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Abstract— This paper presents a new algorithm for the design of
linear controllers with special structural constraints imposed on the
control gain matrix. This so called SLC (Structured Linear Control)
problem can be formulated with linear matrix inequalities (LMI’s)
with a nonconvex equality constraint. This class of problems includes
fixed order output feedback control, multi-objective controller design,
decentralized controller design, joint plant and controller design, and
other interesting control problems.

Our approach includes two main contributions. The first is that
many design specifications are described by a similar matrix inequality.
A new matrix variable is introduced to give more freedom to design
the controller. Indeed this new variable helps to find the optimal fixed-
order output feedback controller. The second contribution is to propose
a linearization algorithm to search for a solution to the nonconvex SLC
problems. This has the effect of adding a certain potential function
to the nonconvex constraints to make them convex. The convexified
matrix inequalities will not bring significant conservatism because they
will ultimately go to zero, guaranteeing the feasibility of the original
nonconvex problem. Numerical examples demonstrate the performance
of the proposed algorithms and provide a comparison with some of the
existing methods.

I. INTRODUCTION

Control problems are usually formulated as optimization prob-
lems. Unfortunately, most of them are not convex [1], and a few
of them can be formulated as linear matrix inequalities (LMI’s). In
the LMI framework, one can solve several linear control problems
in the form of minK f(T(ζ)), where K is a controller gain matrix,
f(·) is a suitably defined convex objective function and T(ζ) is the
transfer function from a given input to a given output of interest.
For this problem, one can find a solution efficiently with the use
of any LMI solver [2], [3]. However, the problem becomes difficult
when one adds some constraints on the controller gain matrix K.

Any linear control problem with structure imposed on the con-
troller parameter K will be called a “Structured Linear Control
(SLC)” problem. This SLC problem includes a large class of
problems such as decentralized control, fixed-order output feedback,
linear model reduction, linear fixed-order filtering, the simultane-
ous design of plant and controller, norm bounds on the control
gain matrix, and multi-objective control problems. Among these
problems, the fixed order output feedback problem is known to be
NP-hard. There are many attempts to solve this problem [6], [7],
[5], [1], [8], [12], [13], [15]. Most algorithms try to obtain a stable
controller rather than find an optimal controller. Among those, the
approach proposed in [15] is quite similar to our approach. There
the author expanded the domain of the problem by introducting new
extra variables and then applying a coordinate-descent method to
compute local optimal solutions for the mixedH2 andH∞ problem
via static output feedback. Unfortunately, this approach does not
guarantee local convergence.

Multi-objective control problems also remain open. Indeed, these
problems can also be formulated as an SLC problem, since this
problem is equivalent to finding multiple controllers for multiple

plants where we restrict all controllers to be identical. For the full-
order output feedback case, authors have proposed to specify the
closed-loop objectives in terms of a common Lyapunov function
which can be efficiently solved by convex programming methods
[4]. An extended approach has been proposed to relax the constraint
on the Lyapunov matrix [9]. It is well known that these approaches
are conservative and can not be applicable to the “fixed-order multi-
objective controller synthesis problem”.

Recently, a convexifying algorithm has been proposed [11] with
interesting features. This algorithm solves convexified matrix in-
equalities iteratively. These convexified problems can be obtained by
adding convexifying potential functions to the original nonconvex
matrix inequalities at each iteration. Although the convexifying
potential function is added, the convexified matrix inequalities will
not bring significant conservatism because they will go to zero
by resetting the convexifying potential function to zero at each
iteration. Due to the lack of convexity, only local convergence can
be guaranteed. However, this algorithm is easily implemented and
can be used to improve available suboptimal solutions. Moreover,
this algorithm is so general that it can be applicable to almost all
SLC problems.

The main objective of this paper is to present the optimal
controller for SLC problems using a linearization method. The
second objective is to present new system performance analysis con-
ditions which have several advantages over the original performance
analysis conditions. Many design specifications such as general
H2 performance including H2 performance, H∞ performance, `∞
performance, and the upper covariance bounding controllers can be
written in a very similar matrix inequality. We introduce a new
matrix variable for these system performance analysis conditions.
As a result, we have more freedom to find the optimal controller.

The paper is organized as follows. Section II describes a frame-
work for SLC problems and then we derive new system performance
analysis conditions. Based on these, a new linearization algorithm
is proposed in section III. Two numerical examples illustrate the
performance of the proposed algorithms as compared with the
existing results in section IV. Conclusions follow.

II. SYSTEM PERFORMANCE ANALYSIS

A. Models for Control Design

For synthesis purposes, we consider the following discrete time
linear system.

P

8

<

:

xp(k + 1) = Apxp(k) + Bpu(k) + Dpw(k)
z(k) = Czxp(k) + Bzu(k) + Dzw(k)
y(k) = Cyxp(k) + Dyw(k)

(1)

where xp ∈ <
np is the plant state, z ∈ <nz is the controlled

output, and y ∈ <ny is the measured output. We assume that
all matrices have suitable dimensions. Our goal is to compute an



output-feedback controller that meets various specifications on the
closed-loop behavior,

K



xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(2)

where xc ∈ <
nc is the controller state and u ∈ <nu is the control

input. By assembling the plant P and the controller K defined as
above, we have the compact closed-loop system

»

x(k + 1)
z(k)

–

=

»

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

– »

x(k)
w(k)

–

(3)

where the controller parameter K and the closed loop states x are

K
4
=

»

Dc Cc

Bc Ac

–

; x
4
=

»

xp

xc

–

and the closed loop matrices

Acl(K)
4
= A+ BKC ; Bcl(K)

4
= Dp + BKDy

Ccl(K)
4
= Cz + BzKC ; Dcl(K)

4
= Dz + BzKDy

are all affine mappings on the variable K, that is
»

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

–

= Θ + ΓKΛ

where

Θ
4
=

»

A Dp

Cz Dz

–

, Γ
4
=

»

B
Bz

–

, Λ
4
=
ˆ

C Dy

˜

and all matrices given by

A
4
=

»

Ap 0

0 0nc

–

, B
4
=

»

Bp 0

0 Inc

–

,

C
4
=

»

Cy 0

0 Inc

–

, Cz
4
=
ˆ

Cz 0
˜

, Dy
4
=

»

Dy

0

–

,

Bz
4
=

ˆ

Bz 0
˜

, Dp
4
=

»

Dp

0

–

, Dz
4
= Dz

are constant matrices that depend only on the plant properties.

B. Multi-objective Control

The multi-objective control problem is defined as the problem of
determining a controller that simultaneously meets several closed-
loop design specifications. We assume that these design specifi-
cations are formulated with respect to the closed loop transfer

functions of the form Ti(ζ)
4
= LiT(ζ)Ri where the matrices

Li,Ri select the appropriate input/output channels or channel
combinations. From the dynamic matrices of system (1), a state-
space realization of the closed loop system Ti(ζ) is obtained by
defining new matrices as follows

(Dp)i
4
= DpRi (Dy)i

4
= DyRi (Dz)i

4
= LiDzRi

(Bz)i
4
= LiBz (Cz)i

4
= LiCz

in the closed-loop matrices (3). In this form, closed-loop system
performance and robustness may be ensured by constraining the
general H2 and H∞ norms of the transfer functions associated to

the pairs of signals wi
4
= Riw and zi

4
= Liz.

C. General H Control Synthesis

System gains for the discrete-time system (3) can be defined as
follows[1].

• Energy-to-Peak Gain : Υep
4
= sup‖w‖`2

≤1 ‖z‖`∞ .

• Energy-to-Energy Gain : Υee
4
= sup‖w‖`2

≤1 ‖z‖`2 .

• Pulse-to-Energy Gain : Υie
4
= sup

w(k)=w0δ(k),‖w0‖≤1 ‖z‖`2 .

where ‖z‖`2
4
=
`
P∞

k=0 ‖z(k)‖2
´

1

2 , ‖z‖`∞
4
= supk≥0 ‖z(k)‖ ,

and δ(·) is the Kronecker delta : δ(k) = 0 for all k 6= 0. ‖A‖ is the
spectral norm of a matrix A. These system gains are characterized
in terms of algebraic conditions. The following results are essential
to derive a new system performance analysis.

Lemma 1: Consider the asymptotically stable system (3). Then
the following statements are equivalent.

(i) There exist matrices X ,Υ and K such that

X > Acl(K)XAT
cl(K) + Bcl(K)BT

cl(K)
Υ > Ccl(K)XCT

cl(K) + Dcl(K)DT
cl(K)

ff

(4)

(ii) There exist matrices X ,Υ,Z and K such that
»

X Z
ZT Υ

–

>

»

Acl Bcl

Ccl Dcl

– »

X 0

0 I

– »

Acl Bcl

Ccl Dcl

–T

(5)

(4) is the existence condition of (5) for Z . One can easily prove
this lemma using the elimination lemma. Similarly, we can obtain
the following results for the dual form of (5).

Corollary 1: Consider the asymptotically stable system (3). Then
the following statements are equivalent.

(i) There exist matrices X ,Υ, and K such that

Y > AT
cl(K)YAcl(K) + BT

cl(K)Bcl(K)
Υ > CT

cl(K)YCcl(K) + DT
cl(K)Dcl(K)

ff

(6)

(ii) There exist matrices X ,Υ,Z, and K such that
»

Y Z
ZT Υ

–

>

»

Acl Bcl

Ccl Dcl

–T »

Y 0

0 I

– »

Acl Bcl

Ccl Dcl

–

(7)

Note that (4) describes an upper bound to the observability Gramian
X and (6) describes an upper bound to the controllability Gramian
Y . Using Lemma 1 and Corollary 1, we can establish new system
performance analysis conditions as follows.

Theorem 1: Consider the asymptotically stable system (3). Sup-
pose a positive scalar γ is given. Then the following statements are
true.

(i) Υep < γ if and only if there exist matrices K, Z,X and Υ

such that γI > Υ and (5) holds.
(ii) Υie < γ if and only if there exist matrices Z,X and Υ such

that γI > Υ and (7) holds.
(iii) ΥH2

=
‚

‚Ccl(K) (ζI−Acl(K))−1
Bcl(K) + Dcl(K)

‚

‚

2
<

γ if and only if there exist matrices K, Z , X and Υ such that
trace[Υ] < γ2 and (5) hold.

(iv) Υee =
‚

‚Ccl(K) (ζI−Acl(K))−1
Bcl(K) + Dcl(K)

‚

‚

∞
<

γ if and only if there exist matrices K, X and Υ such that γ2I > Υ

and (5) hold with Z = 0.
The statement (i) is often called the general H2 control problem

[4]. The statement (iii) characterizes theH2 control problem and the
statement (iv) characterizes the H∞ control problem. We can easily
see that theH2 norm and theH∞ norm is closely related. One of the
interesting features of Theorem 1 is its compact form, and the fact
that many performance specifications have similar forms. Indeed all



Ho(X ,Z)
4
=

8

>

>

<

>

>

:

(X ,Z)

˛

˛

˛

˛

˛

˛

˛

˛

"

ˆ

C Dy

˜T

⊥
0

0 I

#

2

6

6

4

X−1 0

0 I
(?)T

A Dp

Cz Dz

X Z
ZT Υ

3

7

7

5

»
ˆ

C Dy

˜

⊥
0

0 I

–

> 0 ,

ˆ

BT BT
z

˜T

⊥

 

»

X Z
ZT Υ

–

−

»

A Dp

Cz Dz

– »

X 0

0 I

– »

A Dp

Cz Dz

–T
!

ˆ

BT BT
z

˜

⊥
> 0 , X > 0

)

(8)

Hc(Y,Z)
4
=

8

>

>

<

>

>

:

(Y,Z)

˛

˛

˛

˛

˛

˛

˛

˛

"

ˆ

BT BT
z

˜T

⊥
0

0 I

#

2

6

6

4

Y−1 0

0 I
(?)T

A Dp

Cz Dz

Y Z
ZT Υ

3

7

7

5

»
ˆ

BT BT
z

˜

⊥
0

0 I

–

> 0 ,

ˆ

C Dy

˜T

⊥

 

»

Y Z
ZT Υ

–

−

»

A Dp

Cz Dz

– »

Y 0

0 I

– »

A Dp

Cz Dz

–T
!

ˆ

C Dy

˜

⊥
> 0

)

(9)

ΦX (X )
4
=

(

X

˛

˛

˛

˛

˛

X > 0 ,
ˆ

BT BT
z

˜T

⊥

 

»

X 0

0 γ2I

–

−

»

A Dp

Cz Dz

– »

X 0

0 I

– »

A Dp

Cz Dz

–T
!

ˆ

BT BT
z

˜

⊥
> 0

)

ΦY(Y)
4
=

(

Y

˛

˛

˛

˛

˛

Y > 0 ,
ˆ

C Dy

˜T

⊥

 

»

Y 0

0 I

–

−

»

A Dp

Cz Dz

–T »

Y 0

0 γ−2I

– »

A Dp

Cz Dz

–

!

ˆ

C Dy

˜

⊥
> 0

)

9

>

>

>

>

=

>

>

>

>

;

(10)

matrix inequalities given in Theorem 1 can be parametrized by the
matrix inequality

(Θ + ΓKΛ)R (Θ + ΓKΛ)T < Q. (11)

The analysis of this important matrix inequality is available in [1].
It is important that we have introduced a new matrix variable Z in
Lemma 1 and Corollary 1. This new variable may help to find the
optimal solution since we enlarge the domain of the problem. It is
well known in a variety of mathematical problems that enlarging
the domain in which the problem is posed can often simpify the
mathematical treatment. Many nonlinear problems admit solutions
using linear techniques by enlaring the domain of the problem. The
most important feature in Theorem 1 is that we have only one matrix
inequality which involves the control gain matrix K. Hence we can
eliminate the control gain matrix K using the elimination lemma.
Usually, the performance of LMI solvers is greatly affected by the
problem size (the size of matrix inequalities) and the number of
variables. So eliminating the control variables may have advantages.
We shall see the effect of eliminating the control variables later.
Note that all problems described in Theorem 1 are bilinear matrix
inequalities (BMI). When we eliminate the variable K, all problems
in Theorem 1 are functions of a matrix pair (X ,Z). Once we obtain
a matrix pair (X ,Z), our problems are convex with respect to K.
Applying the elimination lemma to Lemma 1 yields the following
results.

Theorem 2: Let a matrix Υ > 0 be given and consider the
linear-time-invariant discrete-time system (3). Then the following
statements are equivalent.

(i) There exists a stabilizing dynamic output feedback controller
K of order nc, matrices X and Z satisfying (5).

(ii) There exists a matrix pair (X ,Z) ∈ Ho where Ho is given
in (8).

The statement (ii) is the existence condition for a stabilizing
controller K of order nc. Note that we omitted the controller
formula in this theorem for brevity. One can easily prove this
theorem using the elimination lemma and obtain the controller
formula from [1]. Similarly, we can obtain the dual form of Theorem
2 for the pulse-to-energy gain control problem.

Corollary 2: Let a matrix Υ > 0 be given and consider the
linear-time-invariant discrete-time system (3). Then the following
statements are equivalent.

(i) There exist a stabilizing dynamic output feedback controller
K of order nc, matrices Y and Z satisfying (7).

(ii) There exists a matrix pair (Y,Z) ∈ Hc where Hc is given
in (9).

III. LINEARIZATION ALGORITHM

All matrix inequalities given in the previous sections are noncon-
vex since all matrix inequalities have a term X−1. In this section,
we propose a new class of algorithms to handle this nonvex term.
Consider the following optimization problem :

Problem 1: Let Ψ be a convex set, a scalar convex function
f(X), a matrix function J (X) and H(X) be given and consider
the nonconvex optimization problem :

min
X∈Ψ

f(X) , Ψ
4
= {X| J (X) +H(X) < 0} (12)

Suppose J (X) is convex, H(X) is not convex, and f(X) is a first
order differentiable convex function bounded from below on the
convex set Ψ.
One of possible approaches to solve this nonconvex problem is lin-
earization of a nonconvex term. Now, we establish the linearization
algorithm as following.

Theorem 3: The problem 1 can be solved (locally) by iterating a
sequence of convex sub-problems if there exists a matrix function
G(X,Xk) such that

Xk+1 = arg min
X∈Ψk

f(X) (13)

Ψk
4
= {X | J (X) + LIN (H(X),Xk) + G(X,Xk) < 0

H(X) ≤ G(X,Xk) + LIN (H(X),Xk)}

where LIN (?,Xk) is the linearization operator at given Xk.
Proof : First note that every point Xk+1 ∈ Ψk is also in Ψ

since

J (X) +H(X) ≤ J (X) + LIN (H(X),Xk) + G(X,Xk) < 0.



As long as Xk ∈ Ψk, f(Xk+1) < f(Xk) holds strictly until
Xk+1 = Xk. The fact that f(X) is bounded from below ensures
that this strictly decreasing sequence converges to a stationary point.

The linearization algorithm is to solve a sufficient condition.
This approach is conservative, but the conservatism will be min-
imized since we shall solve the problem iteratively. Due to the
lack of convexity, only local optimality is guaranteed. It should
be mentioned that the linearization algorithm is a convexifying
algorithm, in the spirit of [11]. A convexifying algorithm must find a
convexifying potential function. There might exist many candidates
for convexifying potential functions for a given nonconvex matrix
inequality, and some convexifying potentials may yield too much
conservatism. Finding a nice convexifying function is generally
difficult. Our linearization approach may provide such a nice
convexifying potential function.

All matrix inequalities given in the previous sections are convex
except for the term X−1. One can ask “How can we linearize this
nonconvex term X−1 at given Xk > 0?”. Since our variables are
matrices, we need to develop the taylor series expansion for matrix
variables. The following lemma provides the linearization of X−1

and XWX.
Lemma 2: Let a matrix W ∈ <n×n > 0 be given. Then the

following statements are true.
(i) The linearization of X−1 ∈ <n×n about the value Xk > 0 is

LIN
`

X
−1,Xk

´

= X
−1
k −X

−1
k (X−Xk)X−1

k (14)

(ii) The linearization of XWX ∈ <n×n about the value Xk is

LIN (XWX,Xk) = −XkWXk + XWXk + XkWX (15)

where LIN (?,Xk) is the linearization operator at given Xk.
One can easily show that −X−1 − LIN

`

−X−1,Xk

´

≤ 0 and
−XWX − LIN (−XWX,Xk) ≤ 0 in order to use Theorem
3. Thus we can set a matrix function G(X,Xk) = 0 for this
nonconvex term and the equality is attained when X = Xk.
Note that this provides the updating rules. Using the linearization
algorithm, we can establish two main algorithms. One is for a
feasibility problem and the other is for an optimization problem.
We first propose a new algorithm for the optimal fixed-order output
feedback control problem and then propose another algorithm for
a general SLC problem. In both cases, we propose new feasibility
algorithms using the same linearization approach.

A. Optimal Fixed-Order Output Feedback Control Problem

The following algorithm is suitable for solving (i),(iii), and (iv)
in Theorem 1.

Algorithm 1: Optimal General H Control Problem

1) Set ε > 0 and k = 0.
2) Solve the following convex optimization problem.

Xk+1 = arg min
X ,Z,Υ

‖Υ‖

subject to {(X ,Z,Υ) ∈ LIN (Ho(X ,Z,Υ),Xk)}

where Ho(X ,Z,Υ) is given by (8).
3) If ‖Υ‖ < ε, go to step 4. Otherwise, set k ← k + 1 and go

back to Step 2.
4) Calculate the controller by solving the following convex

optimization problem after fixing X = Xk+1.

K = arg min
K,Z,Υ

‖Υ‖ , subject to (5)

Similarly, one can easily build an algorithm for (ii) in Theorem
1. It is worthwhile to comment that we can immediately use the
controller formula given by [1] instead of solving the step (iv). This
is the basic feature of the BMI problem as we explained before.

Algorithm 1 may find an initial feasible solution. If they fail,
we need to find an initial feasible solution. Several algorithms
for feasibility problems for fixed-order output feedback control
problems are already available [1], [5], [8], [7]. Here, we also
propose a new feasibility algorithm for the completeness of the
proposed algorithm using the linearization approach. H∞ control
problem is suitable for feasibility problem. If there is no γ satisfying
H∞ constraint, then there is neither H∞ control nor H2 control.
Let’s consider two nonempty constraint sets ΦX (X ) and ΦY(Y)
given by (10). Note that we have the constraint XY = I in the
above matrix inequalities. The feasibility problem is to find a X in
the set ΦX (X ) which is closest to the set ΦY(Y). This problem
can be relaxed and solved by the following optimization problem.

Algorithm 2: Feasibility

1) Set γ > 0, ε > 0 and k = 0.
2) Solve the following convex optimization problem.

Xk+1 = arg min
X,Y

trace[Υ]

subject to

8

>

>

<

>

>

:

−Υ + Y − LIN
`

X−1,Xk

´

< 0,
»

X I

I Y

–

≥ 0,

Υ ≥ 0 , X ∈ ΦX (X ) , Y ∈ ΦY(Y)

(16)

3) If trace[Υ] < ε, stop. Otherwise, set k ← k+1 and go back
to Step 2.

The feasibility problem is not convex either, however, this prob-
lem has the same nature as the previous optimization problem and
we can linearize this term. Notice that the proposed algorithm
is very similar to the one proposed in [5], which adopts cone-
complementarity linearization algorithm. The new proposed algo-
rithm minimizes trace[Y + X−1

k XX
−1
k ], while the cone comple-

mentarity linearization algorithm minimizes trace[YXk + XYk +
YkX + XkY]. It is clear that the cone complementarity algorithm
linearizes at a matrix pair (Xk,Yk) and our algorithm linearizes
only at Xk. Also we minimize

‚

‚Y − X−1
‚

‚ and the cone comple-
mentarity linearization algorithm minimizes ‖XY + YX‖. Clearly
we minimize the controllability Gramian Y and maximize the
observability Gramian X . This implies that our algorithm is suitable
for initializing the optimal H2 control problem, while the cone
complementarity linearization algorithm is suitable for initializing
optimal H∞ control problem since there always exists a positive
scalar γ such that XY ≤ γI [1]. Note that we can establish another
feasibility algorithm since

XY + YX = (X + Y) (X + Y)−X 2 − Y2.

Hence we can just replace the first matrix inequality in (16) with
the matrix inequality
»

−Υ− LIN
`

X 2,Xk

´

− LIN
`

Y2,Yk

´

X + Y
X + Y −I

–

< 0.

This approach also linearizes at a matrix pair (Xk,Yk).

B. Structured Linear Control

Whenever a controller has some given structural constraints, we
can not use Algorithm 1 and 2, since Theorem 2 and Corollary 2
are no longer the existence conditions of K for SLC problems. For



SLC problems, we should apply a linearization algorithm directly
to (5) or (7).

Algorithm 3: Structured Linear Control
1) Set ε > 0 and k = 0.
2) Solve the following convex optimization problem.

Xk+1 = arg min
X ,Z,Υ,K

‖Υ‖

subject to

2

6

6

4

X Z
ZT Υ

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

(?)T LIN
`

X−1,Xk

´

0

0 I

3

7

7

5

> 0

3) If ‖Υ‖ < ε, stop. Otherwise, set k ← k + 1 and go back to
Step 2.

Alternatively, we can apply a linearization algorithm directly to
(4) or (6), in which the newly introduced variable Z is eliminated.
In this case, our algorithm is the same as one in [11]. Since the
step 1 and 3 are the same as those in Algorithm 3, we describe the
step 2 only.

Algorithm 4: Elimination of Z
2. Solve the following convex optimization problem.

Yk+1 = arg min
Υ,K,Y

‖Υ‖

subject to

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2

4

LIN
`

Y−1,Yk

´

Acl(K) Bcl(K)
AT

cl(K) Y 0

BT
cl(K) 0 I

3

5 > 0

2

4

Υ Ccl(K) Dcl(K)
CT

cl(K) Y 0

DT
cl(K) 0 I

3

5 > 0

Similarly, we can make a feasibility algorithm for SLC problems.
We describe the step 2 only.

Algorithm 5: Feasibility for SLC
2. Solve the following convex optimization problem.

Xk+1 = arg min
Υ,K,X ,Y,Z

‖Υ‖

subject to

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

»

X I

I Y

–

≥ 0

−Υ + Y − LIN
`

X−1,Xk

´

< 0
2

6

6

4

X Z
ZT Υ

Acl(K) Bcl(K)
Ccl(K) Dcl(K)

(?)T Y 0

0 I

3

7

7

5

> 0

IV. ILLUSTRATIVE EXAMPLES

A. Fixed-order Optimal H2 Output Feedback Control

Consider the following discrete-time plant [11].

Ap =

2

6

6

4

0.8189 0.0863 0.0900 0.0813
0.2524 1.0033 0.0313 0.2004
−0.0545 0.0102 0.7901 −0.2580
−0.1918 −0.1034 0.1602 0.8604

3

7

7

5

Bp =

2

6

6

4

0.0045 0.0044
0.1001 0.0100
0.0003 −0.0136
−0.0051 0.0936

3

7

7

5

, Bz =

2

4

0 0
1 0
0 1

3

5

Cy =

»

1 0 0 0
0 0 1 0

–

, Dy =

»

0 1 0
0 0 1

–

Cz =

2

4

1 0 −1 0
0 0 0 0
0 0 0 0

3

5 , Dp =

2

6

6

4

0.0953 0 0
0.0145 0 0
0.0862 0 0
−0.0011 0 0

3

7

7

5

Our goal is to minimize H2 norm of the transfer function Twz(ζ)
using a fixed order output feedback controller. By calculating
the full-order optimal H2 controller which provides the lower
bound, we obtain the minimum achievable values for this norm
min ‖Twz(ζ)‖H2

= 0.3509. In order to use initialization algorithm
2, we set X0 = I + RRT and Y0 = X−1

0 , where R is a random
matrix. After using the initialization algorithm, we have run the
algorithm 1, 3, and 4 with the controller order nc = 0 and nc = 1.
The precision ε has been set to 10−3.
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Fig. 1. H2 performance of the optimal fixed-order output feedback
controller

Figure 1 shows the performance of three algorithms. One can
easily see that the behaviors of Algorithm 1 and 3 are better than that
of Algorithm 4. Specially, Algorithm 1 quickly converges compared
with Algorithm 3 and 4. Moreover, the Algorithm 1 and 3 converged
uniformly in most cases. The cost ‖Twz(ζ)‖H2

are 0.5178, 0.5261,
and 0.52 with nc = 0 and 0.3513, 0.3738, and 0.3741 with nc = 1
for Algorithm 1, 3, and 4 respectively. Notice that the performance
of the output feedback controller with nc = 1 is just 0.1 % worse
than that of the full-order output feedback controller. This example
shows that controller reduction is possible, without sacrificing much
performance.

B. Mixed H2/H∞ control

Design of feedback controllers satisfying both H2 and H∞

specifications is important because it offers robust stability and
nominal performance, and it is not always possible to have full
access to the state vector. In this problem, we look for a unique
static output feedback controller that minimizes an H2 performance
cost while satisfying some H∞ constraint. Consider the following
simple discrete-time unstable plant [11].
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By calculating the dynamic output feedback optimal H2 and H∞

controllers, we obtain the following minimum achievable values for
these norms

min ‖Twz1
(ζ)‖H2

= 4.0957 , min ‖Twz2
(ζ)‖H∞

= 6.3409.

Our objective is to design a static output feedback controller that
minimizes ‖Twz1

(ζ)‖H2
while keeping ‖Twz2

(ζ)‖H∞

below a
certain level γ. Let’s set γ = 7. Note that Algorithm 1 can be
applicable with the constraint X1 = X2 = X . Our algorithm can
be composed of three sub algorithms which are

1) Run Algorithm 2 (initialization).
2) Run Algorithm 1 with the constraint X1 = X2 = X .
3) From this sub-optimal solution, Run Algorithm 3 or 4.

Or alternatively,

1) Run Algorithm 5 (initialization).
2) From this sub-optimal solution, Run Algorithm 3 or 4.
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Fig. 2. Mixed H2/H∞ performance of the optimal static output feedback
controller

Figure 2 shows the performance of those algorithms. The speci-
fied precision ε is 10−4. We can easily see that the performance of
Algorithm 1 with the constraint X1 = X2 = X is conservative as
expected. For this problem, the behavior of Algorithm 3 is better
than 4 for this problem. Note that we achieved ‖Twz1

(ζ)‖H2
=

4.1196, ‖Twz2
(ζ)‖H∞

< 7. This is just 0.5% worse than the H2

optimal dynamic output feedback controller.

V. CONCLUSION

We have addressed the SLC (Structured Linear Control) problem
for linear discrete-time systems. New system performance analysis
conditions have been derived. These new results introduce an
augmented matrix variable Z . It turns out that the new system
performance analysis conditions are better than the original ones,
since we could derive the equivalent conditions using the elimina-
tion lemma for a fixed order output feedback control problem.

In the SLC framework, these objectives are characterized as a
set of LMI’s with an additional nonconvex equality constraint. To
overcome this nonconvex constraint, we proposed a linearization
method. At each iteration, a certain potential function is added to
the nonconvex constraints to enforce convexity. Although we solved
those sufficient conditions iteratively, this approach will not bring

significant conservatism because the added conditions will converge
to zero. Local optimality is guaranteed. The results given in this
paper can also be applied to linear continuous-time systems with no
difficulties. Moreover, our approach can be applied to other linear
synthesis problems as long as the dependence on the augmented
plant on the synthesis parameters are affine.
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