Don't Forget:

- Be sure to include units for all numerical results
- Use standard engineering notation, i.e. report 1.5μV, not 0.0000015V

Question #1:

Design the bias circuit shown. Assume β =100 and V_A=infinity. Select values of R_R, R_C, and R_B that cause transistor Q4 to have V_{CE}=2V, and I_C=2mA. Your design should also ensure that the other transistors are in the active mode for the current mirror to work.

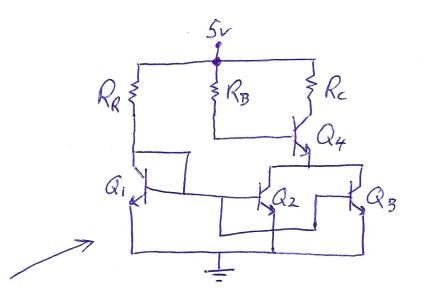
Question #2:

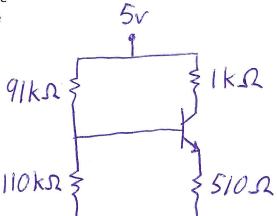
For the circuit shown, assume $\beta \text{=}100$ and $V_{\text{A}}\text{=}\text{infinity}.$

- a) Find $I_C \,and \, V_{CE}$
- b) Is this circuit stable with respect to variations in V_{BE} ? Why or why not?
- c) Is this circuit stable with respect to variations in β ? Why or why not?

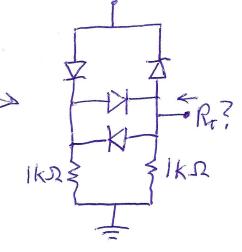
Question #3:

For the circuit shown, assume that the diodes have an ideality factor of n=2.


- a) Draw the small signal circuit.
- b) Find the small signal Thevenin resistance at the node shown.


Question #4:

For the circuit shown, assume V_{Tn}=1V, and $\mu_n C_{ox}(W/L)=1 \text{ mA/V}^2$, and V_A=100V.


- a) Find g_m and r_0
- b) Draw the small signal circuit
- c) Find the small signal Thevenin resistance at the node shown.

IOKA

0.5mA

5v