A • x1 +A • x2 = s1 + s2
A • (x1 + x2) = s1 + s2

In a linear circuit this property means that:

Additive property of linear circuit or Principle of Superposition: If a linear circuit

is driven by more than one independent source, the response of the circuit can be written as

the sum of the responses of the circuit to individual sources with all other sources “killed”

(i.e., their strength set to zero.)

vs
+

v

−

i

v = v
for any i

s
killed

for any i
v = 0

+

v

−

i

si killed
+

v

−

i

+

v

−

i

i = i s i = 0
for any v for any v

+

−

Note that “killing” a source

does not mean “removeing”

it.
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Example: Find v by superposition.

Because we have two independent sources, we first “kill”

the current source to arrive at circuit “a” and then we

kill the voltage source to arrive at circuit “b”. By super-

position, v = va + vb

Circuit “a” is a voltage divider circuit and va can be

written down directly as

va =
5

5 + 10
× 15 = 5 V

Circuit “b” is a current divider circuit and current i can

be written down directly as

i =
1/5 + 1/10

1/5
× 3 = 2 A

vb = −5i = −10 V

Thus, v = va + vb = 5− 10 = −5 V.

Note: Using superposition results in slightly simpler circuits (one element is replaced with

either a short or open circuit) but more circuits. In general superposition requires more work

than node-voltage or mesh-current methods. Superposition is used:

a) If sources are fundamentally different (e.g., dc and ac sources as we see later). In this

case superposition may be the only choice,

b) If circuit is repetitive (see example 3-12 text book) such that circuits resulting from

applying superposition look identical and, thus, we need only to solve one circuit.
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Reduction of two-terminal sub-circuits to Thevenin form

N

Norton FormThevenin Form

T

T T T

v
T

R

R

iN

NEquivalent if R   =R    and v  = i   R N

i

−

+

v

+

−

v

i

+

−

Recall Thevenin and Norton forms and the

fact that they are equivalent. The con-

vention is to write the i-v characteristics of

Thevenin/Norton forms with active sign con-

vention:

v = vT − RT i i = iN − v

RN

We used the equivalency of Norton and

Thevenin forms in circuit reduction.

Recall our discussion of equivalent elements and subcircuits. We can replace any two-terminal

subcircuit with another one as long as they have the same i-v characteristics. We will show

below that the i-v characteristics of any two-terminal element containing linear elements is in

Thevenin form. First let’s examine how to find i-v characteristics of a two-terminal element.

i

+
Subcircuit

−

v

i

i

+
Subcircuit

−

v

In order to find the i-v characteristics of a resistor in the lab,

we connect a voltage sources (with adjustable strength) to its

terminal, change the strength of the voltage of the source and

measure the current flowing through the resistor. After a suf-

ficient number of pairs of i and v are measured, we can plot

the result and deduce v = Ri. We can perform similar, but

mathematical, experiment to find the i-v characteristics of a

two-terminal element. Attach a voltage source across its termi-

nal with a strength v. Solve the circuit and calculate current i

which will be in terms of v (i-v characteristics!). Alternatively,

we can attach a current source with strength i to the subcircuit

and solve for v in terms i as is shown. This is the general method

to “calculate” the i-vcharacteristics of a two-terminal element.

Suppose we used node-voltage method and assign the ground as shown. After writing all of

node-voltage equations, we will get:

G • v = is
G : Conductance matrix

v : Array of node voltages

is : Array of independent current sources

If we choose as node no. 1 to be the positive terminal of the subcircuit, the node-voltage

array will be a column vector, v = [v, v2, v3, ..] with voltage v as its first element. The
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current source array is also will have i as its first element. Now, if we solve the above matrix

equation and denoting the inverse matrix of G as G−1, we get:



v

v2
...

vn


 =



G−111 G−112 ... G−11n
G−121 G−122 ... G−12n
... ... ... ...

G−1n1 G
−1
n2 ... G

−1
nn


 •


i

is2
...

isn




The first row of this matrix equation reduces to v = −C1i + C2 where C1 and C2 are two

constants (Since all G and is are constants). C1 should be a resistance (call it RT ) and

C2 should be a voltage (call it VT ). Thus: the i-vcharacteristics of any two-terminal

element containing linear elements is in the Thevenin form of v = vT − RT i.

+

−

v = v

i = 0

oc v = voc

v
T

R
T

+

i = 0

−

Subcircuit +

−

Next, consider the two-terminal subcircuit

and its Thevenin equivalent (they have ex-

actly same i-v characteristics). Let the cur-

rent i = 0 and calculate v, i.e., calculate the

voltage across the terminals of the subcircuit

while the terminal are open circuit. This volt-

age is called the open circuit voltage, voc. Ex-

amination of the Thevenin form shows that if

i = 0, vT = voc.

i = isc

iN

i = isc

R
N

Subcircuit

+

−

+

−

v = 0
v = 0

Next, consider the two-terminal subcircuit

and its Norton equivalent (they have exactly

same i-v characteristics). Let the voltage v =

0 and calculate i, i.e., calculate the current

while the subcircuit terminals are shorted.

This current is called the short circuit cur-

rent, isc. Examination of the Norton form

shows that if v = 0, iN = isc.

Lastly, examination of the matrix equation above shows that the Thevenin resistance depends

of conductance matrix only. Thus, if one “kills” all of the sources in the subcircuit,

the remaining circuit should be equivalent to the Thevenin’s resistance. The

above bold/underlined statements constitute the Thevenin’s Theorem

Finding Equivalent Thevenin/Norton Forms:

Three methods are available:

Method 1: Use source transformation and circuit reduction to reduce the circuit to a

Thevenin/Norton form. This is a cumbersome method, does not always work, and should

be used only on simple circuits.
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Method 2: Directly find i-v characteristics of the subcircuit by attaching a current source or

a voltage source to the circuit as discussed above. This method always work. The drawback

is that the circuit has to be solved analytically.

Method 3: Compute two of the following quantities by solving the appropriate circuits:

vT = voc, iN = isc, and RT by killing the sources. The third parameter is found from

vT = RT iN . This is the best method and with a few exceptions, always work.

20

5 Ω

25V

3AΩ

Ω4

+

−

Example: Find Thevenin equivalent of this sub-

circuit:

Method 1: Source transformation and circuit reduction

3A5 Ω
5A

20Ω

Ω4

20

5 Ω

25V

3AΩ

Ω4

Ω4 Ω

32V

8

Ω

Ω4

4 8A

Ω4

32V

+

−

+

−

+

−

20

5 Ω

25V

3AΩ

Ω4

v

i
v

25V v
1

+

−

+

−

Method 2: Directly find i-v characteristics. We

attach a voltage source with strength v to the

output terminals as shown. Assume v is known

and solve for i. Circuit has 4 nodes and two volt-

age sources, so the number of equation for node-

voltage method, NNV = 4 − 1 − 2 = 1. Circuit

has three meshes and 1 current source, so the

number of equations for mesh-current method is

NMC = 3− 1 = 2. So, better to do node-voltage

method.
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v1 − v
4
− 3 +

v1 − 0

20
+
v1 − 25

5
= 0 → 5v1 − 5v − 60 + v1 + 4v1 − 100 = 0

v1 = 16 + 0.5v

i =
v1 − v

4
=

16 + 0.5v − v
4

→ v = 32− 8i (i-v characteristics!)

vT = 32 V RT = 8 Ω

Method 3: Thevenin’s Theorem: find two of the following three: RT , voc, and isc.

a) Find RT by “killing” the sources

20

5 Ω

Ω

Ω4

20

5 Ω

25V

3AΩ

Ω4

Ω4

5 || 20 = 4Ω R   = 4+4 = 8
T

Ω

+

−

voc

voc20

5 Ω

25V

3AΩ

Ω425V
v

+

−

i = 0

+

−

b) Find vT = voc (set i = 0)

Using node-voltage method (note that the voltage

drop across the 4 Ω resistor is zero.

voc − 25

5
+
voc − 0

20
− 3 = 0

4voc − 100− voc − 60 = 0

vT = voc = 32 V

4

sci20

5 Ω

25V

3AΩ

Ω2v

v = 0

-

+

25V

-

+

c) Find iN = isc (set v = 0)

Using node-voltage method:

v2 − 25

5
+
v2 − 0

20
− 3 +

v2 − 0

4
= 0

4v2 − 100 + v2 − 60 + 5v2 = 0

v2 = 16 V → iN = isc =
v2
4

= 4 A
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