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Anovel subspace system identificationmethod based on covariance estimates and inspired by classical realization

techniques is presented that constructs system estimates frommeasured input–output data. The resulting algorithm

allows for the identification of parametric systemmodels from data sets of large signal dimension and is applicable to

data perturbed by colored noise and acquired in closed-loop operation due to the unbiased estimation of cross-

covariance functions, even in low signal-to-noise conditions. The algorithm is applied to data measured onboard an

F/A-18. The results demonstrate the effectiveness of the algorithm in efficiently computing accurate, unbiased linear

dynamic models from large data sets of high-dimensional signal sets obtained from aircraft in flight.

I. Introduction

V IBRATIONS due to aeroservoelastic (ASE) dynamics of
aircraft structures, commonly referred to as flutter, have the

potential to damage and destroy aircraft in flight if not properly
analyzed and suppressed. The current trend in the analysis of ASE
dynamics is to derive finite element and computational-fluid-
dynamic models of an airframe at various flight conditions, and to
interpolate and extrapolate the damping of flutter modes across the
full flight envelope. These computational models are then validated
through ground testing and, finally, in-flight testing before the
aircraft can be considered operationally safe [1].

In-flight analysis of flutter, however, is inherently difficult due not
only to its dangerous nature but also to the unsteady, turbulent
phenomena that induce it. These effects manifest themselves as
essentially nondeterministic disturbances, or noise, on acquired data.
By nature, this noise is colored and correlated across all measured
signals; perturbations on control-surface positions due to turbulent
airflow are inherently correlated with the perturbations measured in
stress and acceleration on the aircraft. Attempts to analyze data
generated from in-flight experiments must take these facts into
account to avoid inaccurate conclusions.

Most system identification methods assume that the noise on
measured signals is eitherwhite, uncorrelated, or both, and are thus ill-
suited for identifyingASEdynamics.Whendealingwith experimental
data that do not meet these assumptions, techniques from the analysis
of stochastic processes must be incorporated into the identification
methods used. Additionally, many system-identification methods are
based on nonlinear optimizations over cost functions that become
extremely nonconvex for large high-dimensional data sets, making
them infeasible forASEanalysis, inwhichmany sensors are employed
to capture the behavior of the airframe.

Traditional subspace methods [2] have been previously applied to
the identification of aeroelastic dynamics using simulated data from

an F-16 aircraft and measured data from a V-22 rotorcraft [3]. Such

methods assume strictly deterministic inputs in order to remove the

effects of subsequent input on the propagation of the state dynamics

and in order to decorrelate the deterministic and nondeterministic

subsystems. A subspace-based method for online monitoring of

aeroelastic damping was developed and applied to in-flight data by

Mevel et al [4]. This method used output data only and relied on the

autocovariance of the data to determine when statistically significant

damping of vibrationmodes dropped below a given threshold but did

not identify the input–output behavior of the aeroelastic phenomena

and assumed no deterministic control-surface excitation during data

acquisition. This method was later extended to include known,

strictly deterministic inputs [5].
These previous studies all assume disturbances to be white, which

in practice is often insufficient. Nondeterministic effects from
turbulence, sensor noise, and, in the closed-loop case, control-system
feedback will inevitably produce colored noise on the output data. In
such cases, either the modes of the estimated system will be biased
by the disturbance spectrum ([6], pages 253–254), or, if the model
order is chosen to be artificially high, the observable modes of the
strictly nondeterministic subsystem will be estimated alongside the
modes of the deterministic subsystem but be incorrectly identified as
controllable [7]. This is particularly problematic if the dynamic
model is intended to be used for active flutter suppression, as the
control algorithm designed from the derived model will attempt to
control the uncontrollable modes. Additionally, treatment of the
input as strictly deterministic is only possible if the input measured is
actuator commands. In this case, the derived model will include
actuator dynamics (such as servomotor dynamics) as well as
aeroelastic dynamics. If actuator positions are measured instead, the
position measurements will include perturbations that are correlated
with the noise on the measured output data, and the effects of the
input on state dynamics cannot be removed with the standard
methods of orthogonal projections.

Alternative proposed methods of estimating ASE dynamics
include applying frequency-domain total least squares by restricting
the identification to error-in-variables models [8], which allows for
the incorporation of colored noise. An approach based on rational
orthogonal basis functions incorporated static input and output
nonlinearities and addressed the issue of identifying parameter-
varying models [9]. Neither allows for the presence of correlated
noise on both the input and output measurements and, unlike
subspace methods, these methods all require a priori parameter-
ization of the dynamic system.
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Subspace identification refers to a broad class of system
identification methods that estimate system dynamics without the
need for iterative or nonlinear numerical tools. The general approach
of such methods is to estimate state-space system parameters from
the row space of some alternative matrix constructed from measured
data. Although some notable exceptions exist, by far the most
common approach, and the one used in this paper, is to construct
block-Hankel matrices of measured data, and then use various
projection operations to isolate the free response of the system at
subsequent time steps [2].

The goal of this paper is to present a system identification method
that addresses these difficulties and is appropriate for the iden-
tification of aeroelastically induced vibration modes. The method
computes a linear dynamic system in the presence of colored and
correlated noise on both input and output measurements while
remaining scalable to large high-dimensional data sets. The method
uses estimated cross-covariance functions between signals to reduce
the effects of noise and focus on only the input–output behavior
of a system. The result is a subspace identification algorithm
that generalizes realization theory by incorporating results from
stochastic processes and is thereby referred to as a covariance-based
realization algorithm (COBRA) by the authors. The algorithm
possesses resemblance to and inspiration from the eigensystem
realization algorithm (ERA) [10] and the commonly associated
observer/Kalman filter identification (OKID) [11], methods
frequently used in the aerospace community.

Existing subspace methods implicitly assume that covariance
functions are calculated when structured matrices of data are
multiplied together to isolate the system dynamics, including newly
developed “predictor-based” methods [12]. These methods assume
that certain matrix products approach matrices of covariance
functions as the dimensions of the datamatrices become infinite. This
approach can be problematic for data sets inwhich the input or output
signals are of high dimension, as the sizes of the data matrices grow
so quickly that the matrix products become infeasible to compute. In
contrast, our method computes covariance-function estimates
beforehand so that the size of the data matrices remains fixed,
allowing for the use ofmuch larger data sets thanwith other subspace
methods.

The following section of the paper describes the algorithm in
detail. The algorithm is then applied to data measured from in-flight
experiments with a discussion of the various sources of bias that
would result were the identification to be performed from the input–
output data alone. It is shown that COBRA is effective in modeling
induced vibrationmodes for in-flight experiments. Results and future
work are discussed in the Conclusions (Sec. IV), and the relationship
of the algorithm to similar known methods is discussed in the
Appendix.

II. Identification from Dynamic Invariance

This section describes the algorithm to be later applied to the
identification of ASE dynamics. After providing a preliminary
background on stochastic processes necessary to define notation and
assumptions on the measured signals, we demonstrate how shifted
data matrices can be used to estimate the discrete-time invariant
dynamics responsible for propagating the state over samples of
measured data.

A. Preliminary Theory of Stochastic Processes

In the following, the time t is assumed to be an integer index rather
than a continuous time variable. A signal s�t� 2 R

ns is said to be
quasi stationary if it satisfies the two conditions

Es�t� �ms�t�; kms�t�k2 � C (1)

and

Rs��� � lim
N!1

1

N

X

N

t�0

Es�t� ��s�t�T ; kRs���k2 � C (2)

for some C <1, where E denotes expectation, which has no effect
if s�t� is strictly deterministic. The function Rs��� is called the
autocovariance function of s�t�. Similarly, if w�t� 2 R

nw is a second
quasi-stationary signal, then the function

Rsw��� � lim
N!1

1

N

X

N

t�0

Es�t� ��w�t�T

is called the cross-covariance function of s�t� and w�t�. If only N
samples of data are available, the autocovariance and cross-
covariance-function estimates

R̂ s��� �
1

N

X

N

t�0

s�t� ��s�t�T R̂sw��� �
1

N

X

N

t�0

s�t� ��w�t�T

(3)

converge to Rs��� and Rsw���, respectively, as N !1 ([13],
page 32). If S�ej!� andW�ej!� are the Fourier transforms of signals
s�t� and w�t�, respectively, then their cross-covariance-function
estimate may be computed as

R̂ sw��� � F 1�S�ej!�W�ej!���

whereF 1 indicates the inverse Fourier transform and ���� represents
the complex-conjugate transpose. In this paper, all signals are
restricted to being quasi stationary and zero mean.

Next, consider a linear time-invariant discrete-time system
described by the state-space equations

x�t� 1� � Ax�t� � Bu�t� y�t� � Cx�t� �Du�t� � v�t� (4)

which relate the inputu�t� 2 R
nu to the state x�t� 2 R

n and the output
y�t� 2 R

ny in terms of the constant matrices A 2 R
n�n, B 2 R

n�nu ,
C 2 R

ny�n, and D 2 R
ny�nu . Added to the output is a possibly

colored noise signal v�t� 2 R
ny , assumed to be the realization of a

stationary, stochastic process that may or may not share dynamics
with the system described by �A;B;C;D�.We limit Eq. (4) to include
only minimal realizations [14] of stable systems.

If ��t� 2 R
n� is a signal that is correlated with u�t� and v�t�, then

the cross-covariance functions Ru���� 2 R
nu�n� , Ry���� 2 R

ny�n� ,
and Rv���� 2 R

ny�n� will exist. If we define the cross covariance of
the state with ��t� as Rx���� 2 R

n�n� , then the covariance functions
may be expressed in terms of the state-space matrices �A;B;C;D� as

Rx��� � 1� � ARx���� � BRu����

Ry���� � CRx���� �DRu���� � Rv����
(5)

If, however, ��t� is chosen such that it is correlated with u�t� but
uncorrelated with v�t�, then

Rv���� � 0 8 � (6)

and the relationship between Ru���� and Ry����will be limited to the
dynamics of the deterministic subsystem. Examples of such ��t�
include u�t� if it is unperturbed by noise correlated with v�t� and the
system is in open-loop operation, or an external reference signal if the
data is measured in closed-loop operation ([13], page 434).

B. Identification from Dynamic Invariance of Covariance Functions

Let R̂y���� be an estimate of the cross-covariance function Ry����,
as defined in Eq. (3), computed over some domain � 2 ��min; �max�. A
block-Hankel matrix consisting of l block columns of i length

sequences of R̂y����
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R y�

�

R̂y���min� R̂y���min� 1� � � � R̂y���min� l 1�

R̂y���min� 1� R̂y���min� 2� � � � R̂y���min� l�

..

. ..
. ..

.

R̂y���min� i 1� R̂y���min� i� � � � R̂y���min� i� l 2�

2

6

6

6

6

4

3

7

7

7

7

5

2R
iny�ln�

may be expressed as

R y� � ,Rx� � TRu� �Rv� (7)

in which

,� �CT �CA�T �CA2�T � � � �CAi 1�T �T 2 R
iny�n (8)

is the extended observability matrix,

R x� � � R̂x���min� R̂x���min � 1� � � � R̂x���min � l 1� �

2 R
n�ln�

is the propagation of cross covariance of the state x�t� with ��t�,

T �

G�0�

G�1� G�0�

..

. ..
. . .

.

G�i 1� G�i 2� � � � G�0�

2

6

6

6

4

3

7

7

7

5

2 R
iny�inu (9)

is a block-lower-triangular-Toeplitz matrix of the system Markov
parameters

G�k� �

� 0; k < 0;

D; k� 0;

CAk 1B; k > 0

R u�

�

R̂u���min� R̂u���min� 1� � � � R̂u���min� l 1�

R̂u���min� 1� R̂u���min� 2� � � � R̂u���min� l�

..

. ..
. ..

.

R̂u���min� i 1� R̂u���min� i� � � � R̂u���min� i� l 2�

2

6

6

6

6

4

3

7

7

7

7

5

2R
inu�ln�

is a block-Hankel matrix of the cross covariance of the input u�t� and
��t�, and

R v�

�

R̂v���min� R̂v���min� 1� � � � R̂v���min� l 1�

R̂v���min� 1� R̂v���min� 2� � � � R̂v���min� l�

..

. ..
. ..

.

R̂v���min� i 1� R̂v���min� i� � � � R̂v���min� i� l 2�

2

6

6

6

6

4

3

7

7

7

7

5

2R
iny�ln�

is a block-Hankel matrix of the cross covariance of the noise v�t� and
��t�.

Define the shifted Ry� as

-R y�

�

R̂y���min� 1� R̂y���min� 2� � � � R̂y���min� l�

R̂y���min� 2� R̂y���min� 3� � � � R̂y���min� l� 1�

..

. ..
. ..

.

R̂y���min� i� R̂y���min� i� 1� � � � R̂y���min� i� l 1�

2

6

6

6

6

4

3

7

7

7

7

5

2R
iny�ln�

This may be expressed as

-R y� � ,ARx� � T�R�
u� �

-Rv� (10)

in which

T� �

G�1�

..

.
T

G�i�

2

6

4

3

7

5
2 R

iny��i�1�nu

is the block-Toeplitzmatrix ofMarkov parametersT extended by one
block column and

R
�
u� �

�

Ru�

R̂u���min � i� � � � R̂u���min � i� l  1�

�

2 R
�i�1�nu�ln�

is the block-Hankel matrix Ru� extended by one block row.
Our goal is to estimate the parameter A that appears in Eq. (10).

Doing so requires isolating the row space of , by removing the row
spaces of T and T� in Eqs. (7) and (10), respectively. Define the
projector matrix

/� Iln�  �R
�
u��

T��R�
u���R

�
u��

T� 1R�
u� 2 R

ln��ln�

This projector has the property [7]

R u�/� 0inu�ln� R
�
u�/� 0�i�1�nu�ln�

so that multiplication of Eqs. (7) and (10) on the right by/ results in

R y�/� ,Rx�/�Rv�/

and

-R y�/� ,ARx�/� -Rv�/

respectively. A persistently exciting input signal is sufficient to

preserve the row space of , in Ry�/ and -Ry�/ [15].
We are now prepared to precisely define the identification

procedure. Suppose that ,̂ is an estimate of,. Then, the least-squares
estimate of the state dynamics over one time step is

Â� argmin
-A
k -A,̂

†
Ry�/  ,̂

† -Ry�/kF � ,† -Ry�/�,
†
Ry�/�

†

(11)

in which ���† represents the Moore–Penrose pseudoinverse. If at first

the estimate Â appears arbitrary, note that if ,,Ry����, andRu���� are
known exactly, Eq. (11) reduces to

Â� argmin
-A
k� -A  A�Rx�/kF (12)

Hence, Eq. (11) is a least-squares estimate of the propagation of

R̂x���� in one step of �. Although there are several valid ways to

find an estimate ,̂, we choose to employ the singular-value
decomposition (SVD) ofRy�/ so that Eq. (11) reduces to a familiar
closed-form expression.

To estimate ,, first observe that rank�,� � n, and therefore

rank �Ry�/  Rv�/� � n
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Thus, we choose to look for the closest rank-n matrix to Ry�/ in a
2-norm sense; that is,

min
Q
kQ  Ry�/k2 (13)

such that rank�Q� � n.
Define the SVD

R y�/� �Un Us �
3n 0

0 3s

� �

VT
n

VT
s

� �

(14)

inwhich3n is a diagonal matrix containing the first n singular values
ofRy�/, and3s contains the remaining s� iny  n singular values.
The solution to Eq. (13) is then [16]

Q�Un3nV
T
n

Moreover, the error is given by

�n�1 � kUn3nV
T
n  Ry�/k2

so that if the system order n is unknown, it may be estimated by
examining the singular values of Ry�/ and searching for a
significant dropoff.

We then let Q be an estimate ofRy�/. ,̂ may then be taken from
any valid-dimensioned factorization of Q. We choose the
factorization

,̂�Un3
1=2

Rx�/�31=2VT
n (15)

With ,̂ taken from Eq. (15), Eq. (11) reduces to

Â� ,̂
† -Ry�/�,̂Ry�/�

† �3
 1=2
n UT

n
-Ry�/Vn3

 1=2
n (16)

With Ĉ an estimate ofC taken from thefirstny rows of ,̂,B andD can
be shown to be linear in the relationship between Ry���� and Ru����,
and thus solvable via a linear least-squares problem ([13], page 342;
and [17]).

Manymodifications to traditional subspace identificationmethods
can be applied to the described algorithm with similar benefits, such
as implementation of the projection by means of the decomposition
of a matrix into an orthogonal matrix and upper-triangular matrix
([6], pages 155–156) and replacing the orthogonal projectionwith an
oblique projection ([18], page 21).

III. Identification of Aeroservoelastic Dynamics

The COBRA method was applied to in-flight data taken from
accelerometer and pressure measurements onboard an F/A-18
located at NASA’s Dryden Flight Research Center that has been
modified for aeroelastic research. The algorithm requires careful
selection of the instrument signal ��t� to ensure that the system
estimate is unbiased. If ��t� is chosen incorrectly, the result may be
biased by either the noise process or unwanted system dynamics. In
the following two examples, the choice of an appropriate ��t� is
discussed in detail.

A. Collective Leading-Edge Flap Excitation

Consider the identification of the response from the leading-edge
flap (LEF) to the acceleration and pressure sensors. Signal pathways
for the system are shown in Fig. 1, in whichGlef is the collective LEF
actuator dynamics and G the ASE dynamics of interest. The
collective LEF position u�t� is perturbed by a noise signal vlef�t� that
must be assumed correlated with the noise v�t� on the acceleration

and pressure measurements y�t�. The result is that identification
directly from u�t� to y�t�will be biased by the cross spectrum of the
two noise signals, regardless of the identification algorithm used,
unless steps are taken to decorrelate them from the noise.

The reference excitation r�t� was chosen to be a minimax crest
factor multisine [19] of bandwidth between 3 and 35 Hz. The power-
spectral density (PSD) of r�t� is shown in Fig. 2. It can be seen that
r�t� closely resembles white noise in the frequency range of interest.
The signal r�t� is uncorrelated with either noise signal, since it is
deterministic; it may also be treated as quasi stationary, since as a sum
of sinusoids, its autocovariance function exists. Hence, the mapping
between the cross-covariance functions Ryr��� and Rur��� is limited

Fig. 1 Leading-edge flap experiment signal pathways.

Fig. 2 PSD of OBES signal for collective LEF excitation.

Fig. 3 Cross-covariance-function estimate between collective LEF

position �u� and reference �r� for LEF excitation.

Fig. 4 Locations of used and unused accelerometers for the collective

LEF experiment.
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to the dynamics G, and we select ��t� � r�t� when analyzing the
data.

The cross-covariance estimate R̂ur��� is shown in Fig. 3. Only the
data in which the excitation signal r�t� is nonzero were used to
calculate the PSD and cross-covariance functions. The cross-
covariance functions were further truncated to � 2 � 20; 100� after
calculation for identification purposes, since as � increases, the
signal-to-noise ratio of the cross-covariance estimates becomes
prohibitively small.

Because 94 signalswere available for use, an objective criteriawas
created to determine which had a sufficiently high signal-to-noise
ratio. Only signals that had magnitude-square coherence with r�t� of
at least 2

3
averaged over the frequency range 3–35 Hz were selected

from the available measurements. The locations of used and unused
accelerometers are shown in Fig. 4. Only the top-front-left pressure
sensor was used. Although only eight total signals were used for

Fig. 5 Sample of signals measured for the collective leading-edge flap

experiment. Signals with � did not meet coherence threshold and were

not used for identification.

Fig. 6 Singular values of the projected data matrix for the collective

LEF experiment (y axis in log scale).

Fig. 7 Sample of simulation results of the collective LEF experiment.

Fig. 8 Sample of simulation cross-covariance estimates of the collective

LEF experiment.

Fig. 9 Bode plot of the estimated system and spectral estimate of the

collective LEF experiment. Magnitude is in dB, and phase is in degrees.
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identification in this experiment, the collective LEF input is intended
to excite neither rigid-body moments nor bending moments on the
wing, so the low number of usable signals is expected. Excitation of
other surfaceswill naturally produce different selections of signals. A
sample of signals is shown in Fig. 5.

A model was constructed using the COBRA method proposed in
Sec. II. The singular values of the matrix [Eq. (14)] are shown in
Fig. 6. The system order was chosen to be n� 6, which is just before
the magnitude of the singular values appears to flatten out.

Time-domain simulations of the estimated model are shown with
the data in Fig. 7. Cross-covariance estimates from the simulated data
and measured data are shown in Fig. 8. Finally, Bode plots of the
estimated system are compared with spectral estimates [computed
from the cross spectrum of y�t�with r�t� and u�t�with r�t�] in Fig. 9.

B. Differential Aileron Excitation

Next, consider the identification from the differential aileron input
to the acceleration and pressure sensors. Signal pathways are shown
in Fig. 10. As before, the input u�t� is perturbed by a noise signal
vail�t� and the output y�t� by a noise signal v�t�. Additionally, the
system contains a feedback controller C, which augments the
excitation r�t� with a differential aileron command. The feedback
signals to the control system yC�t� are the result of both rigid-body
and ASE dynamics, represented in a combined system GC. The
feedback yC�t� also contains a noise signal vC�t�, which must be
assumed correlated with vail�t� and v�t�.

Because vC�t� appears in u�t� after being filtered through the
dynamics of GC, C, and the aileron servo Gail, direct identification
using u�t� to y�t�will provide an estimate biased by the subsystems
Gail,GC, andC in addition to the various cross spectra of v�t�, vail�t�,
and vC�t�. As before, however, the reference r�t� is uncorrelated with
the noise signals and may be used as an instrument ��t� � r�t� to
provide unbiased results.

Sample signals are shown in Fig. 11. The same coherence-based
criteria of the LEF experiment was used to determine which signals
were acceptable for identification purposes; signals marked by �
were designated unacceptable and not used. A total of 49 output
signals were used for identification purposes for this experiment.

Locations of all used and unused accelerometers are shown in
Fig. 12. Observe that the usable accelerometers are distributed

Fig. 10 Aileron experiment signal pathways.

Fig. 11 Sample of signals used for the differential aileron experiment.

Fig. 12 Locations of used and unused accelerometers for the

differential aileron experiment.

Fig. 13 Singular values of the projected datamatrix for the differential

aileron experiment.
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primarily over the wings, as one would expect from a differential
aileron excitation. The selected accelerometer in the nose measures
lateral motion, explaining its high coherence with r�t�.

A model was again constructed using the method proposed in
Sec. II. The singular values of the projected data matrix [Eq. (14)] are
shown in Fig. 13. The system order was chosen to be n� 12, which
is naturally larger than that of the LEF experiment due to the increase
in the output dimension ny. Additionally, the ailerons have much
more inertial excitation than the LEFs, being heavier and a larger
geometric proportion of the wings, so more response is expected
overall.

Samples of five estimated signal pathways for the 49 used output
signals are shown in Figs. 14–16. Time-domain simulations are
plotted with measured data in Fig. 14, and comparisons with
cross-covariance-function estimates are plotted in Fig. 15. The
enumeration is the same as in Fig. 11. Spectral estimates and Bode
plots of the estimated system are shown in Fig. 16.

IV. Conclusions

A novel subspace identification algorithm has been presented that
produces accurate, unbiased, linear models from measured data
of a large signal dimension (i.e., data acquired from many sensors).
The algorithm employs covariance-function estimates, uses a

Fig. 15 Sample of simulation cross-covariance estimates of the

differential aileron experiment.

Fig. 14 Sample of simulation results of the differential aileron
experiment.

Fig. 16 Bode plot of the estimated system and spectral estimate of the
differential aileron experiment. Magnitude is in dB, and phase is in

degrees.
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dynamic-invariance property of the output signals with a strong
relationship to classical realization theory, relies exclusively on
reliable numerical linear algebra techniques, and requires no iterative
solution. The convergence of covariance-function estimates is used
to handle large data sets in both open- and closed-loop experiments.
The algorithm has been successfully applied to data measured in
flight from the NASA Active Aeroelastic Wing F/A-18 for both
open-loop and closed-loop experiments.

As a final note, it is mentioned that the algorithm is capable of
analyzing data from multiple inputs and references and would, in
theory, provide similar results were the two experiments combined
into a single experiment. Data for such an experiment, however, are
currently unavailable to the authors.

Appendix

This appendix discusses the relationship of the COBRA method
to similar subspace identification methods. It is shown that,
when a purely white-noise input is used and the covariance-
function estimates computed over a specific domain, the algorithm
asymptotically generalizes to the well-known eigensystem realiza-
tion algorithm.

I. Relationship to the Eigensystem Realization Algorithm

When the input data are purely white, the preceding algorithm can
be shown to reduce to a realization algorithm from noise-corrupted
Markov parameters due to the autocovariance function of the input
approaching a unit impulse [24].

To see this, let H be a block-Hankel matrix of system Markov
parameters starting at G�1�,

H �

G�1� G�2� G�3� � � �

G�2� G�3� G�4� � � �

..

. ..
. ..

.

G�i� G�i� 1� G�i� 2� � � �

2

6

6

6

4

3

7

7

7

5

2 R
iny�1

and let -H be a block-Hankel matrix of Markov parameters starting at
G�2�,

-H �

G�2� G�3� G�4� � � �

G�3� G�4� G�5� � � �

..

. ..
. ..

.

G�i� 1� G�i� 2� G�i� 3� � � �

2

6

6

6

4

3

7

7

7

5

2 R
iny�1

Data-matrix equations (7) and (10) can be expressed as

R y� �HR
p
u� � TRu� �Rv�

and

-R y� � -HR
p
u� � T�R�

u� �
-Rv�

respectively, where R
p
u� is a block-Toeplitz matrix of input data,

R
p
u� �

R̂u���min  1� R̂u���min� � � � R̂u���min � l 2�

R̂u���min  2� R̂u���min  1� � � � R̂u���min � l 3�

R̂u���min  3� R̂u���min  2� � � � R̂u���min � l 4�

..

. ..
. ..

.

2

6

6

6

6

4

3

7

7

7

7

5

2 R
1�l

Suppose u�t� is a noise-free white-noise input, and let

��t� � u�t  1�. Then, R̂u���� will converge to a unit pulse at � �
 1 as N !1. Let �min � 0 and i > n. Then,Ry� � 0,/� Il, and

HR
p
u� and

-HR
p
u� become finite products where the first l rows ofR

p
u�

are Il and the rest are 0. Hence, as the number of samples used to
construct the cross-covariance-function estimates N !1,

R y� ! H -Ry� ! -H

Thus, Eq. (16) will asymptotically become a construction of a
state-space realization from estimates of Markov parameters by
means of the SVD, which is the main step of the ERA [10].

II. Relationship to Other Subspace Identification Methods

The algorithm proposed in this paper differs from classical
subspace algorithms in two critically significant ways: we propose to
solve for the system dynamics based on variation of covariance-
function estimates, and we solve for the system matrices, based not
on the shift invariance of the extended observabilitymatrix but on the
one-time-step variation of the measured data.

When the instrument ��t� is chosen to be the input signal u�t�
or the composite signal ��t� � � yT�t� uT�t� �T , the algorithm
resembles the MOESP family of algorithms [20], which can be
shown to reduce to forming cross-covariance estimates between the
output and input during the projection step [21]. However, because
PI-MOESP, PO-MOESP, and their related variants, such as robust
N4SID ([18], page 112; and [22]), rely on the null-space projection to
decorrelate the noise from the output data, they will only produce
unbiased estimates when the input is noise free [23]. Additionally,
the orthogonal projection must be replaced with an oblique
projection to guarantee unbiased estimates in the case of colored
output noise [20], which effectively limits the size of the data
matrices available for identification since some rows of the data
matrices must be selected to construct an oblique subspace.

An extension of MOESP has been proposed in which the system is
perturbed by input, output, and state noise, whichmay all be correlated,
so long as all noise signals arewhite, and this approachmaybe extended
to the closed-loop case [23]. If the input or output measurement noise is
colored, however, the estimates will once again become biased.
Moreover, few of the methods address the issue of bias on the estimates
of B and D, which determine the location of the system zeros.
Identification via covariance-function estimates inherently guarantees
that the identification will be constrained to the deterministic content of
the data for all linear time-invariant systems. Additionally, because
covariance-function estimates may be computed via the fast Fourier
transform, effectivelypre-averaging thedata, the amount of data that can
be used for estimation purposes dramatically increases.
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