Question #1:

For the circuit shown, the Zener diode has $V_z=5$ V. All others are standard silicon diodes

- a) Write the transfer function, V_o for all V_i .
- b) Plot the transfer function
- For an input sine wave with 10 V amplitude, sketch the output signal.

Question #2:

For the circuit shown, assume V_{Tp}=-1V and $\mu_p C_{ox}(W/L)=1 \text{ mA/V}^2$ for the FET, and $\beta=100$ for the BJT. Neglect the Early effect and the channel length modulation effect.

- a) Identify the state of the FET
- b) Find the value of the drain current I_D
- c) Identify the state of the BJT
- d) Find the value of the collector current I_c

Question #3:

Assume you have an NPN BJT with β =100, and a voltage source of 20 V. Design a bias circuit to provide V_{CE}=10 V, and I_C=2 mA. The bias circuit should be stable with respect to variations in β ranging from 50 to 200, and variations in V_{BE} of 0.1 V. Provide values for all resistors shown.

Question #4:

For the circuit shown, assume that β =100, and V_A=100 V. Assume ideality factor n=1.

- a) Determine g_m , r_π , and r_o for each transistor.
- b) Draw the small-signal equivalent circuit.
- c) Determine the Thevenin resistance at the node shown.

5v

Question #5:

For the amplifier shown,

- a) Draw the small signal equivalent circuit.
- b) Find an expression for R_o in terms of the small signal parameters.

Vie

c) Find an expression for the open loop gain A_{V0} in terms of the small signal parameters.

Sig

For the amplifier shown, assume β =100 and VA=100 V. Assume ideality factor n=1.

- a) Calculate A_{V0} , R_i , and R_o .
- b) Calculate the low-frequency cut-off.

VOD RD RG $-1_{C_{\chi}}$ -• V_ CI

51 350kr \$ 2.5kr /4F Vo Rsig=1KJR INF. R=1KD · 100 pr F InA (1