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ABSTRACTStatic models of tensegrity structures are reduced to firedgebra problems, af-
ter first characterizing the problem in a vector space whareation cosines are not needed.
That is, we describe the components of all member vectorppased to the usual practice
of characterizing the statics problem in terms of the magtetof tension vectors. While our
approach enlarges (by a factor of 3) the vector space requicedescribe the problem, the
computational space is not increased. The advantage ofgintathe vector space makes the
mathematical structure of the problem amenable to linegehta treatment. Using the linear
algebraic techniques, many variables are eliminated from final existence equations. This
paper characterizes the existence conditions for all clagmnsegrity equilibria
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1. Introduction

The Tensegrity structures represent a wonderful blendainggry and mechanics.
In addition, they have engineering appeal in problems regylarge changes is struc-
tural shape. We defirdass ltensegrity as a stable connection of bars and strings with
only one bar connected to any given node without any comsgraNodes connecting
more than one bar or other constraints fatkass 2tensegrity. Thusglass 1struc-
tures are unconstrained, whereaksss 2may have boundary constraints or bar to
bar connections. Most existirggnart structuranethods are limited to small displace-
ments. Sincelass ltensegrity structures have no bar-to-bar connections;ahgol
of tendons allows very large shape changes. Therefore figrerf set of analytical
tools could be the enabler to a hoist of new engineering quader deployable and
shape controllable structures. Connelly, Motro, Peltigrand others have described
many details of the static equilibria of tensegrity struets However, the dynamics
and control of these structures is relatively new.

This paper characterizes the static equilibrizlais 1tensegrity structures. Fur-
thermore, we use vectors to describe each element (barsiadaiis), eliminating the
need to use direction cosines and the subsequent transtahfdections that follow
their use. It is well known in a variety of mathematical pierk that enlarging the
domain in which the problem is posed can often simplify thehmmatical treatment.
Many nonlinear problems admit solutions by linear techaggby enlarging the do-
main of the problem. The purpose of this paper is to show thattarging the vector
space in which we characterize the tensegrity statics pnofthe mathematical struc-
ture of the equations admit treatment by linear algebra austffor the most part.

Our results characterize the equilibria conditionslaks 1tensegrity structures in
terms of a very small number of variables, since the necgssat sufficient condi-
tions of the linear algebra treatment allows the eliminatd several of the original
variables. These results can be programmed into objeettaid software to design
and simulate a large class of tensegrity structures. Tipemparovides the enabling
technology for efficient algorithms to design tensegritystures, which have been
around for fifty years without efficient design procedures.

Section 2 introduces the network representations of teitgesiructures as an
oriented graph in real three dimensional space. Geometrineactivity, equilibrium,
and a coordinate transformation will be introduced. SecBiintroduces the algebraic
equilibrium conditions for aclass ltensegrity structure. After we derive necessary
and sufficient conditions for the existence of an unloadaddgrity structure in equi-
librium, we write the necessary and sufficient conditionstfee externally loaded
structure in equilibrium. A couple of examples will show htwconstruct a tense-
grity structure that concludes the paper.

For notation, we lel,, define then x n identity matrix, andd define ann x m
matrix of zeros. (The dimensions@fwill be clear from the context.) We also letA)
define the rank of the matriA.
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2. Network Representation of Structures

In this paper, we choose to represent a tensegrity struatuaeoriented graphn
real three dimensional spa@® defined in terms of,, nodes andh; + n; directed
branches which are all represented as vectof@’inA loopis any closed path in the
graph. As we shall see, the advantage of this approach ishth&ioth the magnitude
and the direction cosines of the forces are contained irovgethich can be solved
using linear algebra. Thus linear algebra plays a largerinathis approach compared
to the usual approach in mechanics and finite element mettsirag direction cosines.

In this oriented graph, theodesconsist of the ends of the bars as represented by
then, nodes (or vectors)p, }. Hence if there are,, bars, then there ane, = 2n,
nodes. We choose to identify two different types of dirediemhches; they, string
branches (or vectorgk,, } and then; bar branches (or vectorp,,, }.

Geometric Connectivity

Each directed branch can undergo a displacement in reaithieguilibrium state.
String vectors can change both their length and orientattuite bar vectors can only
change their orientation. Node vectors can change both ldmggth and orientation
but subject to d.aw of Geometric Connectivityhich we state as follows :

The vector sum of all branch vectors in any loop is zero. [1]

These equations are in the form of a set of linear algebraiataans in the branch
vectors.

Force Equilibrium

In our study of tensegrity structures, we are concerned stitictures in which
bars sustain compressive forces. We therefore choosditoglissh between the string
(or tensile) forcegt,, } and the bar (or compressive) forcfs, } which are defined in
terms of the string and bar vectors respectively as follows.

Definition 1 Given the tensile forcg, in the string characterized by the string vector
s, and the compressive fordg in the bar characterized by the bar vectby,, the
tensile force coefficient,,, > 0 and the compressive force coefficient > 0 are
defined by

tn = TnSn f'rn = )\'rnb'rn [2]

The force of the tensegrity structure is defined by the eatdance vectorw €
R3™, the tensegrity compression vecfoe R3", and the tensegrity tension vector
t € R3" where

wh=[wi,wy, owy [ fT =68 ] T =6, Lt ] (3]
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Force Convention

Suppose each node, is subjected to compressive vector fordds,. }, tensile
vector forces[t,,; } and external forcev,,. Then theLaw for Static Equilibriunmay
be stated as follows :

Ztnkfzfmkfwk:() [4]

m
where a positive sign is assigned to a (tensile, compresskternal) forcdeavinga
node, and a negative sign is assigned to a (tensile, conngresgternal) forceente-
ring a node. The negative sign in (4) is a consequence of the fact choose to
define nonnegative compressive force coefficients

Consider aclass ltensegrity structure consisting @f, nodes,n; bars andn,
strings. Suppose the positions of the positions of the nadeslescribed by the,,

vectors{pi, p2, ... ,Pn, }, the positions of the bars are described by thevectors
{b1,bs, ... ,by,,}, and the positions of the strings are described byrth&ectors
{s1,82, - ,Sn, }.

Definition 2 The geometry of the tensegrity structure is defined by theetgity node
vectorp € R3"», the tensegrity bar vectds € R3", and the tensegrity string vector
s € R3™ where

pT = [p?7pgﬂ A 7p£p:| 7 bT = [b?7bg‘7 b 7b£b:| ’ ST = [S,{W’Sg‘7 b )ST ] [5]

From network analysis and the law for static equilibrium hage the following result.

Lemma 1 There exists afin, x 3n, matrix S and an3n,, x 3n; matrix B such that

al f]=wia2sm 6]

or equivalently
St =Bf +w. [7]
In particular, if we consecutively number the + n, branches{s;,ss, ... ,s,.,

b1,ba, ..., by, }as{l,2, ... ,nsns+1, ... ,ns+n}, then then, x (3ns + 3ny)
matrix A = [A;,] is defined by

I; if tension (compression) j leaves (enters) node i
A;; = —I3 if tension (compression) j enters (leaves) node i [8]
0 if tension (compression) j is not incident with node i

Also : (i) each column oA has exactly one blodg and one block-I3 with all other
column block®, and (i) for any row: there exists a columpsuch thatA;; = £Is.
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Figure 1. 2-Bar 4-String Class 1 Tensegrity

In network analysis, the matriA is known as thencidence matrix This matrix
is not thereducedincidence matrix since we have included the datum node which
means that one block row of equations in (6) are dependertii@mnther rows. This
fact does not cause any difficulties in subsequent develofsm®n the contrary, some
symmetry is preserved in the algebraic equations. Netwoakyais also gives us the
following result.

Lemma 2 The string vectot and the bar vectob are related to the node vecter
by the equation

T | s STp=s
Ap_|:b:|0r BTp:b [9]

The proof is constructive. Firstly, from the network, itlfiws that components
of the string vectos and the bar vectdb can be written as a linear combination of
components of the node vectpr Also if branchk is a bar which leaves nodeand
enters nodg, thenb,, = p; — p;, whereas if branchk is a string which leaves node
i and enters nodg, thens, = p,; — p;. Hence we hav€p = [s”, b’] where the
matrix C consists only of block matrices of the forf@, £I3}. A closer examination
then reveals that = AT

Example 1 Consider the 2-bar 4-string class 1 tensegrity structurestrated in Fig.
1 with tensile force vectority, t2, t3, t4} and compressive force vectdi, f>}. The
Geometric Connectivity conditions are :

—P1+P3 = S1; P2 —P3 =52
—P2+P4 = S3;P1—Ps=84 [10]
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Also, in terms of the stated force convention, the condition Static Equilibrium at
nodes 1-4 are :

t17t47f17W1 = 0, 7t2+t3+f17W2:0
—t1+to—fh—wy3 = 0; —tz+tg+fH—wy =0 [11]

The static equilibrium conditions and the geometric caondi can be written in
the form (6), (8), (9) where

I, 0 o0 -I; -I; O
0 I, I, 0 I, O
I, I, 0 0 0 -I4
0 0 -I, I, 0 I

A=

with
I3 0 0 —Ij —1I3 0
5=l 1, b o ofB7 0 Iy

We now derive acanonical network representatian which the bar vectors are a
subset of the transformed network nodes.

Lemma 3 Given the tensegrity node vectpy define the nodal transformation

q=P'p [12]

for some nonsingular matri € R3"»*3% where

P = [PT, PT]; P, Py € R3WX3 [13]
Then :

(i) In terms of the transformed tensegrity naglethe tensegrity geometry is given
by

Ty _ . RTH —
S,a=s;B,q=b [14]

where

Sl =[s{,s7]; Bl =[BT, ,B]] [15]
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with
S;=P;S;S,=P,S; B, =P,B; B, =P,B [16]
(ii) The tensegrity force equilibrium is given by
Sit =Bif + Pyw; Sot = Bof + Pow [17]

Proof : Part (i) follows directly from the definition oP. Part (ii) follows from the
expansion of the equilibrium force equatipt = B,f + P7w.

Lemma 4 Given the tensegrity node vectpr bar vectorb and string vectos, the
geometry of the class 1 tensegrity structure can be destiilyethe algebraic equa-
tions

Bp=b; STp=s [18]

where the3n, x 3n, matrix B is given by

—I3 I3 03 03 . . . 03
BT _ 03 03 —Ig Ig 03 . . 03 [19]

for some3n,, x 3ns matrix S which consist only of block matricé€$s;, —I5, 03} with

ny = 2y [20]
In particular :
(i) Py, Py € R3™ %37 in (13) are given by

03 03 I3 03 O3 . . 03
-P, = 03 03 03 03 I3 O3 03
L 03 03 . . . 03 13 03 i
[ I; I3 03 O; 03 |
0 03 I35 I3 03 . . O3
P, = 03 03 03 03 I3 I3 . 03 [21]
05 05 . . . 05 Iy Iy
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(i) The inverse transformation

P —ple = | G | (22

whereB is given by (19) and € R3"» *3™ s given by

JP=103 03 03 03 03 I3 . O3 [23]
03 03 . . . 03 03 I3
(iii) The transformed tensegrity nodgis given by

q" =la;.q.] [24]

whereqy, q. € R3™ are given by
a=b;q =[a3,q1, - ,q, | [25]

with

SZ = [S{a Sg] ) Bg = [In,,0n,] [26]

whereS; € R3mX3ns . Sy € R3MX3%: gre given by (16).

(iv) The transformed force equilibrium conditions (17) gieen by
Slt =f + P1W s SQt = P2W [27]

Proof: Since each bar has two end pointg,= 2n;. Without any loss of generality,
we can assume in@ass ltensegrity that

b'rn = —P2m-1 + Po2m , m = 1, 2, e, Ny

which then givesB”p = b with B as in (19). The block structure of tf& matrix
comes from the vector equations which relate kg, p.-}. It follows from (19) and
(21) that

P I S P
PTB — 1 B= 3ny . 1 — 1 S = PTS
|: P2 :| |: Ognb :| ’ |: 82 P2

which then gives (27) and (16).
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Example 2 The equations (10), (11) of the 2-bar 4-string tensegrityoithuced in
Example 1 can be written in the form (6) and (9) where

-I3 0 I; O

BT:[—I3 I; © 0]~ST= o I, -I; O
0 0 -I3 I3 |’ 0 -I; 0 I3

I; 0 0 I

Then from Lemma 3, we have (27) where

S - I 00 L] o [~ Iz -Iy I
L= I3 I3 0 O P2 T I, I I3 -1
- -I3; 0 0 0] , [I I3 0 O
P1 - |: 0 0 _I3 0:| 7P2|: 0 0 13 13:| [28]

3. Algebraic Conditions for Equilibrium

Definition 3 A tensegrity structure with tensile force coefficiefits > 0}, compres-
sive force coefficient§\,, > 0}, node vectomp, string vectors and bar vectorb is
said to be in equilibrium if the element relationships (R force equations (7) and
the geometric equations (9) are all satisfied.

From lemma 1 and lemma 2, we have the t7e”p — f"B”p = w”p, or equi-
valently,t”s — f’b = w”p. Hence from (2), we deduce the mechanical equivalent
of Tellegen’s Theorem for electrical networks.

Corollary 1 For a tensegrity structure in equilibrium

Z,YTLHSTLHQ - Z )\'rn||bm||2 = ngpk [29]
n k

m

Connelly defined a tensegrity framewatp) as a graph op where each edge
is either a cable or a bar. gtress statd~,,, A, } for G(p) is said to be &elf-stressf
in the absence of an external load (.= 0), force equilibrium is satisfied at each
node.

The force||t,, || in a linear spring of lengtlis,,|| having spring constari,, and
rest length?,,q is given by

||t7l|| = kn(HSnH - gnO)
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Hence in terms of the tensile force coefficientin (2), we have

gn()
n =knp(l — —— 30
gl ( ||sn||) (30]

Thepotential energyP E,, in the springis also given by

1
PEn = §k7L(||S7L|| - €n0)2 [31]

so that when the cable hasro rest length

1
Vn = ky, is constant ; PE,, = §7n||sn||2 [32]

In analogy with total potential energy, Connelly definedehergy form associated
with the stress statgy,,, A, } as:

)2 (Y llsall” — 3 Anllbl?) 3]
n m

where all members are assumed to behave as elastic strindsdh the cables have

zero rest length and the bars have infinite rest length. Tée isl that when the end

points of a bar are displaced, the energy builds up as thesgfithe extension. The

function E(p) whenw = 0 is said to have an absolute minimum corresponding to the

rest length of the element [Connelly 1992].

In this context, the more general statement in Corollaryehtbays then in the
presence of external forcdsv, }, the energy associated with the stressed state must
be balanced by the sum of the external work derfep;, at each node.

Requirements for Equilibrium : Given an external force vectev, the problem of
determining the geometric and force configuration of a tgrigestructure consisting
of ng strings andr, bars in equilibrium is therefore equivalent to finding a tiolu
b, q. € R*™ of the equations :

s = S{b+8Siq. [34]
t = I's;T = diag{v1I3, 7213, ..., 7o I3} [35]
Sgt = PQW [36]
f = Ab; A2 diag{\Is, Aals, ..o, A, I3} [38]

for given matrices
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Sl; S2 c R37Lb><3’ns : Pl; P2 c R3nb><3np [39]
where

np = 2Ny ; ng > My [40]

The diagonal matricefl’, A} shall be referred to as thensile force matrbandcom-
pressive force matrikespectively.

Materials Properties : Conditions for equilibrium will depend on both the tensile
force coefficients of the strings and the compressive fooedficients of the bars. A
tensile force coefficient,, of a (linear) string may be designed by selection of the
spring constank,, and the ratid,,,o/||s,|| of the rest to stretched length of the string
subject only to the requirement that tyield force(i.e. the force that causes the string
to reach its elastic limit) is not exceeded. In the (mathéraly ideal) case of zero
rest lengthk,, = v,.

On the other hand, the compressive force coefficignof a bar cannot be desi-
gned by an adjustment of the materials properties. Howéxebar force must not
exceed théuckling forcewhere an ideal bar of radiug and lengthL, buckles at a
compressive forcé} given by

4
Fy = : Fy = Young’s Modulus of bar

Using an earlier derivation, the next result provides anresgion for both the
tensile and compressive force coefficients in an equilibrétructure.

Lemma 5 Suppose the transformed tensegrity structure is in eqiiliv. Then :

(i) Assuming a linear force relationship for the stringse ttensile force coefficient
{7} in the strings,, is given by (30) wherg,, > 0 is the spring constant,,; > 0 is
the rest length of thath string, and||s,,|| is the stretched length of theh string

(i) The compressive force coefficiegnt,,, } in the barb,, is given by

[
Ly,
whereL,, is the (constant) length of the bar, and

A
Am = i Ly = ||bm|| [41]

frn = Spuls—Ppiw;s= qu
r = diag{7113a72137 .. 77715]:3} [42]

whereS, .1, P.,1 € R3*3% for 1 < m < ny, are themth blocks of{ S, P} respec-
tively in (21), (16) where



302 RFGC - 7/2003. Tenségrité

Sll Pll
So1 Py

S; = : ; P = - [43]
Snb,l Pnb,l

Proof : From (2), (27) and (43), we havge, b,, = f,,. Then since\,,, > 0, we get
(41).

3.1. Prestressed Equilibrium Structure

We now proceed to derive necessary and sufficient conditamrthe existence of
a structure in equilibrium that is prestressed in the atesefi@any external load (i.e.
w = 0). The derivation relies heavily on tlsngular value decompositioswd(A) =
{U4,X4,V4} of amatrixA.

Lemma 6 (i) Suppose am x m matrix A has rankr 4, then there exists an x n
unitary matrixU 4, anm X m unitary matrix V4 and a positive definite s x r4
diagonal matrix3; 4 such that

A=UZ,VE 3, = [ ES"‘ 8 } [44]
(i) If {Uy4,V 4} are partitioned such that
Ua = [U14,Uz4]; V= [Vi4,Vau] [45]

with

U4 € RIXTA : Uy € Rnx(nfrA) : Vi€ RMXTA : Vaou € Rmx(mfrA) [46]

then

U{A-UIA = I7‘A ; U{A-UQA =0 ; UgA-UQA = In—rA
V{A-VIA = I,; V{A-VQA =0; VgA-VQA =Ln_r,
ULA = 0; AV, =0 [47]

(iii) The algebraic equation
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Ax=Db

has a solution if and only iUZ,b = 0. When this condition is satisfied, then all
solutionsx are of the form

x=Vi4aX iU b+ Vouz, ; UL,b=0
wherez, € R"~"4 is arbitrary.
We now establish necessary and sufficient conditions fohdisn of equations (34)-
(40) in the absence of external forces (e = 0) by examining each of these equa-

tions in turn beginning with the solution of (34), (35). Thexhresult follows from
lemma 6.

Lemma 7 Suppose

r2 p(S2) < min{3n,,3n,} (48]

and letS, have the singular value decompositip, 3, V} given by

S2 _ vaT c RBnhXSnS [49]
where
X 0
U = [U,Uy; E= [ o o } ; V=1V, Vy
U, Vi € R¥™X7; Uy, Vy € RO [50]

Then a necessary and sufficient condition for (34) to havéwtisa q. € R3™ is
given by

VIi(is—8Tb)=0 [51]

Furthermore, when (51) is satisfied, all solutiagsare of the form

q. = U2V (s — 8{b) + Usz, [52]

wherez, € R3™ " is arbitrary.

We now consider the solution of (36) when= 0.
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Lemma 8 Whenw = 0, all solutionst of (36) which guarantee (51) are of the form
t=V,M 'VIsTh; M2 VIrlv, (53]

Proof: From (49), (50) and lemma 6, we have- V,z; wherez, is the free solution
of (36). Then from (35)

VI(s—8Tb) = VI(I1V,z, — STb)

SinceVs, has full column rank, the matrix@ = VTV, is invertible. Hence (51)
is satisfied whem; = M~1VZSTb, and this gives (53).

We now consider the solution of (37), (38) when= 0.

Lemma 9 Whenw = 0, a necessary and sufficient condition for (37), (38) to have a
solutionb € R3™ is given by

(X-Ab=0 [54]
where
X 2 ($1 V)M 18, Vy)T: M2 vITr-lv, [55]
In particular, define
A
r 2 p(A - X) [56]

Then:
(i) Whenr, = 3n;, thenb = 0 is the only solution of (54),
(i) Whenr, = 0, anyb € R3™ is a solution of (54), and

(iii) When0 < r, < 3nyp, all solutionsb satisfy the equation

- V123, UL Alb = Uxaz, [57]

wherez;, € R3"~" is free, and wheréd U x, ¥ x, V x } is the singular value decom-
position of the matrixX € R3™ 37 : that is

Ux = [Ux1,Uxa]; %

YXx11 O
0 0

} i Vx =[Vx1,Vxa]; rx = rank(X)

with UXl c R3nb><7'x , VX2 c RSnbx(Snb—'r'x)_
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Proof: From (53), (38) and (36)

Sit—f=S5, VoM 'VISTb - Ab=(X-A)b

The result then follows from the singular value decompositif X after writing (54)
in the formXb = f, f = Ab.

Now I'" positive definite impliedM in (55) is positive definite. TheM positive
definite impliesX in (55) is positive semidefinite with at least one non-zegeaia-
lue. Since (54) has a nontrivial solutibrf and only if det(X —TI") = 0, the following
lemma is important.

Lemma 10 Given a symmetric positive semidefinite maiXix Then there exists a
positive definite diagonal matrix such that

det(X—A)=0
if and only if X # 0.

Proof: SinceX = X” > 0, X cannot have negative eigenvalues. Suppgses a
positive eigenvalue dX. ThenA = A\oI impliesdet(A — X) = det(AI — X) = 0.

Remarks For0 < r, < 3np, (A—X)b = 0 always has at least one solutibr 0 of
the form (57) where the freedom in the choicéxaf available in the choice of a free
vectorz,. However forn, > 3, anadditional necessary conditidior the existence
of a nontrivial tensegrity structure is that thg bar vectors{b,,} spanR?. This
condition places additional requirements on the componettices of the singular
value decomposition of the matriX. In the 2-bar 4-string planar tensegrity and the
(3;9; 3) 3-bar 9-string single stage shell tensegrity structurenamttrivial tensegrity
structures have been found in the case whes 0; only in the case when, = 0 do
equilibrium solutions exist. We therefore specialize asults to this case.

Theorem 1 Consider a class 1 tensegrity structure as defined by the ggrand
force equations in the absence of external load as desciilyatie geometric condi-
tions

B'p=b;S'p=s;peR¥, beR"™, secR™
with n, = 2ny, and the equilibrium force equations

St=Bf;t=TIs, f=ADb
where for{~,, > 0, A,, > 0},

F = diag{’yllg,’yglg, ,’ynslg} ; A = diag{)\lIg, )\2137 7)\anB}
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Then given any tensile force coefficiefits, > 0, 1 < m < ng}, there exits
compressive force coefficierts,, > 0, 1 < m < n;} which define an equilibrium
structure if{ A, T'} satisfy the condition :

A=X; X2 (S;Vy)ML(S;Vy)T, M2 V,r VT (58]

Moreover, given condition (58), any vectprof the form

p=PQD”, 2] [59]

where

I n 0 T - -
Qé[ibUJ;LéU@JWFIWM1%¥hu$‘ [60]

for arbitrary vectors{b € R3™  z. € R3"* "} defines a corresponding tensegrity
node. Equivalently, the tensegrity node is constrainedating to the equation

UL,P'p=0 [61]
whereUQZ]QVCT2 is the singular value decomposition@fin (60) with

UQ = [UQ1,UQ2] ; UQQ € RSnPX(BnP*TQ), rQ = p(Q) [62]

The corresponding tensegrity tension veadtpstring vectors, and compression
vectorf are given in terms of the bar vectbrby

t=VoM 'VISTh; s=T"'t; f=Ab [63]

Construction Procedure

One procedure for construction ofcéass 1ltensegrity structure in equilibrium is
provided as follows :

1) Given the matrice$ and B from the network topology, find a nonsingular
matrix P = [P{,PJ] such thatB] = B’P = [I,,,,0,,], and calculatgS; =
P;S,S; = P,S}. (Note that if B is defined as in (19), thefiP,, P2} are given by
(21).)

2) Choos€{v,,, > 0} such thafX > 0 in (55) is diagonal, and then select,, >
0} such thatA = X.

3) Select any bar vectds such that{b;,bs, ... ,b,,} spanR?, and calculate
{t,s,f} from (63).

4) Choose the free vectag in (59), (60) to give a suitable node veciar
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In the design of tensegrity structures, an alternative @gogr for the selection of the
node vectop and bar vectob may be useful. That is, we can first select the node
vectorp as in (59), (60) (which satisfies the constraint (61)) suljiénecessary) to
other design constraints. The corresponding bar véetsithen determined from the
first 3n;, components of the vect® ' p.

3.2. Computation of Equilibrium Configurations

An inspection of all matrices in all algebraic expressioegeals that each ma-
trix A = [a;;] is a tensor product of the ford = A®T = [a;;I] whereA is
m x n and the identity matrid is of either dimensio3n x 3m, or 2n x 2m for
planar tensegrity structures. Hence all matrix manipaoikegiwith the exception of the
final determination of the vectofp, b, s, t, f} can be carried out in lower dimension
thereby reducing the computational burden.

In particular, the sufficient condition (58) for the existerof a prestress equili-
brium can be written in the form

A=X;A=AQRL X=X)1I
where
X = (S1V2>M_1(S1V2>T 3 M = VgA_1V2

We now illustrate the construction procedure

Example 3 For the 2-bar 4-string planar tensegrity structure, we caplace{S, B, S,

S,, Py, Py} inexamples 1 and 2 b§S, B, S;, Sy, Py, Py} where

1 0 o0 -1 -1 0
. 0 -1 1 0] 5 10
S =11 1 0 ofiBT 0
| 0 0 -1 1 0 1
. 1 00 -17 . 4 -1 1 -1 1
SU= 110 0}’82[1 -1 1 —1]
. -1 0 0 0] . 4 1100
Pr="1y 010}’P2_[0011]

Then the singular value decompositiid, 3, V} of the (reduced dimension) ma-
trix S, of (reduced) rank = p(S,) = 1 is given byX;; = 2v/2 and
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1
. 1 [ -1 - 1 [1 - -1
o= ]io- L[] w-os |

-1
and
[ —0.8660 —0.0000 0
v, - —0.2887 0.5774 —0.5774
2= 0.2887  0.7887  0.2113
| —0.2887 0.2113  0.7887
5§, — [ —0.5774 —0.2113 —0.7887
tvz = 0.5774  0.5774 —0.5774

We also have thdSlVQ)(SlVQ)T =1I5.

(i) Suppos€ v, = 1;k = 1,2, 3,4} so that the (reduced) matrik = I,. It then
follows that the (reduced) matriX = I, which satisfies condition (58) in Theorem
1. Hence when there is no external load (.= 0), (54) has a (nonzero) solution
b? = [bT bl] when); = Xy = 1. For example, wheib; = [4,0], by = [0,4],
the nodesp; = [-3,—1],p2 = [1,-1],ps = [-1,3],ps = [-1,—1]} define an
equilibrium solution.

(i) We hypothesize that there is no equilibrium solutiofess : for somé&, {,, =
7} forl < n < 4and{)\, =7} for 1 < m < 2. Such tensegrity structures may be
said to have force symmetry (but not necessarily geometncreetry).

No equilibrium solutions have been found for other choidegyg, A, }. An ana-
Iytical investigation was undertaken for the casg = v3 = 1, 72 = 74 = a}. In
this case, it may be shown that

X0.5{a+1 al]

a—1 a+1

with singular values (and eigenvalues) given{dya}. In all choices for{\, } that
led to the rank ofA — X having rank 2, thet x 2 matrix V; is of the formV{, =
[AT,+£AT]; thatis, in (57), the two bar vectorh,, by} are always parallel, so the
equilibrium structure is trivial with{p; = ps3, p2 = p4}-

Example 4 A (3;9; 3) class 1 tensegrity consisting of one stageipf= 3 bars (so
n, = 6 nodes) withn; = 9 strings has topology as illustrated in Fig. 2

The corresponding (reduced) geometric matri{:és]é} are given by
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Figure 2. 3-Bar 9-String(3; 9; 3) Class 1 Tensegrity

e
I
O OO = O
O, O, OO
O = OO O
_ O OO O
_ O )OO O
\
OO~ OO
_ o O O = O
OO O == O
\
O =R=OOOO
well
I
OO OO - =
OO R M= OO
= _-0 00O

A symmetrical force configuration was investigated withaddpase string force
_ A . - A
coefficientsy1 = v2 = 71 = Yrase }, €Qual top string coefficientsys = v = 77 =

Yeop +» @Nd equal vertical string coefficien{s, = s = o 2 Yvert }- The following
conclusions were reached :

(i) No equilibrium solution is possible whefi,se = Yiop = Yvert. In this case
X is not diagonal, and once again, all choicesMdfsuch thatp(A — X) # 0 led to
parallel bar vectors.

(ii) For all choices of{Ysase, Viop }» @an equilibrium solution witlA = X is pro-
vided by\; = Ay = A3 = X wherev,..: = \. For example, wher{pqsc =
L Yiop = 1}, theny,er = A = 1.7321, and when{vpuse = 1,7%0p = 5}, then
Yvert = A = 3.8730. In all cases X is a scaled identity matrix.

Recall that once the conditioh = X is satisfied, the choice for the bar vectors
was completely arbitrary subject only {&;, bo, b3} spanningR?. Alternatively, as
required in (61), the construction may be achieved subetiié node vectop being
in the null space of the matrMEQPfl. It then follows that parameters

Vbase A
= ——; g =
VYtop Ytop

g



310 RFGC - 7/2003. Tenségrité

may be used to optimize the node positions with respect te penformance measure
(such as being restricted to lie on a given surface).

4. Conclusion

This paper characterizes the static equilibria ofess 1tensegrity structure. Ana-
lytical expressions are derived for the equilibrium coiaditof a tensegrity structure
in terms of member force coefficients and string and bar cctivity information. We
use vectors to describe each element (bars and tendomsnaing the need to use
direction cosines and the subsequent transcendentaidoadhat follow their use.
By enlarging the vector space in which we characterize thblpm, the mathematical
structure of the equations admit treatment by linear alyetethods, for the most part.
This reduces the study of a significant portion of the terigegquilibria to a series
of linear algebra problems. Our results characterize thdibga conditions of tense-
grity structures in terms of a very small number of varialsieee the necessary and
sufficient conditions of the linear algebra treatment hamiehted several of the ori-
ginal variables. This formulation offers insight and idées the free parameters that
may be used to achieve desired structural shapes. Sincerdlitions are necessary
and sufficient, these results can be used in the design okasggrity structure.
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