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ABSTRACT OF THE DISSERTATION

Spin-dependent Wave Propagation in Waveguides, Metasurfaces and 3D Photonic Crystals

by

Sara Kandil

Doctor of Philosophy in Electrical Engineering (Photonics)

University of California San Diego, 2022

Professor Daniel Sievenpiper, Chair

Photon spin has received great interest in the recent decades for many applications such as

encoding quantum information and spin-filtering. However, very little is known about controlling

the direction and properties of the spin. It was recently found that surface waves with evanescent

tails possess an inherent in-plane transverse spin which is dependent on the propagation direction.

In this dissertation, we investigate different 1D, 2D and 3D designs that support strong

spin-dependent propagation. Starting with a 1D C-shaped waveguide, we show that the spin-

density can be enhanced through dipole-to-dipole coupling resulting in highly directional wave

propagation. We then show spin-dependent wave splitting in 2D metasurface by engineering the

equifrequency contours. We demonstrate the possibility of steering the surface wave along curved

xv



paths. We also introduce a new type of surface wave called a chiral surface wave which has two

transverse spins, an in-plane one that is inherent to any surface wave and an out-of-plane spin

which is enforced by the design due to strong x-to-y coupling and broken rotational symmetry.

We show that the two transverse spins are locked to the momentum providing a highly confined

spin-dependent propagation. Similar chiral modes can be induced in 3D structures by introducing

screw dislocation defect in a diamond photonic crystal.

Our study opens a new direction for enhancing and controlling the spin properties of

electromagnetic waves through engineering the symmetry of shapes in 1D, 2D and 3D. This

provides an additional degree of freedom to control the propagation direction as well as the

transverse spin of electromagnetic waves.
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Chapter 1

Introduction

1.1 Spin-Hall Effect and Spin-momentum Locking

Figure 1.1: Spin Hall Effect in electronic systems (Source: [1]).

Spin is a universal property inherent to electrons and photons. Electron spin has been

the origin of many intriguing phenomena such as Spin Hall Effect (SHE). SHE in electronic

systems is characterized by the spin-dependent transport of electrons where electrons [2]. As

shown in Fig. 1.1, a sample carrying electric current will have spin accumulation on its lateral

surface where opposite spins propagate in opposite directions. This has opened the door for

many applications in spintronics and quantum physics [3, 4]. It is also of great importance for

1



providing platforms that can carry information with high robustness against defects which led to

the discovery of topological insulators [5–8].

Figure 1.2: (a) Transverse spin for evanescent electromagnetic waves where spin represents E
or H rotation (Source: [9]). (b) Schematic demonstrating spin-momentum locking formed of the
right-hand triplet formed of Spin, decay constant and propagation constant (Source: [10]). (c)
Demonstration of spin-dependent propagation where opposite handedness of CP wave propagate
in opposite directions (Source: [11])

On the other hand, a photon’s spin is associated with its polarization state, described as the

handedness of its circular polarization (CP) where the spin vector is normal to the plane of the field

rotation as illustrated in Fig. 1.2(a). Despite electrons and photons being fundamentally different

particles, they reveal similar spin-related properties among which is the SHE. It was recently

discovered that analogous to SHE in electrons, surface waves (SWs) with evanescent tails obtain

an in-plane transverse spin (T-spin) that is locked to the propagation direction [9, 12, 13]. This is

also known as spin-momentum locking which is defined as the right-hand triplet formed of the

2



decay constant, spin and propagation constant [10,14] as depicted in Fig. 1.2(b). Spin-momentum

locking results in a spin-dependent propagation for the electromagnetic waves where opposite CP

handedness propagate in opposite directions as shown in Fig. 1.2(c).

1.2 Spin density of Surface waves

In this section, we will go through the formulations for evaluating the spin vector obtained

for any surface wave that has an evanescent tail and we will discuss their different properties.

Consider the metasurface shown in Fig. 1.3 where a surface wave propagates along its interface

in the z−axis direction. The normal to the surface is in the x−axis. Hence, the wave vector

k is defined as: k = kzẑ+ iηx̂, where the η is the decay constant of the evanescent tail of the

surface wave which is pointed in the direction normal to the surface (x−axis). From Maxwell’s

equations, we can express the general E- and H-fields of this surface wave in Gaussian units as

follows [15, 16]:

E =
A0√

1+∥m∥2

(
x̂+m

k
kz

ŷ− i
η

kz
ẑ
)

eikzz−ηx, (1.1)

H =
k
k
×E =

A0√
1+∥m∥2

(
−mx̂+

k
kz

ŷ+ im
η

kz
ẑ
)

eikzz−ηx, (1.2)

where A0 is a constant representing the field amplitude and m is a complex polarization parameter

[12, 15]. The spin density vector can be expressed in terms of E and H using the following

equation [12, 16]:

S =
Im{E∗×E+H∗×H}∣∣E∣∣2 + ∣∣H∣∣2 , (1.3)

where S is the vector spin density normalized per one photon in units h̄ = 1. By substituting the

E and H expressions from equations 1.1 and 1.2, the different components of the S vector can be

written as follows:

Sx = 0, Sy =
η

kz
, Sz =

2Im(m)

1+∥m∥2
k
kz
. (1.4)

3
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