Algebra of Complex Variables

Complex variable A is made of two real numbers:

 $A = a_r + ja_i$ and a_i are both real and $j = \sqrt{-1}$

Since a complex number A is constructed of two real numbers $(a_r \text{ and } a_i)$, it can be viewed as a point in a two-dimensional plane, called the "complex" plane as is shown. a_r and a_i denote the Cartesian coordinates of the point. In a 2-D plane, points can also be represented by polar coordinates $(r \text{ and } \phi)$ or |A| and ϕ_A for the complex number A.

From the diagram, we get:

$$\begin{cases} |A| = \sqrt{a_r^2 + a_i^2} \\ \phi_A = \tan^{-1}\left(\frac{a_i}{a_r}\right) & \text{or} \end{cases} \begin{cases} a_r = |A|\cos(\phi_A) \\ a_i = |A|\sin(\phi_A) \end{cases}$$

Note that ϕ_A angle ranges from -180° to 180° (or from zero to 360°) while \tan^{-1} values range from -90° to 90°. Value of ϕ_A depends on the signs of both a_r and a_i and not the sign of a_i/a_r only. For example, if $a_r = a_i = +1$ as well as $a_r = a_i = -1$, $\tan^{-1}(a_i/a_r) = 45^\circ$, while the correct values are $\phi_A = 45^\circ$ for the first case and $\phi_A = -135^\circ$ for the second case. The following table helps find the correct value of ϕ_A (It assumes that the calculator gives \tan^{-1} values from -90° to 90° .)

$a_r > 0$	$a_i > 0$	\rightarrow	$0^{\circ} < \phi_A < 90^{\circ}$	\tan^{-1} value is correct
$a_r > 0$	$a_i < 0$	\rightarrow	$-90^{\circ} < \phi_A < 0^{\circ}$	\tan^{-1} value is correct
$a_r < 0$	$a_i > 0$	\rightarrow	$90^{\circ} < \phi_A < 180^{\circ}$	Add 180° to \tan^{-1} value
$a_r < 0$	$a_i < 0$	\rightarrow	$-180^{\circ} < \phi_A < -90^{\circ}$	Add -180° to \tan^{-1} value

ECE60L Notes (Math Summaries), Spring 2001

Euler's Formula relates the rectangular and polar form of complex numbers:

Euler's Formula:
$$e^{j\phi} = \cos \phi + j \sin \phi$$

 $A = a_r + ja_i = |A| \cos \phi + j |A| \sin \phi = |A| e^{j\phi} = |A| \angle^{\phi}$

Algebra of Complex Variables:

Consider two complex variables, $A = a_r + ja_i = |A| \angle^{\phi_A}$ and $B = b_r + jb_i = |B| \angle^{\phi_B}$. Then,

$$A + B = (a_r + ja_i) + (b_r + jb_i) = (a_r + b_r) + j(a_i + b_i)$$

Note: $|A + B| \neq |A| + |B|$ $\angle^{\phi_{A+B}} \neq \angle^{\phi_A} + \angle^{\phi_B}$

$$A \times B = (a_r + ja_i) \times (b_r + jb_i) = (a_r b_r - a_i b_i) + j(a_r b_i + a_i b_r)$$
$$A \times B = |A|e^{j\phi_A} \times |B| \times e^{j\phi_B} = |A||B|e^{j(\phi_A + \phi_B)}$$
Note:
$$|A.B| = |A|.|B| \qquad \angle^{\phi_{A.B}} = \angle^{\phi_A} + \angle^{\phi_B}$$

$$\frac{A}{B} = \frac{|A| e^{j\phi_A}}{|B| e^{j\phi_B}} = \frac{|A|}{|B|} e^{j(\phi_A - \phi_B)}$$

Note: $\left|\frac{A}{B}\right| = \frac{|A|}{|B|} \qquad \mathcal{L}^{\phi_{A/B}} = \mathcal{L}^{\phi_A} - \mathcal{L}^{\phi_B}$

Complex Conjugate:

$$A = a_r + ja_i = |A| \angle^{\phi_A}$$

$$A^* = a_r - ja_i = |A| \angle^{-\phi_A} \quad \text{Complex Conjugate of } A$$

$$A + A^* = (a_r + ja_i) + (a_r - ja_i) = 2a_r$$

$$A - A^* = (a_r + ja_i) - (a_r - ja_i) = j2a_i$$

$$A.A^* = (|A| \angle^{\phi_A}) \times (|A| \angle^{-\phi_A}) = |A|^2 \quad \text{A real number}$$

To find the ratio of two complex number, we multiply the both nominator and denominator with the complex conjugate of the denominator:

$$\frac{A}{B} = \frac{A \cdot B^*}{B \cdot B^*} = \frac{1}{|B|^2} (A \cdot B^*)$$
$$\frac{A}{B} = \frac{a_r + ja_i}{b_r + jb_i} = \frac{(a_r + ja_i)(b_r - jb_i)}{(b_r + jb_i)(b_r - jb_i)} = \frac{(a_r b_r + a_i b_i) + j(-a_r b_i + a_i b_r)}{b_r^2 + b_i^2}$$

ECE60L Notes (Math Summaries), Spring 2001