
I. INTRODUCTION

1.1 Circuit Theory Fundamentals

Circuit theory is an approximation to Maxwell’s electromagnetic equations in order to sim-

plify analysis of complicated circuits. A circuit is made of several elements (boxes or devices)

which are connected to each other with “ideal” wires. The variables in a circuit are currents

and voltages in all elements.

The physics of current flow inside each element is captured by its iv characteristics. Since

circuit elements communicate with each other only through current and voltages, elements

with similar iv characteristics are viewed by the rest of the circuit as being identical regardless

of what is inside the element/box.

Two general rules govern what happens when these elements are connected to each other:

Kirchhoff current law, KCL, which is conservation of electric charge and Kirchhoff voltage

law, KVL, which is a topology-driven constraint (i.e., you get to the same place if you follow

a closed loop). These two rules are independent of internal physics of elements and can be

applied to non-linear elements.

In a circuit with N elements, we have 2N unknowns (i and v of each element) and we need

2N equations: N iv characteristics equations for elements and N KVLs and/or KCLs which

depend only on how the elements are connected to each other. In the circuit theory, we

learned that we can reduce the number of equations to be solved by a large number using

“node-voltage” and “mesh-current” methods. As these method really are compact forms of

writing KVL and KCLs, they equally apply to circuit with non-linear elements.

A linear circuit is made of “linear” elements (i.e., iv characteristics of every element is linear).

A linear circuit has many desirable properties such as “proportionality” and “superposition”

which are essential for many practical circuits (e.g., an amplifier).

Because of the desirability of linear circuits, circuit theory includes symbols for five funda-

mental “two-terminal” elements which are linear:

Resistor: v = Ri

Capacitor: i = C
dv

dt
or V =

1

jωC
I

Inductor: v = L
di

dt
or V = jωL I

Independent voltage source: v = vs = const. for any current

Independent current source: i = is = const. for any voltage
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and four “two-port networks” (boxes with two-wires going in and two-wire coming out):

voltage-controlled voltage source, (similar to an independent voltage source but with source

strength depending on voltage on another element in the circuit), current-controlled voltage

source, voltage-controlled current source, current-controlled current source.

There are two other two-terminal elements that we will use and are special cases of the above

elements. They are:

Short Circuit: v = 0 for any current

Open Circuit: i = 0 for any voltage

As can be seen, “short circuit” is a special case of a resistor (with R = 0) or a special case

of a voltage source (with vs = 0) while “open circuit” is a special case of a resistor (with

R → ∞) or a special case of a current source (with is = 0).

It is essential to remember that the above circuit elements are NOT physical devices. The

idealized “resistor” in circuit theory is a symbol for any element whose iv characteristics

equation is v = Ri. This means that if we have a two-terminal network (box or device)

which has a v = Ri characteristics, we can “represent” the network in a circuit with an ideal

resistor.

Similarly, if we have a box whose voltage is constant for all currents, it can be represented

as an independent voltage source (without any knowledge of what is inside the box). You

actually have been doing this in the lab, modeling the power supply (which includes many

transistors, diodes, resistors, capacitors) with an independent voltage source.

Physical elements (i.e., resistors in the lab) can only be modeled with one of these idealized

circuit elements within a certain accuracy (discussed in Sec. 1.4) and/or within a certain

range of parameters: For example take a resistor in the lab. At high enough current, when

the resistor is hot enough, the ratio of v/i is not linear anymore. So, a resistor in the lab can

be approximated by an “ideal” circuit-theory resistor only for a range of currents or voltages

(typically rated by its maximum power).

The bottom line is that the iv characteristics of a two-terminal network is the key. For

example, we will make a two-terminal network with transistors which has a linear iv char-

acteristics. From the point view of the rest circuit this two-terminal network is identical to

an ideal resistor.
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Which Solution Method to Use?

Since we will solve a lot of circuits in this course, it is essential that one should be able to

choose the best method to solve a circuit. Basically, one wants to have the smallest number

of equations. Assuming that we have “reduced” the circuit (i.e., replaced parallel and series

elements), one can readily estimate the number of circuit equations for each method:

KVL & KCL: 2Nelement equations

Node-voltage method: Nnodes − 1−NIV S equations

Mesh-Current method: Nloops −NICS equations

where NIV S denotes the number of independent voltage sources and NICS the number of

independent current sources. Obviously, one should use KVL & KCL only if there are only

a few elements. Furthermore, we are mostly interested in voltages in the circuits. As such,

usually node-voltage method is preferred as we will have a fair number of voltage sources

and the answer is also a voltage. (PSpice uses node-voltage method but with full non-linear

iv characteristics equations for elements). Note:

1. You CANNOT mix and match the three methods above!

2. Apply the techniques consistently e.g., always write KCL as sum of currents flowing

out of a node = 0. This minimizes the chance for error.

Functional Circuits:

In this course, we will use diodes and transistors to build circuits which do specific functions

(and learn to design simple circuits). These circuits are either:

1. Two-terminal networks, i.e., a box with two wire coming out of it, such as a power

supply, output terminals of an iPod, etc. (Sec. 1.2) or

2. Two-port networks, i.e., a box with two wires going in and two wires coming out

of it, such as an amplifier, rectifier, etc. (Sec. 1.3)

Note that principles of two-port networks (discussed later) can be easily extended to circuits

with multiple inputs.
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1.2 Two-terminal networks and Thevenin Theorem

i

−

+
v

v = f(i)
or

i = g(v)

The simplest “functional” circuit is a two-terminal network. Since the

rest of the circuit communicates with our network through voltages and

currents, we only need to calculate (or measure) its iv characteristics. In

general, we solve the circuit and find the output voltage v as a function

of output current i (i.e., assume output voltage is v and compute i).

Note that the convention is to use “active” sign convention for our

two-terminal networks.

Our calculation would be much simpler if the iv characteristics equation of a two-terminal

network is linear. Thevenin theorem states that if a two-terminal network contains only

linear elements, its iv characteristics equation would be linear. Furthermore, if the iv char-

acteristics equation of a two-terminal network is linear, we can represent the network with

a combination of two of ideal circuit-theory elements.

v

i

−

+
+
−

R
Tv

T

Thevenin Equivalent

v

i

−

+i N

R
N

Norton Equivalent

Proof of the Thevenin Theorem is straight forward. A linear iv

characteristics equation, i.e., Av + Bi + C = 0 can be written as

v = vT − RT i (with vT = −C/A and RT = B/A). A circuit con-

taining a voltage source vT and a resistor RT in series would have

the same iv characteristics equation and, thus, can used instead of

the two-terminal network in circuit analysis. Such a “simple” cir-

cuit is called the Thevenin equivalent circuit. Similarly, the linear

iv characteristics equation can be written as i = iN − v/RN i (with

iN = −C/B and RN = B/A) and the Norton equivalent circuit

containing a current source iN and a resistor RN in parallel can be

constructed. Note that RT = RN and iNRN = vT .

An important corollary to the Thevenin Theorem is that if a two-terminal network does not

include an independent source, it can be reduced to a single “resistor” (even if it includes

dependent sources).

Not only Thevenin Theorem simplifies calculation of the iv characteristics of a two-terminal

network (as is discussed below), it allows us to identify a two-terminal network with only

two numbers (instead of an iv equation).

1.2.1 How to calculate iv characteristics and the Thevenin parameters

You have seen a detailed discussion of Thevenin/Norton forms in your circuit theory course(s).

In summary, the best method is to calculate two of the following three parameters:
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1. Open-circuit voltage, voc (found by setting i = 0)

v = vT −RT i → v = voc = vT −RT × 0 = vT

2. Short-circuit current, isc (found by shorting the terminals of the two-terminal network,

i.e., setting v = 0),

i = iN − v/RN → i = isc = iN − 0 = iN

3. Direct calculation ofRT which is the resistance seen at the terminals with the independent

sources “zeroed out” (i.e., their strengths set equal to zero). Remember, you should

NOT “zero out” dependent sources.

Example 1: Find the Thevenin and Norton Equivalent of this circuit:

5 4 i

+

−

v3 A20

25 V
+
−

v1

voc

5 4

+

−

3 A20

25 V

25 i = 0

+
−

v1

i sc

5 4

3 A20

25 V

25

+
−

RT

5 4

20

Using Node-voltage-method:

1. voc: Note that by Ohm’s law across 4-Ω resistor

voc = v1.

v1 − 25

5
− 3 +

v1
20

= 0 → v1 = 32V

vT = voc = v1 = 32V

2. isc: Note that by Ohm’s law across 4-Ω resistor

isc = v1/4.

v1 − 25

5
+

v1
4

− 3 +
v1
20

= 0 → v1 = 16V

iN = isc = 0.25v1 = 4A

3. RT (zeroing the independent sources): From the

circuit, we have RT = 4 + (5 ‖ 20) = 4 + 4 = 8 Ω.
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While Thevenin Theorem leads to a simpler analysis, it cannot be used for circuits with

non-linear elements. In general, we need to calculate the iv characteristics of the network

directly. The way to do this is to assume the output voltage v is known and compute i in

terms of v. If we use the node-voltage method, first we have to compute all node voltages

in terms of v. Computing i in terms of node voltages would then give i in terms of v.

In general, computing iv characteristics directly is quite time-consuming. We will solve the

circuit of Example 1 to demonstrate how the method works (for this circuit, the solution is

rather simple because there is only one unknown node, v1).

v15 4 i

+

−

v3 A20

25 V

25
v

+
−

Using Node-voltage method, we first find all node volt-

ages in terms of v:

v1 − 25

5
− 3 +

v1
20

+
v1 − v

4
= 0

v1 = 0.5v + 16

We now calculate i from node voltages. Here, i can be found from Ohm’s law across the 4-Ω

resistor:

4i = v1 − v = (0.5v + 16)− v = −0.5v + 16 → v = 32− 8i

Note that since the iv characteristics is linear, this circuit can be reduced to its Thevenin

equivalent: v = 32− 8i ≡ vT −RT i which gives vT = 32 V and RT = 8 Ω.

Example2 : Find the Thevenin equivalent of this two-terminal network.

i

1.2k

4i

v

2k

+
−

+

−
32V

Finding voc and isc are left as an exercise (answer: vT = voc = 32 V and iN = isc = 4 mA).

Finding RT : We “zero” out all independent sources in the circuit. However, the resulting

circuit cannot be reduced to a simple resistor by series/parallel formulas. To find RT , we

attach a “test” source, vx to the terminals and calculate current ix (see circuit). Since the

two-terminal network should be reduced to a resistor (RT ), we should get RT = vx/ix.
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i x

vx

i 1

i x i

1.2k

4i

2k

+
−

Since the circuit is simple, we proceed to solve it

with KVL and KCL. We note that i = −ix and

current ix flows in the 2 k resistor (see circuit):

KCL: −i1 + 4i− ix = 0 → −i1 + 4(ix)− ix = 0 → i1 = 5ix

KVL: 2× 103ix + 1.2× 103(5ix)− vx = 0

vx = 8× 103ix → RT =
vx
ix

= 8× 103 = 8 kΩ

1.2.2 How to measure the iv characteristics and Thevenin parameters

Suppose we have a two-terminal network and want to measure its Thevenin equivalent circuit.

In principle, we cannot use the above technique and try to measure voc, isc, and RT . We

cannot use an ohm-meter to measure RT . It is not advisable to short the terminals and

measure isc (there is a good chance that we are going to ruin the circuit if we do that). In

principle, we can use a scope (or volt-meter) to measure voc but care should be taken as it

is not known a priori if the internal resistance of the volt-meter (or scope) is large enough

to act as an open circuit.

The best way to measure the Thevenin Equivalent pa-

rameters is to measure the iv characteristics of the two-

terminal network. We can do this by attaching a variable

load (a variable resistance) to the box and vary the load

(RL). For each value of RL, we measure the pair of i and

v (highlighted with a + in the figure). We can find the iv

characteristics of the device by repeating this measure-

ment with several values of RL as is shown. Typically

this is done with starting from a “large” RL and gradu-

ally reducing the load.

If the circuit is linear, these data point should lie on a

line (see the figure). Values of vT , iN , and RT can be

read directly from the graph as is shown. This method is

specially accurate as one can use a “best-fit” line to the

data in order to minimize random measurement errors.

i

−

+
v RL

vT

i N

i

v

slope of

+

+

+ +
++ +

+ 1/R−       T
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v

i

−

+R
Tv

T +
− RL

A simpler, but less accurate version of the above method

is to measure the output voltage for TWO different values

of RL (i.e., RL1 and RL2 with measured voltages of v1 and

v2, respectively). From the circuit:

v1
vT

=
RL1

RT +RL1

and
v2
vT

=
RL2

RT +RL2

Dividing the two equations gives:

v1
v2

=
RL1

RT +RL1

×
RT +RL2

RL2

which can be solved to find RT . Then, one of the above equations for v1 or v2 can be used

to find vT . Typically, we choose RL2 to be very large, RL2 → ∞ (e.g., internal resistance of

scope), then v2 = voc (open circuit voltage) and

v1
voc

=
RL1

RT +RL1

→
RT

RL1

=
voc
v1

− 1

In general, we should choose RL1 such that v1 is sufficiently different from voc for the mea-

surement to be accurate. Typically, experiment is repeated for several values of RL1 until

v1/voc is between 0.3 to 0.7).

Note that the above method has to be modified if the box includes time-dependent sources

as RT may be an impedance. (Exercise: How?)

In addition, this method would not give the Thevenin equivalent circuit if vT = 0 (i.e., the

circuit reduces to a resistor).

1.2.3 How to find the iv characteristics and Thevenin parameters using PSpice

You can use the same technique described above for measuring the Thevenin parameters

with PSpice. Attach a “variable” load (using “Parameter” setting in PSpice) to the circuit.

Ask PSpice to compute output voltage i for different values of the “parameter” RL. Plot the

output current i versus the output voltage v and you will have the iv characteristics of the

circuit similar to the figure above (Make sure that you have the current direction correctly!).
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1.3 Two-port networks

It is not practical to design a complete circuit as a whole from scratch. It is usually much

easier to break the circuit into components and design and analyze each component sepa-

rately. In this manner we can design “building blocks” (amplifiers, filters, etc.) that can be

used in a variety of devices. A typical analog circuit is composed of a “source,” and a “load”

both of which are two-terminal networks discussed before. A typical circuit also contains

several “two-port networks” as is shown below.

2−port
Network

2−port
Network

Source Load

In a two-port network the input signal (either input current or input voltage) is modified by

the circuit and an output signal (either output current or output voltage) is generated. For

most electronic circuits, we keep the currents low and modify voltages in order to minimize

power dissipation in the circuit. As such the relationship between the output voltage and the

input voltage dictates the response of the two-port network. This relationship is called the

voltage transfer function of the network. For two-port networks with non-linear elements,

transfer function is non-linear (e.g., diode waveform shaping circuits of Sec. 2). However, If

a two-port network includes only linear elements, its transfer functions is linear (i.e., ratio

of vo/vi does not depend on vi). In addition, such a linear two-port network can be modeled

by four linear circuit elements (often 3) as we discuss in the transistor amplifier section.

1.3.1 How each sub-circuit sees other elements

The strategy of dividing a “linear” circuit into individual components works because of the

Thevenin Theorem. Recall that any two-terminal network can be replaced by its Thevenin

equivalent. In addition, if a two-terminal network does not include an “independent source”

it will be reduced to a single “impedance” (even if it includes dependent sources).

2−port
Network

2−port
Network

Source Load

Source see this two−terminal network
Load sees this
two−terminal network
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sig

sig i

i Load

+

−

i

v−
+

v

R

What Load sees: The load sees a two-

terminal network. This two-terminal network

contains an independent source. So it can be

reduced to its Thevenin equivalent.

Source LR

+

−
v

What Source sees: The source sees a two-

terminal network. This two-terminal network

does not contain an independent source. So it

can be reduced to a single impedance.

2−port
Network

oi

vo L

sig

sig i

i

+

−

+

−

v

i

−
+

R

v

RWhat each two-port network sees: Fol-

lowing the logic above, its obvious that each

two-port network sees a two-terminal network

containing an independent source in the input

side (can be reduced to a Thevenin form) and

a two-terminal network that does not contain

an independent source on the output side (so

it can be reduced to a single impedance).

The above observations indicate that we do not need to solve a complete circuit. For a

two-terminal network like the source, we only need to find its iv characteristics (or vT and

RT for a linear network) to be able to predict its response when it is attached to any circuit

(here modeled as RL). For a two-port network, we only need to solve the circuit above with

vsig, Rsig, and RL as parameters. We will discuss this in depth in transistor amplifier section.

Note that the concept of two-port networks can be easily extended to circuit with multiple

inputs and one output as we will see in our discuss of digital gates.

1.4 Mathematics versus Engineering

You should have learned by now that one cannot achieve “mathematical” accuracy in prac-

tical systems. Firstly, our instruments have a finite accuracy. Secondly, we can build compo-

nents only within a certain accuracy (or tolerance). As a general rule, the higher the accuracy

in a component, the more expensive it is. Therefore, we always design and build component

based on the accuracy that is needed (to reduce the cost). Lastly, we use idealized model

to describe physical phenomena in practical systems by making “approximations.” We also

ignore terms in our analysis by arguing that they are small or large. Some of these issues

are discussed below. Approximations and ignoring terms in analysis are also related to the

accuracy.
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What does accuracy mean?

When a number (or a measurement), A, has a relative accuracy (or tolerance) of ǫ, it means

that its value is between A(1 − ǫ) to A(1 + ǫ). This means that we cannot differentiate

between any number in the range A− ǫA to A+ ǫA. We would say that all numbers in this

range are “approximately equal” to each other:

B ≈ A ⇔ A− ǫA ≤ B ≤ A+ ǫA

and we can use B and A interchangeably as we cannot distinguish between them.

Concepts of infinity and zero are also meaningless in abstract. They are used in the context

of “much bigger” and “much smaller.” For example, in the discussion of measuring Thevenin

parameters, we arrived at a equation like:

vo
vT

=
RL

RT +RL

Mathematically, if RL → ∞, vo = vT . In engineering, if we assume RL ≫ RT , we have

RT +RL ≈ RL and vo ≈ vT . This means that we have defined “infinite” RL as RL ≫ RT .

Similarly, if RT = 0, vo = vT . If we assume RT ≪ RL, we have RT +RL ≈ RL and vo ≈ vT .

This means that we have defined “zero” RT as RT ≪ RL.

So, concepts of large and small (zero and infinite) are defined as “much smaller” or “much

larger” than · · ·. They also require a frame of reference, i.e., large or small compared to · · ·.

In the above example, larger and smaller were defined with respect to another resistor value.

For example, if RT = 1 Ω, a RL = 100 Ω resistor would be large, while if RT = 1000 Ω, a

100 Ω load resistor would actually be small.

Notions of much smaller (≪) and much greater (≫) are defined in term of a given or needed

accuracy, ǫ. Consider quantity B = A+ a. We use the concept of much smaller, a ≪ A, to

write B ≈ A. From the above definition of approximate, we should have (assuming that a

and A are positive):

B ≈ A → A− ǫA ≤ B ≤ A+ ǫA

A− ǫA ≤ A+ a ≤ A+ ǫA → a ≤ ǫA

a ≪ A ⇔ a ≤ ǫA

Exercise: Show that with a tolerance of ǫ, A ≫ a means A ≥ (1/ǫ)a.
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Measurement accuracy:

Once calibrated, every instrument has a certain and finite accuracy. As an example, the

scopes in ECE65 lab are accurate within 2% (ǫ = 0.02). So, if a scope reads a value of

1.352 V, the “real” value is anywhere between 1.352± 0.02× 1.352 or in the range of 1.325

to 1.379. In this context any number between 1.325 and 1.379 is approximately equal to

1.352 as we CANNOT differentiate among them by our measurements: 1.325 ≈ 1.352 and

1.379 ≈ 1.325.

Note: In the example above, the 4th significant digits in 1.352 is totally meaningless (see the

range of numbers we cannot distinguish). It is a poor engineering practice to even report this

4th significant digit! (Still some ECE65 students report their calculations to 8th significant

digits, directly writing the number from their calculators!). Similarly, it is poor engineering

practice to report numbers in whole fractions (e.g., 4/3). No measuring instrument measure

any property in whole numbers!

Component accuracy/tolerance:

Each element/component/system is manufactured to a certain tolerance – the smaller the

tolerance, the more expensive is to build that component. For example, resistors we will use

in the Lab have a tolerance of 5%. This means that a 1 kΩ has a value of 1, 000 ± 5% =

1, 000± 50 Ω or somewhere between 950 and 1,050 Ω.

A corollary of this concept is that if you designed a circuit and found that you need a 1,010 Ω

resistor, you SHOULD NOT put a 1 kΩ and a 10 Ω resistor (with 5% tolerance) in series.

The resultant combination would have a value between 959.5 and 1,060.5 Ω which is no

better than a 5% 1 kΩ resistor (i.e., you have wasted the second resistor). If you need to

have a 1,010 Ω resistor (i.e., more precision), you should use a 1,010 Ω resistor with a 1%

tolerance (which is more expensive).

Accuracy in modeling:

As we discussed before practical elements/components are “modeled” (i.e., approximated)

with “ideal” circuit-theory elements. Obviously, the desired accuracy plays an important role

in this approximation. To see this, consider the iv characteristic of a two-terminal network

shown below. For this element, when the current is varied between 0 and 80 mA, the voltage

varies between 1.05 and 0.95 V. Also, note that the iv characteristic is NOT exactly linear.

Recall that a quantity, B ≈ A when A− ǫA ≤ B ≤ A+ ǫA.

If our desired accuracy is 5% (ǫ = 0.05) and setting A = 1 (the mid value of the voltages in

the figure), we find, A− ǫA = 0.95 and A + ǫA = 1.05. That is, within an accuracy of 5%,
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all voltage values between 0.95 to 1.05 V are approximately equal to each other (highlighted

region in figure below right). As such, we can model our two-terminal network with v ≈ 1.0 V

(dashed line). Since the voltage across the element is approximately constant for different

values of the current, this two-port network can be modeled by a voltage source with an

accuracy of 5%.

If our desired accuracy is 1% (ǫ = 0.01), we find, A − ǫA = 0.99 and A + ǫA = 1.01

(highlighted region in figure below left). In this case, the voltage across the element is

NOT approximately constant for different values of the current and this two-port network

CANNOT be modeled by a voltage source with an accuracy of 1%.

However, if we compute and plot a “best-fit” linear approximation to the iv curve (dashed

line, figure below right), we see that the two-port network matches this approximation within

1% (highlighted region in figure below right). Therefore, with an accuracy of 1%, the two-

port network can be modeled with a linear approximation which corresponds to a Thevenin

equivalent circuit of vT = 1.05 V and RT = 1.2 Ω.

What accuracy do we need?

For hand-calculations and the first-pass design work, an accuracy of 5% to 10% is more than

sufficient. As a general rule, we will use an accuracy of 10% in the analysis in

ECE65 unless otherwise stated.
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