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Abstract Fluid-particle systems, in which internal forces
arise only from viscosity or intergranular friction, represent
an important special case of strictly dissipative materials
defined by a history-dependent 4th-rank viscosity tensor. In
a recently proposed simplification, this history dependence
is represented by a symmetric 2nd-rank fabric tensor with
evolution determined by a given homogeneous deformation.
That work suggests an essential physical link between ideal-
ized suspensions (“Stokesium”) and granular media (“Mohr-
Coulombium”) along with possible models for the
visco-plasticity of fluid-saturated and dry granular media.
The present paper deals with the elastoplasticity of dilatant
non-cohesive granular media composed of nearly rigid, fric-
tional particles. Based on the underlying physics and past
modeling by others, a continuum model based on paramet-
ric hypoplasticity is proposed, which involves a set of rate-
independent ODEs in the state-space of stress, void ratio and
fabric. As with the standard theory of hypoplasticity, the pres-
ent model does not rely on plastic potentials but, in contrast
to that theory, it is based explicitly on positive-definite elas-
tic and plastic moduli. The present model allows for elastic
loading or unloading within a dissipative yield surface and
also provides a systematic treatment of Reynolds dilatancy
as a kinematic constraint. Some explicit forms are proposed
and comparisons are made to previous hypoplastic models
of granular media.
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1 Introduction

The strictly (or “purely”) dissipative material [3,5] provides
an eminently plausible constitutive framework for the quasi-
static mechanics of wet or dry granular media dominated
by intergranular friction and viscosity. If such a medium is
free of internal kinematic constraints, the local Cauchy stress
T(t) is given in terms of local deformation rate D(t) by the
pseudolinear form:

T(t) = η :D(t) (i.e. Ti j (t) = ηi jkl Dkl(t)), (1)

where η denotes a positive-definite viscosity depending gen-
erally on D(t) and on local deformation history for past times
t ′ < t , which for the present we denote by h = h(t) but later
specify more precisely.

Here, as in the following, we denote second-rank tensors
by bold uppercase Roman and Greek symbols, A,B, . . ., and
fourth-rank tensors, regarded as linear operators on second-
rank tensors, by bold lowercase Greek, α,β, . . .. Moreover,
the respective idemfactors are denoted by 1, with components
δi j , and by δ, with components δi jkl = δikδ jl (or an appro-
priately symmetrized form), and we employ standard tensor
notation and summation convention for components on arbi-
trary curvilinear coordinates, with colons denoting ordered
pairwise contraction on the trailing indices of prefactors with
leading indices of postfactors. Primes denote deviators:

A′ := A − 1

3
1(1 :A), . . . α′ := α − 1

3
1(1 :α), . . . (2)

and superposed carat denotes the versor (or director) of real
second rank tensors:

̂A := A
|A| , where |A| := (A :AT)1/2 ≡ Ai j Ai j , (3)
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while superscripts T and * denotes respective transpose or
tensorial duals, with AT

i j := A ji and α∗
i jkl := αkli j , etc.

As the vector-space generalization of the signum function,
B = ̂A is defined for vanishing |A| as set-valued, with equal-
ity “=” to be interpreted as inclusion “∈”.

The relation (1) provides a theoretical framework for the
rheology of idealized rigid-particle suspensions in viscous
fluids [5], representing the titular Stokesium. A general model
of rigid plasticity is obtained from (1) on replacing η by
µP/|D|, to give:

T(t) = µP :̂D(t), (4)

where µP = µP(h,̂D) defines a positive-definite plastic
modulus, and D is to be identified with plastic deformation
rate, say, DP. Here as in the following, subscripts P refer to
quantities associated with plastic deformation.

As will become evident below, (4) provides both yield
locus and flow rule [3]. With the proper dependence of µP on
confining pressure, (4) provides a general theoretical frame-
work for idealized assemblies of rigid frictional particles, the
titular Mohr-Coulombium. The purpose of this article is to
set down a more complete definition of the latter, together
with a plausible extension to the elastoplasticity of granular
media.

Here and below, we denote various 4th-rank elastoplastic
moduli by the symbol µ and the corresponding compliances
by κ = µ−1, such that, whenever these represent invertible
linear transformations on the space of second-rank tensors,

κ :µ = δ, (i.e. κi jkl µ
kl
. . mn = δi jmn), (5)

Since µP is positive definite, hence invertible, (4) can be
written in the inverse form as the flow rule:

̂D = κP :T, (6)

where, in keeping with the usual plasticity modeling, κP =
κP(h,T). A connection is given in the Appendix to plastic
potentials, which are not essential to the present theory.

Since |̂D| = 1, a yield surface follows immediately from
(6) as [3]:

Y := ||T||2ζ := T :ζ :T = 1, where ζ = κ∗
P :κP, (7)

with || ||ζ representing dissipation norm. Then, the condition
Y < 1 on this norm can be taken to define rigid states lying
within the yield surface.

1.1 Rigid grains (Mohr-Coulombium)

We now consider a form of the above theory appropriate to
assemblies of noncohesive, perfectly rigid grains undergoing
quasi-static deformations. Since such a medium is devoid
of inherent time scale, a rate-independent form like (4) is
immediately applicable. As additional important properties,

we expect such a medium to exhibit (1) Reynolds dilatancy
and (2) no characteristic internal stress.

Following Reynolds [15], dilatancy is treated as a (nonhol-
onomic) kinematic constraint, expressed here by a coefficient
of dilatancy α [6]:

tr(D) ≡ 1 :D = α|D′|, with α = α(h, D̃),

D̃ = ̂D′ ≡ D′

|D′| , (8)

This represents a general cone in D-space, with polar axis
defined by the isotropic direction ̂1 and azimuthal hyper-
planes by D̃. As a matter to be discussed below, note that
the special case of homogeneous isotropic compression with
D′ = 0 is not allowed by (8). Furthermore, owing to the dilat-
ancy constraint, tr(D) can no longer be derived from (6), and
we must replace ̂D, κP by their deviatoric forms in (6) and
(7). In effect, this renders (6) non-invertible, and, by a slight
extension of a well-known principle for holonomic material
constraints [17], T is determined only up to to an additive,
purely reactive stress TR satisfying TR : D = 0 for all kine-
matically admissible D, as defined by (8). This reactive stress
defines a second cone, with generators orthogonal to the cone
(8), which represents the (Reynolds-Rowe) yield surface for
a hypothetical frictionless assembly having the same α as the
actual assembly [6].1

The above cones are conveniently expressed as dual
pseudolinear forms:

D :(D̃ − tan φD̂1) = 0 & TR :(D̃ + cot φD̂1) = 0,

with φD = arccot
α√
3
, (9)

illustrated schematically in Fig. 1. With 1 representing polar
axis, φD(h, D̃) represents the polar angle of dilatancy (dif-
ferent from that employed by Roscoe)[6].

The reaction stress can be expressed generally as the pro-
jection [12, Eq. (5.13.4)]

TR =π :Λ, where π := δ − (D̃ +α1/3)⊗ (D̃ +α1/3)
(1 + α2/3)

,

(10)

with Λ denoting an arbitrary symmetric 2nd-rank tensor.
However, since the dilatancy constraint removes but one
degree of freedom, Λ can be treated as known up to a rheolog-
ically indeterminate scalar multiplier, with ̂Λ given possibly
by yet another constitutive equation.

We note further that any Λ not contained in the (hyper)
plane spanned by D̃ and 1 involves a gyration or “twist” of
TR out of this plane [6]. Ruling out such an effect by choos-
ing Λ to be a linear combination of D̃ and 1, we find from

1 It should be noted that certain quasi-static numerical simulations [6]
yield a non-zero value of α for frictionless spheres, whereas others
[14,16] give α = 0, somewhat at odds with the ideas of Reynolds [15].
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Fig. 1 Schematic of dilatancy cone and orthogonal cone of reaction
stress TR , in a meridional hyperplane D̃ = const. of D-space

(10) that TR is proportional to αD̃ − 1. Hence, the inverse of
(6) can be written

T = µ′
P : D̃ + ανP1 + p(αD̃ − 1), where 1 :µ′

P = 0, (11)

where p = −tr(TR)/3 represents the reaction to the dilat-
ancy constraint, assuming its well-known role in the limiting
case of an incompressible material α ≡ 0, and the scalar νP

describes an isotropic friction in compression. The positivity
of

T : D̃ ≡ D̃ :µ′
P : D̃ + νPα

2, (12)

requires positivity of µ′
P, νP.

The absence of cohesion or other characteristic stress dic-
tates that stresses appear in constitutive equation only as
stress ratios and that the confining pressure be positive. This
defines yet another cone, whose form is rendered definite by
choosing the coefficients in (11) proportional to p ≥ 0. In
this case, (11) can be rewritten as

T̃ := T/p = µ′
C : D̃ + αD̃ + (ανC − 1)1, (13)

where µ′
C = µ′

C/p and νC = νP/p represent non-dimen-
sional (Coulomb) friction coefficients, and (13) serves to
define the cone

|T′| = √
3 p tan φµ, or T :

(

T̃ + tan φµ̂1
)

= 0,

φµ = arctan

{

(

D̃ :µ′∗
C :µ′

C : D̃ + α2/3
)1/2

}

⎫

⎪

⎬

⎪

⎭

(14)

φµ defines an apparent angle of internal friction, and the
corresponding yield surface is illustrated schematically in
Fig. 1. It generally does not have an isotropic or “circular”
(Drucker-Prager) form [6].

This completes our description of rigid plasticity, and
we now consider the modifications necessary to account for
slightly elastic particles.

2 Elastoplasticity and hypoplasticity

To account for elastic effects, we adopt the usual distinction
between elastic and plastic deformation rates, with plastic
rate DP given by (6) and elastic rate by a tangential elastic
compliance, say κE(h,T), and

DE = κE : ◦
T, (15)

where
◦
T represents an objective (e.g. Jaumann) rate. Then,

the standard incremental elastoplasticity based on additive
rates gives

DE + DP = κE : ◦
T +|D′

P|
(

κ ′
P:T + 1

3
α1

)

= D (16)

which can be rewritten in the usual hypoplastic form as

◦
T= µH :D − |D|N,
N := ϑ√

1+α2/3
µH :

(

κ ′
P:T + 1

3
α1

)

, ϑ := |DP|
|D| ,µH≡µE

⎫

⎪

⎬

⎪

⎭

(17)

However, the standard hypoplastic model [10] takes ϑ ≡ 1,
making no distinction between DP and D, and does not rely
on the existence of a yield surface2. Also, µH and N are
taken to be isotropic tensor functions of T(t), and µH is not
necessarily symmetric or positive definite.3

After consideration some salient features of (17), we show
below how it can be considered part of a more general hyp-
oplasticity.

The rate-independent form of (17) allows one to eliminate
time t in favor of accumulated plastic strain:

tP =
t

∫

0

|DP|(t ′)dt ′ =
t

∫

0

ϑ |D|(t ′)dt ′ (18)

However, in the elastoplastic model this time-strain map
requires a further constitutive relation (“inelastic clock”) for
ϑ in (17) to describe the evolution of tP, e.g. a relation of the
(Hill-Rice) form:

ṫP = ϑ(h,T)|D| (19)

where ϑ = 0 in elastic states. Consistent with (7), one pos-
sibility is

ϑ = H(Y − 1), (20)

2 whose precise definition is questioned even by eminent exponents of
the classical theory [8].
3 Gurtin [7] concludes that a plasticity with yield locus follows from
the hypoelastic form [10,17] of (17), N ≡ 0, but it is not clear how
the implied history dependence can be achieved if µH depends only on
present stress.
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where H denotes the Heaviside step with H(0) := H(0+)=1.
Hence, given evolution equations for h, one has complete
evolution equations for stress.

Interpreting the elastic compliance in (15) in terms of a
complementary strain energy

κE = ∂T⊗∂TϕE, (21)

we find that
∫

T :DEdt =
∫

T :κE : ◦
T dt =

∫

∂TψE :dT,

where
ψE = T :∂TϕE − ϕE

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(22)

Hence, for the dilatant plasticity model defined by (11), the
stress work on any cycle is given by

∮

T :Ddt =
∮

∂TψE :dT

+
∮

(D̃P :κ ′
P : D̃P + νPα

2)|D′
P|dt, (23)

which is obviously positive for cycles on which ψE can be
regarded as a function of T alone. This constitutes a weak
version of Il’yushin’s postulate [11] and distinguishes the
present model from the most general form of (17).

2.1 Parametric hypoplasticity

With a view to granular media, Wu and Bauer [1,18,19]
have proposed variants of the standard hypoplastic model,
the more recent of which [1] allow µH and N to depend on
void ratio e. They adopt the well-known relation for incom-
pressible grains

ė = (1 + e)tr(D), (24)

with no kinematic restriction on tr(D). This provides a
phenomenological description of isotropic compaction, com-
patible with critical-state soil mechanics, at pressures com-
parable to a characteristic pressure (given by their “hardness”
hs). This same parameter allows for a cap on the yield locus
defined by vanishing of stress rate in (16, 17). The Wu–Bauer
model represents dynamics in state-space X = {T, e} gov-
erned by an ODE, homogeneous degree-one in control vari-
able D:

◦
X= H(X ,D),with H(X , λD) = λH(X ,D), λ ≥ 0,

(25)

as anticipated in early works on hypoplasticity [9]. The
underlying model, which we denote here as parametric

hypoplasticity, also provides a model of rate-independent
hysteresis in numerous other settings.

Provided κE, κ
′
P, α depend only on X , the elastoplastic

model (17) can also be represented by parametric hypoplas-
ticity, with X := {T, tP, e} and

ė = (1 + e)tr(DP) = (1 + e)αϑ
√

1 + α2/3
|D|, (26)

which follows from the standard multiplicative decomposi-
tion of deformation gradient [11] and reduces to (24) for
D → DP, α → ∞. Conversely, an incompressible fluid-sat-
urated granular medium is represented by α = 0.

The ODE (25) is now represented by the set (17), (19, 20)
and (26), with (19) and (26) providing an ODE for de/dtP.
Thus, without any appeal whatsoever to plastic potentials,
we obtain a proper dilatant variant of standard elastoplas-
ticity with plastic strain tP, given by (19, 20), as the sole
descriptor of deformation history h.

Note that (26) allows for isotropic compression, D′ =
D′

P + D′
E = 0, construed to arise from the deformation of

elastic grains. In this regard, we recall that the packing den-
sity of rigid spheroids changes rapidly in the near-sphere
limit [2], suggesting that small elastic deformations could
have large effects on granular dilatancy. In the case of stiff
particles, with α � 1, we have

tr(D) = 1 :κE : ◦
T +α|κ ′

E : ◦
T | = α|κ ′

E : ◦
T |{1 + O(α−2})},

(27)

This relation is compatible with “stiff” elastoplasticity [13,
pp. 301 ff.], represented here by

ε = ||κE||
||κP|| = p||κE||

||κC|| << 1, with α ∝ ε−1 (28)

In this limit, (16) reduces to a stiff ODE, with D ≈ DP,
except on small elastic strain scales
tP = O(ε) near points
of elastic loading or unloading. This model appears particu-
larly appropriate to relatively stiff geomaterials such as sand,
where the continuum-level elasticity can be associated with
Hertzian-type contact between nearly rigid grains.

As suggested by previous models [19], the compatibility
of (27, 28) with critical-state soil mechanics would no doubt
require a more complicated dependence of the dilatancy coef-
ficient α on confining pressure.

2.2 Anisotropy and fabric

In the models considered above, the 4th-rank moduli and
compliances denoted by µ, κ etc. are assumed given as either
functions of current stress T or current deformation rate D,
together with scalar quantities such as void ratio and accu-
mulated plastic strain. If the models are assumed to represent
isotropic materials, then the moduli and compliances can be
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represented as isotropic polynomials in T or D, as proposed
in prior literature on the subject [4,10].

In the context of hypoplasticity, the early work of Kolym-
bas [9] recognizes the need for additional internal variables
to describe strain-induced anisotropy, in particular a 2nd-
rank tensor, which can be identified here with the granu-
lar fabric tensor A [5,13]. The evolution of A, governed by
hypoplastic ODEs, defines the dependence on deformation
history h. A more general set of internal variables: A =
{A1,A2, . . . ,An}, A1 ≡ A is defined by the hypoplastic
system:

◦
Ak= |D′

P|Ak+1, for k = 1, . . ., n − 1,
◦
An= H(X ,D′

P), X = {T, e,A}

}

(29)

where H represents a hypoplastic form like that in (17) and
◦ denotes the objective rate introduced above.

Recent work on dense fluid-particle suspensions [5] indi-
cates that the lowest-order model, n = 1, with tr(A) = 0,
suffices to describe induced anisotropy in simple shear. A
similar simplification for dry granular media would give rise
to the form (25) proposed above, as represented by (17, 26),
and the last two equations of (29), where A ≡ A, and where
H, κE, κ

′
C, νC, α are given as isotropic functions of X . In this

case,
◦
X can be expressed in terms of isotropic tensor poly-

nomials in T,A [5,9,10,18,19]. We further recall that Wu
et al. [18,19] obtain good empirical fits of similar models to
triaxial and cyclic shear tests on sand, even without explicit
dependence on A. This suggests that one might obtain an ade-
quate model for more complex deformations with a low-order
expansion in A of the type employed for suspensions [5].

3 Conclusions

A theoretical framework has been proposed for the elasto-
plasticity of non-cohesive, stiff granular media based on the
notion of parametric hypoplasticity. The theory incorporates
Reynolds dilatancy as kinematic constraint and also allows
for strain-induced anisotropy based on the evolution of gran-
ular fabric. The success of empirical models based on simpler
isotropic versions of hypoplasticity [18,19] make them plau-
sible starting point for further refinement based on the present
theory.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: plastic potentials

A sufficient (but not necessary) condition for the positivity
of κP is that it be given by the Hessian of a convex potential

ϕP = ϕP(h,T):

κP = ∂T⊗∂TϕP (i.e. κi jkl = ∂T i j ∂T klϕ), (30)

whence one obtains a well-known flow rule:

̂DP = ∂TψP ≡ T :∂T⊗∂TϕP, where ψP = T :∂TϕP − ϕP,

(31)

ψP, ϕP representing a dissipative potential and its Legendre
complement or dual, respectively. Then, (4) represents the
inverse form:

T = ̂D :∂
̂DP

⊗∂
̂DP
ψP ≡ ∂

̂DP
ϕP, with µP = ∂

̂DP
⊗∂

̂DP
ψP

(32)

The standard Legendre transformation treats ψP as function
of T and ϕP as function of ̂DP, but invertibility allows for the
interchange of roles.
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