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ABSTRACT

The class I tensegrity structures are reduced to linear algebra problems, after first char-

acterizing the problem in a vector space where direction cosines are not needed. That is, we

describe the components of all member vectors as opposed to the usual practice of character-

izing the statics problem in terms of the magnitude of tension vectors. While our approach

enlarges( by a factor of 3 ) the vector space required to describe the problem, the advantage

is that enlarging the vector space makes the mathematical structure of the problem amenable

to linear algebra treatment.
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1 INTRODUCTION

Tensegrity structures pose a wonderful blend of geometry and mechanics. In addition,
they have engineering appeal in problems requiring large changes is shape of the
structure. Most existing smart structure methods are limited to small displacements.
Since class I tensegrity structures [8] have no bar-to-bar connections, the control of
tendons allows very large shape changes.

This paper characterizes the static equilibria of class I tensegrity structures. Fur-
thermore, we use vectors to describe each element( bars and tendons), eliminating the
need to use direction cosines and the subsequent transcendental functions that follow
their use.
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By enlarging the vector space in which we characterize the problem, the mathe-
matical structure of the equations admit treatment by linear algebra methods, for the
most part.

Our results characterize the equilibria conditions of class I tensegrity structures in
terms of a very small number of variables since the necessary and sufficient conditions
of the linear algebra treatment has eliminated several of the original variables.

Notation

We let In define the n × n identity matrix, and 0 define an n × m matrix of zeros.
(The dimensions of 0 will be clear from the context.) We also let ρ(A) define the rank
of the matrix A.

2 NETWORK REPRESENTATION OF STRUCTURES

In this paper, we choose to represent a tensegrity structure as an oriented graph in real
three dimensional space R3 defined in terms of np nodes and ns+nb directed branches
which are all represented as vectors in R3. A loop is any closed path in the graph.
As we shall see, the advantage of this approach is that the both the magnitude and
the direction cosines of the forces are contained in vectors which can be solved using
linear algebra. Thus linear algebra plays a larger role in this approach compared to
the usual approach in mechanics and finite element methods using direction cosines.

In this oriented graph, the nodes consist of the ends of the bars as represented by
the np nodes (or vectors) {pk}. Hence if there are nb bars, then there are np = 2nb

nodes. We choose to identify two different types of directed branches; the ns string
branches (or vectors) {sn} and the nb bar branches (or vectors) {bm}.

Geometric Connectivity

Each directed branch can undergo a displacement in reaching its equilibrium state.
String vectors can change both their length and orientation while bar vectors can only
change their orientation. Node vectors can change both their length and orientation
but subject to a Law of Geometric Connectivity which we state as follows:

The vector sum of all branch vectors in any loop is zero. (1.1)

These equations are in the form of a set of linear algebraic equations in the branch
vectors.

Force Equilibrium

In our study of tensegrity structures, we are concerned with structures in which
bars sustain compressive forces. We therefore choose to distinguish between the string
(or tensile) forces {tn} and the bar (or compressive) forces {fm} which are defined in
terms of the string and bar vectors respectively as follows.

Definition: Given the tensile force tn in the string characterized by the string vector
sn and the compressive force fn in the bar characterized by the bar vector bn, the
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tensile force coefficient γm ≥ 0 and the compressive force coefficient λn ≥ 0 are defined
by

tn = γnsn ; fm = λmbm (1.2)

The force of the tensegrity structure is defined by the external force vector w ∈
R3np , the tensegrity compression vector f ∈ R3nb , and the tensegrity tension vector
t ∈ R3ns where

wT = [wT
1 ,wT

2 , ... ,wT
np

] ; fT = [fT
1 , fT

2 , ... , fT
nb

] ; tT = [tT
1 , tT

2 , ... , tT
ns

] (1.3)

Force Convention:
Suppose each node pk is subjected to compressive vector forces {fmk}, tensile vector

forces {tnk} and external force wk. Then the Law for Static Equilibrium may be stated
as follows:

∑

n

tnk −
∑

m

fmk − wk = 0 (1.4)

where a positive sign is assigned to a (tensile, compressive, external) force leaving a
node, and a negative sign is assigned to a (tensile, compressive, external) force entering
a node. The negative sign in (1.4) is a consequence of the fact that we choose to define
nonnegative compressive force coefficients λn.

Consider a class 1 tensegrity structure consisting of np nodes, nb bars and ns

strings. Suppose the positions of the positions of the nodes are described by the np

vectors {p1,p2, ... ,pnp
}, the positions of the bars are described by the nb vectors

{b1,b2, ... ,bnb
}, and the positions of the strings are described by the ns vectors

{s1, s2, ... , sns
}.

Definition: The geometry of the tensegrity structure is defined by the tensegrity node
vector p ∈ R3np , the tensegrity bar vector b ∈ R3nb , and the tensegrity string vector
s ∈ R3ns where

pT = [pT
1 ,pT

2 , ... ,pT
np

] ; bT = [bT
1 ,bT

2 , ... ,bT
nb

] ; sT = [sT
1 , sT

2 , ... , sT
ns

] (1.5)

From network analysis and the law for static equilibrium, we have the following result.

Lemma 2.1 There exists an 3np × 3ns matrix S and an 3np × 3nb matrix B such
that

A

[

t

−f

]

= w ; A
∆
= [S,B] (1.6)

or equivalently
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Figure 1 2-Bar 4-String Class 1 Tensegrity

St = Bf + w. (1.7)

In particular, if we consecutively number the ns+nb branches {s1, s2, ... , sns
, b1,b2, ... ,bnb

}
as {1, 2, .... , ns, ns + 1, ... , ns + nb}, then the 3np × (3ns + 3nb) matrix A = [Aij ] is
defined by

Aij =







I3 if tension (compression) j leaves (enters) node i
−I3 if tension (compression) j enters (leaves) node i

0 if tension (compression) j is not incident with node i
(1.8)

Also: (i) each column of A has exactly one block I3 and one block −I3 with all other
column blocks 0, and (ii) for any row i there exists a column j such that Aij = ±I3.

In network analysis, the matrix A is known as the incidence matrix. This matrix is
not the reduced incidence matrix since we have included the datum node which means
that one block row of equations in (1.6) are dependent on the other rows. This fact
does not cause any difficulties in subsequent developments. On the contrary, some
symmetry is preserved in the algebraic equations. Network analysis also gives us the
following result.

Lemma 2.2 The string vector t and the bar vector b are related to the node vector
p by the equation

ATp =

[

s

b

]

or
STp = s

BT p = b
(1.9)

The proof is constructive. Firstly, from the network, it follows that components
of the string vector s and the bar vector b can be written as a linear combination of
components of the node vector p. Also if branch k is a bar which leaves node i and
enters node j, then bk = pj − pi, whereas if branch k is a string which leaves node i
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and enters node j, then sk = pj −pi. Hence we have Cp = [sT ,bT ] where the matrix
C consists only of block matrices of the form {0,±I3}. A closer examination then
reveals that C = AT .

Example 2.3 Consider the 2-bar 4-string class 1 tensegrity structure illustrated in
Fig. 1 with tensile force vectors {t1, t2, t3, t4} and compressive force vectors {f1, f2}.
The Geometric Connectivity conditions are:

−p1 + p3 = s1 ; p2 − p3 = s2

−p2 + p4 = s3 ; p1 − p4 = s4 (1.10)

Also, in terms of the stated force convention, the conditions for Static Equilibrium at
nodes 1-4 are:

t1 − t4 − f1 − w1 = 0 ; −t2 + t3 + f1 − w2 = 0

−t1 + t2 − f2 − w3 = 0 ; −t3 + t4 + f2 − w4 = 0 (1.11)

The static equilibrium conditions and the geometric conditions can be written in the
form (1.6), (1.8), (1.9) where

A =









I3 0 0 −I3 −I3 0

0 −I3 I3 0 I3 0

−I3 I3 0 0 0 −I3

0 0 −I3 I3 0 I3









with

S =









I3 0 0 −I3

0 −I3 I3 0

−I3 I3 0 0

0 0 −I3 I3









; B =









−I3 0

I3 0

0 −I3

0 I3









We now derive a canonical network representation in which the bar vectors are a subset
of the transformed network nodes.

Lemma 2.4 Given the tensegrity node vector p, define the nodal transformation

q = P−1p (1.12)

for some nonsingular matrix P ∈ R3np×3np where

P = [PT
1 ,PT

2 ] ; P1,P2 ∈ R3nb×3np (1.13)

Then:

(i) In terms of the transformed tensegrity node q, the tensegrity geometry is given
by
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ST
q q = s ; BT

q q = b (1.14)

where

ST
q = [ST

1 ,ST
2 ] ; BT

q = [BT
1 ,BT

2 ] (1.15)

with

S1 = P1S ; S2 = P2S ; B1 = P1B ; B2 = P2B (1.16)

(ii) The tensegrity force equilibrium is given by

S1t = B1f + P1w ; S2t = B2f + P2w (1.17)

Proof: Part (i) follows directly from the definition of P. Part (ii) follows from the
expansion of the equilibrium force equation Sqt = Bqf + PTw.

Lemma 2.5 Given the tensegrity node vector p, bar vector b and string vector s, the
geometry of the class 1 tensegrity structure can be described by the algebraic equations

BTp = b ; ST p = s (1.18)

where the 3np × 3nb matrix B is given by

BT =









−I3 I3 03 03 . . . 03

03 03 −I3 I3 03 . . 03

. . . . . . . .
03 03 . . . 03 −I3 I3









(1.19)

for some 3np × 3ns matrix S which consist only of block matrices {I3,−I3,03} with

np = 2nb (1.20)

In particular:

(i) P1,P2 ∈ R3nb×3np in (1.13) are given by

−P1 =













I3 03 03 03 . . . 03

03 03 I3 03 03 . . 03

03 03 03 03 I3 03 . 03

. . . . . . . .
03 03 . . . 03 I3 03













P2 =













I3 I3 03 03 . . . 03

03 03 I3 I3 03 . . 03

03 03 03 03 I3 I3 . 03

. . . . . . . .
03 03 . . . 03 I3 I3













(1.21)
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(ii) The inverse transformation

P−1 = [PT
1 ,PT

2 ]−1 =

[

BT

JT

]

(1.22)

where B is given by (1.19) and J ∈ R3np×3nb is given by

JT =













03 I3 03 03 . . . 03

03 03 03 I3 03 . . 03

03 03 03 03 03 I3 . 03

. . . . . . . .
03 03 . . . 03 03 I3













(1.23)

(iii) The transformed tensegrity node q is given by

qT = [qT
b ,qT

e ] (1.24)

where qb,qe ∈ R3nb are given by

qb = b ; qT
e = [qT

2 ,qT
4 , ... ,qT

np
] (1.25)

with

ST
q = [ST

1 ,ST
2 ] ; BT

q = [Inb
,0nb

] (1.26)

where S1 ∈ R3nb×3ns ; S2 ∈ R3nb×3ns are given by (1.16).
(iv) The transformed force equilibrium conditions (1.17) are given by

S1t = f + P1w ; S2t = P2w (1.27)

Proof: Since each bar has two end points, np = 2nb. Without any loss of generality,
we can assume in a class 1 tensegrity that

bm = −p2m−1 + p2m , m = 1, 2, ... , nb

which then gives BTp = b with B as in (1.19). The block structure of the S matrix
comes from the vector equations which relate the {sn,pr}. It follows from (1.19) and
(1.21) that

PT B =

[

P1

P2

]

B =

[

I3nb

03nb

]

;

[

S1

S2

]

=

[

P1

P2

]

S = PTS

which then gives (1.27) and (1.16).

Example 2.6 The equations (1.10), (1.11) of the 2-bar 4-string tensegrity introduced
in Example 2.3 can be written in the form (1.6) and (1.9) where

BT =

[

−I3 I3 0 0

0 0 −I3 I3

]

; ST =









−I3 0 I3 0

0 I3 −I3 0

0 −I3 0 I3

I3 0 0 −I3
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Then from Lemma 2.4, we have (1.27) where

S1 =

[

I3 0 0 −I3

−I3 I3 0 0

]

; S2 =

[

−I3 I3 −I3 I3

I3 −I3 I3 −I3

]

P1 =

[

−I3 0 0 0

0 0 −I3 0

]

; P2 =

[

I3 I3 0 0

0 0 I3 I3

]

(1.28)

3 ALGEBRAIC CONDITIONS FOR EQUILIBRIUM

Definition 3.1 A tensegrity structure with tensile force coefficients {γn ≥ 0}, com-
pressive force coefficients {λn ≥ 0}, node vector p, string vector s and bar vector b is
said to be in equilibrium if the element relationships (1.2), the force equations (1.7)
and the geometric equations (1.9) are all satisfied.

From lemma 2.1 and lemma 2.2, we have the that tT STp − fTBT p = wTp, or
equivalently, tT s−fTb = wT p. Hence from (1.2), we deduce the mechanical equivalent
of Tellegen’s Theorem for electrical networks.

Corollary 3.2 For a tensegrity structure in equilibrium

∑

n

γn||sn||2 −
∑

m

λm||bm||2 =
∑

k

wT
k pk (1.29)

Connelly [1] defined a tensegrity framework G(p) as a graph on p where each edge
is either a cable or a bar. A stress state {γn, λm} for G(p) is said to be a self-stress if
in the absence of an external load (i.e. w = 0), force equilibrium is satisfied at each
node.

The force ||tn|| in a linear spring of length ||sn|| having spring constant kn and rest
length `n0 is given by

||tn|| = kn(||sn|| − `n0)

Hence in terms of the tensile force coefficient γn in (1.2), we have

γn = kn(1 − `n0

||sn||
) (1.30)

The potential energy PEn in the spring is also given by

PEn =
1

2
kn(||sn|| − `n0)

2 (1.31)

so that when the cable has zero rest length:

γn = kn is constant ; PEn =
1

2
γn||sn||2 (1.32)
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In analogy with total potential energy, Connelly [1] defined the energy form asso-
ciated with the stress state {γn, λm} as:

E(p)
∆
=

1

2
{
∑

n

γn||sn||2 −
∑

m

λm||bm||2} (1.33)

where all members are assumed to behave as elastic strings in which the cables have
zero rest length and the bars have infinite rest length. The idea is that when the end
points of a bar are displaced, the energy builds up as the square of the extension. The
function E(p) when w = 0 is said to have an absolute minimum corresponding to the
rest length of the element [2].

In this context, the more general statement in Corollary 3.2 then says then in the
presence of external forces {wk}, the energy associated with the stressed state must
be balanced by the sum of the external work done wT

k pk at each node.

Requirements for Equilibrium: Given an external force vector w, the problem of
determining the geometric and force configuration of a tensegrity structure consisting
of ns strings and nb bars in equilibrium is therefore equivalent to finding a solution
b,qe ∈ R3nb of the equations:

s = ST
1 b + ST

2 qe (1.34)

t = Γs ; Γ
∆
= diag{γ1I3, γ2I3, ... , γns

I3} (1.35)

S2t = P2w (1.36)

f = S1t − P1w (1.37)

f = Λb ; Λ
∆
= diag{λ1I3, λ2I3, ... , λnb

I3} (1.38)

for given matrices

S1,S2 ∈ R3nb×3ns ; P1,P2 ∈ R3nb×3np (1.39)

where

np = 2nb ; ns > nb (1.40)

The diagonal matrices {Γ,Λ} shall be referred to as the tensile force matrix and
compressive force matrix respectively.

Materials Properties: Conditions for equilibrium will depend on both the tensile
force coefficients of the strings and the compressive force coefficients of the bars. A
tensile force coefficient γn of a (linear) string may be designed by selection of the
spring constant kn and the ratio `m0/||sn|| of the rest to stretched length of the string
subject only to the requirement that the yield force (i.e. the force that causes the
string to reach its elastic limit) is not exceeded. In the (mathematically ideal) case of
zero rest length, kn = γn.

On the other hand, the compressive force coefficient λn of a bar cannot be designed
by an adjustment of the materials properties. However the bar force must not ex-
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ceed the buckling force where an ideal bar of radius r0 and length L0 buckles at a
compressive force F0 given by

F0 =
E0πr4

0

L2
0

; E0 = Young′s Modulus of bar

Using an earlier derivation, the next result provides an expression for both the
tensile and compressive force coefficients in an equilibrium structure.

Lemma 3.3 Suppose the transformed tensegrity structure is in equilibrium. Then:
(i) Assuming a linear force relationship for the strings, the tensile force coefficient

{γn} in the string sn is given by (1.30) where kn > 0 is the spring constant, `n0 > 0
is the rest length of the nth string, and ||sn|| is the stretched length of the nth string

(ii) The compressive force coefficient {λm} in the bar bm is given by

λm =
||fm||
Lm

; Lm
∆
= ||bm|| (1.41)

where Lm is the (constant) length of the bar, and

fm = Sm1Γs − Pm1w ; s = ST
q q

Γ = diag{γ1I3, γ2I3, .. , γns
I3} (1.42)

where Sm1,Pm1 ∈ R3×3np for 1 ≤ m ≤ nb are the mth blocks of {S1,P1} respectively
in (1.21), (1.16) where

S1 =













S11

S21

·
·

Snb,1













; P1 =













P11

P21

·
·

Pnb,1













(1.43)

Proof: From (1.2), (1.27) and (1.43), we have λmbm = fm. Then since λm ≥ 0, we
get (1.41).

3.1 Prestressed Equilibrium Structure

We now proceed to derive necessary and sufficient conditions for the existence of a
structure in equilibrium that is prestressed in the absence of any external load (i.e.
w = 0). The derivation relies heavily on the singular value decomposition svd(A) =
{UA,ΣA,VA} of a matrix A.

Lemma 3.4 (i) Suppose an n×m matrix A has rank rA, then there exists an n× n
unitary matrix UA, an m × m unitary matrix VA and a positive definite rA × rA

diagonal matrix Σ1A such that

A = UAΣAVT
A ; ΣA =

[

Σ1A 0

0 0

]

(1.44)

(ii) If {UA,VA} are partitioned such that
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UA = [U1A,U2A] ; V = [V1A,V2A] (1.45)

with

U1A ∈ Rn×rA ; U2A ∈ Rn×(n−rA) ; V1A ∈ Rm×rA ; V2A ∈ Rm×(m−rA) (1.46)

then

UT
1A.U1A = IrA

; UT
1A.U2A = 0 ; UT

2A.U2A = In−rA

VT
1A.V1A = IrA

; VT
1A.V2A = 0 ; VT

2A.V2A = Im−rA

UT
2AA = 0 ; AV2A = 0 (1.47)

(iii) The algebraic equation

Ax = b

has a solution if and only if UT
2Ab = 0. When this condition is satisfied, then all

solutions x are of the form

x = V1AΣ−1
1AUT

1Ab + V2Azx ; UT
2Ab = 0

where zx ∈ Rn−rA is arbitrary.

We now establish necessary and sufficient conditions for a solution of equations (1.34)-
(1.40) in the absence of external forces (i.e. w = 0) by examining each of these
equations in turn beginning with the solution of (1.34), (1.35). The next result follows
from lemma 3.4.

Lemma 3.5 Suppose

r
∆
= ρ(S2) ≤ min{3np, 3ns} (1.48)

and let S2 have the singular value decomposition {U,Σ,V} given by

S2 = UΣVT ∈ R3nb×3ns (1.49)

where

U = [U1,U2] ; Σ =

[

Σ11 0

0 0

]

; V = [V1,V2]

U1,V1 ∈ R3nb×r ; U2,V2 ∈ R3nb×(3nb−r) (1.50)

Then a necessary and sufficient condition for (1.34) to have a solution qe ∈ R3nb

is given by
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VT
2 (s− ST

1 b) = 0 (1.51)

Furthermore, when (1.51) is satisfied, all solutions qe are of the form

qe = U1Σ
−1
11 VT

1 (s− ST
1 b) + U2ze (1.52)

where ze ∈ R3nb−r is arbitrary.

We now consider the solution of (1.36) when w = 0.

Lemma 3.6 When w = 0, all solutions t of (1.36) which guarantee (1.51) are of the
form

t = V2M
−1VT

2 ST
1 b ; M

∆
= VT

2 Γ−1V2 (1.53)

Proof: From (1.49), (1.50) and lemma 3.4, we have t = V2zt where zt is the free
solution of (1.36). Then from (1.35)

VT
2 (s− ST

1 b) = VT
2 (Γ−1V2zt − ST

1 b)

Since V2 has full column rank, the matrix M = VT
2 Γ−1V2 is invertible. Hence (1.51)

is satisfied when zt = M−1VT
2 ST

1 b, and this gives (1.53).

We now consider the solution of (1.37), (1.38) when w = 0.

Lemma 3.7 When w = 0, a necessary and sufficient condition for (1.37), (1.38) to
have a solution b ∈ R3nb is given by

(X − Λ)b = 0 (1.54)

where

X
∆
= (S1V2)M

−1(S1V2)
T ; M

∆
= VT

2 Γ−1V2 (1.55)

In particular, define

rb
∆
= ρ(Λ − X) (1.56)

Then:

(i) When rb = 3nb, then b = 0 is the only solution of (1.54),
(ii) When rb = 0, any b ∈ R3nb is a solution of (1.54), and
(iii) When 0 < rb < 3nb, all solutions b satisfy the equation

[I − VX1Σ
−1
X11U

T
X1Λ]b = UX2zb (1.57)

where zb ∈ R3nb−rb is free, and where {UX ,ΣX ,VX} is the singular value decompo-
sition of the matrix X ∈ R3nb×3nb ; that is
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UX = [UX1,UX2] ; Σb =

[

ΣX11 0

0 0

]

; VX = [VX1,VX2] ; rX = rank(X)

with UX1 ∈ R3nb×rX , VX2 ∈ R3nb×(3nb−rX).

Proof: From (1.53), (1.38) and (1.36)

S1t− f = S1V2M
−1VT

2 ST
1 b− Λb = (X − Λ)b

The result then follows from the singular value decomposition of X after writing (1.54)
in the form Xb = f , f = Λb.

Now Γ positive definite implies M in (1.55) is positive definite. Then M positive
definite implies X in (1.55) is positive semidefinite with at least one non-zero eigen-
value. Since (1.54) has a nontrivial solution b if and only if det(X − Γ) = 0, the
following lemma is important.

Lemma 3.8 Given a symmetric positive semidefinite matrix X. Then there exists a
positive definite diagonal matrix Λ such that

det(X − Λ) = 0

if and only if X 6= 0.

Proof: Since X = XT ≥ 0, X cannot have negative eigenvalues. Suppose λ0 is a
positive eigenvalue of X. Then Λ = λ0I implies det(Λ− X) = det(λ0I − X) = 0.

Remarks: For 0 < rb < 3nb, (Λ − X)b = 0 always has at least one solution b 6= 0

of the form (1.57) where the freedom in the choice of b is available in the choice of a
free vector zb. However for nb ≥ 3, an additional necessary condition for the existence
of a nontrivial tensegrity structure is that the nb bar vectors {bm} span R3. This
condition places additional requirements on the component matrices of the singular
value decomposition of the matrix X. In the 2-bar 4-string planar tensegrity and the
(3; 9; 3) 3-bar 9-string single stage shell tensegrity structure, no nontrivial tensegrity
structures have been found in the case when rb 6= 0; only in the case when rb = 0 do
equilibrium solutions exist. We therefore specialize our results to this case.

Theorem 3.9 Consider a class 1 tensegrity structure as defined by the geometry and
force equations in the absence of external load as described by the geometric conditions

BTp = b ; ST p = s ; p ∈ R3np , b ∈ R3nb , s ∈ R3ns

with np = 2nb, and the equilibrium force equations

St = Bf ; t = Γs, f = Λb

where for {γm > 0, λn > 0},

Γ = diag{γ1I3, γ2I3, ... , γns
I3} ; Λ = diag{λ1I3, λ2I3, ... , λnb

I3}
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Then given any tensile force coefficients {γm > 0, 1 ≤ m ≤ ns}, there exits com-
pressive force coefficients {λn > 0, 1 ≤ m ≤ nb} which define an equilibrium structure
if {Λ,Γ} satisfy the condition:

Λ = X ; X
∆
= (S1V2)M

−1(S1V2)
T , M

∆
= V2Γ

−1VT
2 (1.58)

Moreover, given condition (1.58), any vector p of the form

p = PQ[bT , zT
e ] (1.59)

where

Q
∆
=

[

I3nb
0

L U2

]

; L
∆
= U1Σ

−1
11 VT

1 [Γ−1V2M
−1VT

2 − I3ns
]ST

1 (1.60)

for arbitrary vectors {b ∈ R3nb , ze ∈ R3nb−r} defines a corresponding tensegrity
node. Equivalently, the tensegrity node is constrained according to the equation

UT
Q2P

−1p = 0 (1.61)

where UQΣQVT
Q is the singular value decomposition of Q in (1.60) with

UQ = [UQ1,UQ2] ; UQ2 ∈ R3np×(3np−rQ), rQ = ρ(Q) (1.62)

The corresponding tensegrity tension vector t, string vector s, and compression
vector f are given in terms of the bar vector b by

t = V2M
−1VT

2 ST
1 b ; s = Γ−1t ; f = Λb (1.63)

Construction Procedure:
One procedure for construction of a class 1 tensegrity structure in equilibrium is

provided as follows:

1. Given the matrices S and B from the network topology, find a nonsingular
matrix P = [PT

1 ,PT
2 ] such that BT

q = BTP = [Inb
,0nb

], and calculate {S1 =
P1S,S2 = P2S}. (Note that if B is defined as in (1.19), then {P1,P2} are given
by (1.21).)

2. Choose {γm > 0} such that X ≥ 0 in (1.55) is diagonal, and then select {λn > 0}
such that Λ = X.

3. Select any bar vector b such that {b1,b2, ... ,bnb
} span R3, and calculate

{t, s, f} from (1.63).

4. Choose the free vector ze in (1.59), (1.60) to give a suitable node vector p.

In the design of tensegrity structures, an alternative approach for the selection of the
node vector p and bar vector b may be useful. That is, we can first select the node
vector p as in (1.59), (1.60) (which satisfies the constraint (1.61)) subject (if necessary)
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to other design constraints. The corresponding bar vector b is then determined from
the first 3nb components of the vector P−1p.

3.2 Computation of Equilibrium Configurations

An inspection of all matrices in all algebraic expressions reveals that each matrix
A = [aij ] is a tensor product of the form A = Ã

⊗

I = [aijI] where Ã is m × n and
the identity matrix I is of either dimension 3n× 3m, or 2n× 2m for planar tensegrity
structures. Hence all matrix manipulations with the exception of the final determina-
tion of the vectors {p,b, s, t, f} can be carried out in lower dimension thereby reducing
the computational burden.

In particular, the sufficient condition (1.58) for the existence of a prestress equilib-
rium can be written in the form

Λ̃ = X̃ ; λ̃ = Λ
⊗

I, X̃ = X
⊗

I

where

X̃ = (S̃1Ṽ2)M̃
−1(S̃1Ṽ2)

T ; M̃ = ṼT
2 Λ̃−1Ṽ2

We now illustrate the construction procedure

Example 3.10 For the 2-bar 4-string planar tensegrity structure, we can replace
{S,B,S1, S2,P1,P2} in examples 2.3 and 2.6 by {S̃, B̃, S̃1, S̃2, P̃1, P̃2} where

S̃ =









1 0 0 −1
0 −1 1 0

−1 1 0 0
0 0 −1 1









; B̃ =









−1 0
1 0
0 −1
0 1









S̃1 =

[

1 0 0 −1
−1 1 0 0

]

; S̃2 =

[

−1 1 −1 1
1 −1 1 −1

]

P̃1 =

[

−1 0 0 0
0 0 −1 0

]

; P̃2 =

[

1 1 0 0
0 0 1 1

]

Then the singular value decomposition {Ũ, Σ̃, Ṽ} of the (reduced dimension) matrix
S̃2 of (reduced) rank r̃ = ρ(S̃2) = 1 is given by Σ̃11 = 2

√
2 and

Ũ1 =
1√
2

[

−1
1

]

; Ũ2 =
1√
2

[

1
1

]

; Ṽ1 = 0.5









1
−1
1
−1









and
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Ṽ2 =









−0.8660 −0.0000 0
−0.2887 0.5774 −0.5774
0.2887 0.7887 0.2113
−0.2887 0.2113 0.7887









S̃1Ṽ2 =

[

−0.5774 −0.2113 −0.7887
0.5774 0.5774 −0.5774

]

We also have that (S̃1Ṽ2)(S̃1Ṽ2)
T = I2.

(i) Suppose {γk = 1; k = 1, 2, 3, 4} so that the (reduced) matrix Γ̃ = I4. It then
follows that the (reduced) matrix X̃ = I4 which satisfies condition (1.58) in Theorem
3.9. Hence when there is no external load (i.e. w = 0), (1.54) has a (nonzero) solution
bT = [bT

1 ,bT
2 ] when λ1 = λ2 = 1. For example, when b1 = [4, 0],b2 = [0, 4], the

nodes {p1 = [−3,−1],p2 = [1,−1],p3 = [−1, 3],p4 = [−1,−1]} define an equilibrium
solution.

(ii) We hypothesize that there is no equilibrium solution unless: for some γ, {γn =
γ} for 1 ≤ n ≤ 4 and {λm = γ} for 1 ≤ m ≤ 2. Such tensegrity structures may be
said to have force symmetry (but not necessarily geometric symmetry).

No equilibrium solutions have been found for other choices of {γn, λn}. An analyt-
ical investigation was undertaken for the case {γ1 = γ3 = 1, γ2 = γ4 = a}. In this
case, it may be shown that

X̃ = 0.5

[

a + 1 a − 1
a − 1 a + 1

]

with singular values (and eigenvalues) given by {1, a}. In all choices for {λn} that
led to the rank of Λ̃ − X̃ having rank 2, the 4 × 2 matrix Ṽb2 is of the form ṼT

b2 =

[ÃT
1 ,±ÃT

1 ]; that is, in (1.57), the two bar vectors {b1,b2} are always parallel, so the
equilibrium structure is trivial with {p1 = p3,p2 = p4}.

Example 3.11 A (3; 9; 3) class 1 tensegrity [9] consisting of one stage of nb = 3 bars
(so np = 6 nodes) with ns = 9 strings has topology as illustrated in Fig. 2

The corresponding (reduced) geometric matrices {S̃, B̃} are given by

S̃ =

















−1 0 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 −1 0
1 −1 0 0 0 0 0 1 0
0 0 0 0 1 −1 0 0 −1
0 1 −1 0 0 0 0 0 1
0 0 0 1 −1 0 1 0 0

















; B̃ =

















−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1

















A symmetrical force configuration was investigated with equal ‘base’ string force

coefficients {γ1 = γ2 = γ1
∆
= γbase}, equal ‘top’ string coefficients {γ5 = γ6 = γ7

∆
=

γtop}, and equal vertical string coefficients {γ4 = γ8 = γ9
∆
= γvert}. The following

conclusions were reached:
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Figure 2 3-Bar 9-String (3; 9; 3) Class 1 Tensegrity

(i) No equilibrium solution is possible when γbase = γtop = γvert. In this case X̃ is

not diagonal, and once again, all choices of Λ̃ such that ρ(Λ̃− X̃) 6= 0 led to parallel
bar vectors.

(ii) For all choices of {γbase, γtop}, an equilibrium solution with Λ̃ = X̃ is provided
by λ1 = λ2 = λ3 = λ where γvert = λ. For example, when {γbase = 1, γtop = 1}, then
γvert = λ = 1.7321, and when {γbase = 1, γtop = 5}, then γvert = λ = 3.8730. In all

cases, X̃ is a scaled identity matrix.
Recall that once the condition Λ = X is satisfied, the choice for the bar vectors

was completely arbitrary subject only to {b1,b2,b3} spanning R3. Alternatively, as
required in (1.61), the construction may be achieved subject to the node vector p being
in the null space of the matrix UT

Q2P
−1. It then follows that parameters

α1 =
γbase

γtop

; α2 =
λ

γtop

may be used to optimize the node positions with respect to some performance measure
(such as being restricted to lie on a given surface).

4 CONCLUSION

This paper reduces the study of the tensegrity equilibria to a series of linear algebra
problems. Of course the existence conditions for the linear algebra problems are
nonlinear in the design variables. Our formulation offers insight and identifies the free
parameters that may be used to achieve desired structureal shapes.
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