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Abstract

This paper characterizes the necessary and sufficient conditions for tensegrity equilibria. Static models of tensegrity

structures are reduced to linear algebra problems, after first characterizing the problem in a vector space where direction

cosines are not needed. This is possible by describing the components of all member vectors. While our approach

enlarges (by a factor of 3) the vector space required to describe the problem, the advantage of enlarging the vector space

makes the mathematical structure of the problem amenable to linear algebra treatment. Using the linear algebraic

techniques, many variables are eliminated from the final existence equations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The tensegrity structures introduced by Snelson (1996) pose a wonderful blend of geometry and me-

chanics. In addition, they have engineering appeal in problems requiring large changes is structural shape.

Tensegrity structures exist as a prestressed stable connection of bars and strings. Most existing smart

structure methods are limited to small displacements, but the control of tensegrity structures allows very

large shape changes to occur (Skelton and Sultan, 1997; Skelton et al., 2001a; Motro, 1992). Therefore, an

efficient set of analytical tools could be the enabler to a host of new engineering concepts for deployable and
shape controllable structures. This paper characterizes the static equilibria of tensegrity structures in terms

of vectors which describe the elements (bars and strings), thereby eliminating the need to use direction

cosines and the subsequent transcendental functions that follow their use. For a comparison of previous

methods of form-finding in tensegrity structures, see Tibert and Pellegrino (2001), Vassart and Motro

(1999), Motro et al. (1994), Linkwitz (1999), Barnes (1998), and Schek (1974).
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It is well known in a variety of mathematical problems that enlarging the domain in which the problem

is posed can often simplify the mathematical treatment. In fact, many nonlinear problems admit solutions by

linear techniques by enlarging the domain of the problem. For example, nonlinear Riccati equations are

known to be solvable by linear algebra in a space that is twice the size of the original problem statement. The
purpose of this paper is to show that the mathematical structure of the equations admits some treatments by

linear algebra methods by enlarging the vector space in which the tensegrity statics problem is characterized.

Our results characterize the equilibria conditions of tensegrity structures in terms of a very small number

of variables since the necessary and sufficient conditions of the linear algebra treatment allow the elimi-

nation of several of the original variables. These results can be used for efficient algorithms to design and

simulate a large class of tensegrity structures. Tensegrity concepts have been around for 50 years without

efficient design procedures (Kenner, 1976; Pugh, 1976; Connelly, 1982, 1993, 1999; Ingber, 1993, 1997,

1998; Williamson and Skelton, 1998a,b; Motro, 1984, 1990, 2001; Skelton et al., 2001b).
The paper is organized as follows. After the review of mathematical preliminaries in Section 2, Section 3

introduces the network representations of tensegrity structures as an oriented graph in real three dimensional

space. Geometric connectivity, equilibrium, and a coordinate transformation will be introduced. Section 4

introduces the algebraic equilibrium conditions. After we derive necessary and sufficient conditions for the

existence of an unloaded tensegrity structure in equilibrium, we write the necessary and sufficient conditions

for the externally loaded structure in equilibrium. A couple of examples will illustrate the results.
2. Algebraic preliminaries

We let In define the n� n identity matrix, and 0 define an n� mmatrix of zeros. (The dimensions of 0 will

be clear from the context.) We also let qðAÞ define the rank of the matrix A. Let A 2 Rm�n and B 2 Rp�q,
then the Kronecker product (Horn and Johnson, 1985) of A and B is defined as
A� B ¼

Að1; 1ÞB Að1; 2ÞB � � � Að1; nÞB
Að2; 1ÞB Að2; 2ÞB � � � Að2; nÞB

..

. ..
. ..

.

Aðm; 1ÞB Aðm; 2ÞB � � � Aðm; nÞB

2
6664

3
7775 2 Rmp�nq
where Aði; jÞ is the ði; jÞ element of a matrix A. Then we have the following result.

Lemma 1. The following statements are true.

i(i) Suppose A 2 Rn�r, B 2 Rn�r, C 2 Rr�p. Then
ðA

A

ðA

ra
� ImÞT ¼ AT � Im

� Im þ B� Im ¼ ðAþ BÞ � Im

� ImÞðC� ImÞ ¼ ðACÞ � Im

nkðA� ImÞ ¼ m� rankðAÞ:
(ii) Suppose A 2 Rn�n has eigenvalues fk1; k2; . . . ; kng. Then A� Im also has eigenvalues fk1; k2; . . . ; kng
where each eigenvalue is repeated m times.

The derivations in this paper rely heavily on the singular value decomposition svdðAÞ ¼ fUA;RA;VAg of a

matrix A as expressed in the following result (Horn and Johnson, 1985).
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Lemma 2

ii(i) Suppose an n� m matrix A has rank rA, then there exists an n� n unitary matrix UA, an m� m unitary
matrix VA and a positive definite rA � rA diagonal matrix R1A such that
A

U

U

U

V

U

Ax

x

~AA

sv

~bb

ðA

Ax

b‘

x‘
¼ UARAV
T
A ; RA ¼ R1A 0

0 0

� �
: ð1Þ
i(ii) If fUA;VAg are partitioned such that
A ¼ ½U1A;U2A�; V ¼ ½V1A;V2A� ð2Þ
with
1A 2 Rn�rA ; U2A 2 Rn�ðnrAÞ; V1A 2 Rm�rA ; V2A 2 Rm�ðmrAÞ ð3Þ
then

T
1A �U1A ¼ IrA ; UT

1A �U2A ¼ 0; UT
2A �U2A ¼ InrA

T
1A � V1A ¼ IrA ; VT

1A � V2A ¼ 0; VT
2A � V2A ¼ ImrA

T
2AA ¼ 0; AV2A ¼ 0:

ð4Þ
(iii) The algebraic equation
¼ y

has a solution if and only if UT

2Ay ¼ 0. When this condition is satisfied, then all solutions x are of the form
¼ V1AR
1
1AU

T
1Ayþ V2Azx
where zx 2 RnrA is arbitrary.
(iv) Suppose A 2 Rn�m and
¼ A� Ip; svdðAÞ ¼ fUA;RA;VAg:
Then ~AA 2 Rpn�pm and
dð~AAÞ ¼ fUA � Ip;RA � Ip;VA � Ipg:

i(v) Suppose A 2 Rn�m and
¼ ½~bbT1 ; ~bbT2 ; . . . ; ~bbTn �
T
; ~bbk ¼ bk1 bk2 . . . bkp½ �T 2 Rp: ð5Þ
Then the algebraic equation
� IpÞ~xx ¼ ~bb ð6Þ
has a solution if and only if the equations
‘ ¼ b‘; 16 ‘6 p ð7Þ
have solutions fx‘ 2 Rm; 16 ‘6 pg where
¼ b1‘ b2‘ . . . bn‘½ �T: ð8Þ

If
¼ x1‘ x2‘ . . . xm‘½ �T; 16 ‘6 p ð9Þ
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are solutions of (7), then
~xx
 ¼ ~xxT1 ; ~xx
T
2 ; . . . ; ~xx

T
m

h iT
; ~xxj ¼ xj1 xj2 . . . xjp½ �T 2 Rp ð10Þ
is a solution of (6).

In particular, (6) has a solution if and only if ðUT
2A � IpÞ~bb ¼ 0. When this condition is satisfied, then all so-

lutions ~xx are of the form
~xx ¼ ðV1AR
1
1AU

T
1A � IpÞ~bbþ ðV2A � IpÞ~zzx
where ~zzx 2 RpðnrAÞ is arbitrary.
3. Network representation of structures

A tensegrity structure consists of a connection of tensile components (or strings) and compressive

components (or bars) in which the tension and compressive forces are directed along the strings and bars.

Consequently, in this paper, the equilibrium conditions are completely specified in terms of translational

forces.

We represent a tensegrity structure as an oriented graph (Desoer and Kuh, 1969) in real three dimen-
sional space R3 defined in terms of nodes and directed branches which are all represented as vectors in R3.

A loop is any closed path in the graph. As we shall see, the advantage of this approach is that both the

magnitude and the direction of the forces are contained in vectors which can be solved using linear algebra.

Thus linear algebra plays a larger role in this approach compared to the usual approach in mechanics and

finite element methods using direction cosines.

In particular, suppose there are nb bars and ns strings for which bar contacts can only occur at the bar

ends. Then in the oriented graph of a tensegrity structure, the np nodes consist of the ends of the bars as

represented by the np vectors fpkg, and the nb þ ns directed branches consist of the ns string branches (or
vectors) fsng and the nb bar branches (or vectors) fbmg. If there are nb0 ð6 nbÞ bars which are not in contact

with any other bar, then
np ¼ 2nb0 þ ~nnp; ~nnp 6 2ðnb  nb0Þ:

For example, if no two bars are in contact, then ~nnp ¼ 0 and np ¼ 2nb. Or, if nb  nb0 bars all contact at a
single bar end, then ~nnp ¼ nb  nb0 þ 1.

Thus given a tensegrity structure consisting of np nodes, nb bars and ns strings, the positions of the nodes
are described by the np vectors fp1; p2; . . . ; pnpg, the positions of the bars are described by the nb vectors
fb1; b2; . . . ; bnbg, and the positions of the strings are described by the ns vectors fs1; s2; . . . ; snsg.

Definition 3. The geometry of the tensegrity structure is defined by the tensegrity node vector p 2 R3np , the

tensegrity bar vector b 2 R3nb , and the tensegrity string vector s 2 R3ns where
pT ¼ ½pT1 ; pT2 ; . . . ; pTnp �; bT ¼ ½bT1 ; bT2 ; . . . ; bTnb �; sT ¼ ½sT1 ; sT2 ; . . . ; sTns �: ð11Þ

ition 4. A class k tensegrity structure connects only k compressive members to a node.
Defin

Geometric connectivity. Each directed branch can undergo a displacement in reaching its equilibrium

state. String and bar vectors can change both their length and orientation. Node vectors can change both

their length and orientation but subject to a Law of Geometric Connectivity which we state as follows:
The vector sum of all branch vectors in any loop is zero: ð12Þ

These equations are in the form of a set of linear algebraic equations in the branch vectors.
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Force equilibrium. In our study of tensegrity structures, we are concerned with structures in which bars

sustain compressive forces and strings do not. We therefore choose to distinguish between the string (or

tensile) forces ftng and the bar (or compressive) forces ffmg which are defined in terms of the string and bar

vectors respectively as follows.

Definition 5. Given the tensile force tn in the string characterized by the string vector sn and the compressive

force fn in the bar characterized by the bar vector bn, the tensile force coefficient cn > 0 and the compressive
force coefficient km > 0 are defined by
tn ¼ cnsn; fm ¼ kmbm: ð13Þ

The forces of the tensegrity structure are defined by the external force vector w 2 R3nw , the compression
vector f 2 R3nb , and the tension vector t 2 R3ns where
wT ¼ wT
1 ;w

T
2 ; . . . ;w

T
nw

� �
; fT ¼ fT1 ; f

T
2 ; . . . ; f

T
nb

h i
; tT ¼ tT1 ; t

T
2 ; . . . ; t

T
ns

� �
: ð14Þ
It follows from (14) that (13) can be expressed in the form
t ¼ ðC � I3Þs; f ¼ ðK � I3Þb ð15Þ

where
C ¼ diagfc1; c2; . . . ; cnsg; K ¼ diagfk1; k2; . . . ; knbg: ð16Þ
The diagonal matrices fC;Kg shall be referred to as the tensile force coefficient matrix and compressive
coefficient force matrix, respectively.

Force convention. Suppose each node pk is subjected to compressive vector forces ffmkg, tensile vector

forces ftnkg and external force wk. Then the Law for Static Equilibrium may be stated as follows:
X
n

tnk 
X
m

fmk  wk ¼ 0 ð17Þ
where a positive sign is assigned to a (tensile, compressive and external) force vector leaving a node, and a

negative sign is assigned to a (tensile, compressive and external) force vector entering a node. The negative

sign in (17) is a consequence of the fact that we choose to define positive force coefficients kn and cn.
From the network, it follows that components of the string vector s and the bar vector b in (11) can be

written as a linear combination of components of the node vector p. Also, if branch k is a bar which leaves

node i and enters node j, then bk ¼ pj  pi, whereas if branch k is a string which leaves node i and enters

node j, then sk ¼ pj  pi. Hence we have eCCTp ¼ ½sT; bT�T where the matrix eCC consists only of block matrices

of the form f0;�I3g. In particular, if we consecutively number the ns þ nb branches fs1; s2; . . . ;
sns ; b1; b2; . . . ; bnbg as f1; 2; . . . ; ns; ns þ 1; . . . ; ns þ nbg, then the 3np � ð3ns þ 3nbÞ matrix eCC ¼ ½eCCij� is defined
by
eCCij ¼
I3 if force vector j enters node i
I3 if force vector j leaves node i
0 if force vector j is not incident with node i:

8<
: ð18Þ
Also (i) each column of eCC has exactly one block I3 and one block I3 with all other column blocks 0, and

(ii) for any row i there exists a column j such that eCC ij ¼ �I3. Specifically, the ‘‘bar connectivity’’ matrix eBB
and the ‘‘string connectivity’’ matrix eSS form the matrix eCC as follows:
s

b

� �
¼

eSSTeBBT

� �
p ¼ eCCTp ð19Þ
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where
eSS 2 R3np�3ns ; eBB 2 R3np�3nb : ð20Þ
Similarly, we define eDD ¼ ½eDD ij� to be the external force incidence matrix defined by
eDD ij ¼
I3 if external force vector j enters node i
0 if external force vector j is not incident with node i:

�
ð21Þ
From network analysis, the law for static equilibrium and linear algebra, we have the following result.

Lemma 6. Consider a tensegrity structure as described by the geometric conditions given by (19). Then the
equilibrium force equations for a tensegrity structure under the external load w are
~AA
t

f
w

2
4

3
5 ¼ 0; ~AA, eSS eBB eDD� �

ð22Þ
or equivalently
eSSt ¼ eBBf þ eDDw ð23Þ
where
eSS ¼ S� I3; eBB ¼ B� I3; eDD ¼ D� I3 ð24Þ
for some S 2 Rnp�ns , B 2 Rnp�nb , and D 2 Rnp�nw .

We shall refer to fS;B;Dg as the string connectivity matrix, the bar connectivity matrix, and load inci-

dence matrix respectively. These incidence matrices are binary matrices whose components are f1; 0; 1g.
The computational significance of this fact is that roundoff errors in digital computers are avoided, dra-

matically increasing the size of problems that can be solved accurately on a digital computer.
In network analysis, the matrix ~AA is known as the incidence matrix. This matrix is not the reduced in-

cidence matrix since we have included the datum node which means that one block row of equations in (22)

is dependent on the other rows. This fact does not cause any difficulties in subsequent developments. On the

contrary, some symmetry is preserved in the algebraic equations.

Lemma 7. Consider a tensegrity structure consisting of nbðP 1Þ bars and nsðP 1Þ strings as defined by the
connectivity matrices fS;Bg in (24). Then
qB , rankðBÞ6 nb 6 np  1:
In particular, if there are exactly r independent loops of only bar vectors, then qB ¼ nb  r.

Proof. Each loop formed from bars connected end to end results in a linear relationship between the

corresponding bar vectors. There are at most np  1 connections between any np nodes in order that there

be no loops. Hence, we have the required result. h

Example 8. Consider the 2-bar 4-string class 1 planar tensegrity structure illustrated in Fig. 1 with tensile
force vectors ft1; t2; t3; t4g and compressive force vectors ff1; f2g. This structure has nb ¼ 2 bars, np ¼ 4

nodes and ns ¼ 4 strings. The Geometric Connectivity conditions (19) can be written in the form
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Fig. 1. 2-Bar 4-string class 1 tensegrity.
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 p1 þ p3 ¼ s1; p2  p3 ¼ s2
 p2 þ p4 ¼ s3; p1  p4 ¼ s4
 p1 þ p2 ¼ b1; p3 þ p4 ¼ b2:

ð25Þ
In (19) and (24), the connectivity matrices are given by
S ¼

1 0 0 1

0 1 1 0

1 1 0 0

0 0 1 1

2
664

3
775; B ¼

1 0

1 0

0 1

0 1

2
664

3
775: ð26Þ
Here nb ¼ rankðBÞ ¼ 2 < np ¼ 4. Also, in terms of the stated force convention (17), the conditions for static

equilibrium at nodes 1–4 are
t1 þ t4 þ f1 ¼ 0
t2  t3  f1 þ w1 ¼ 0
t1  t2 þ f2 þ w2 ¼ 0
t3  t4  f2 ¼ 0

9>>=
>>;: ð27Þ
These static equilibrium conditions and the geometric conditions can be written in the form (19)–(24), where
~AA ¼ eSSh ���eBB eDD��� i
� I3 ¼

1 0 0 1

0 1 1 0

1 1 0 0

0 0 1 1

2
664

��������
1 0

1 0

0 1

0 1

0 0

1 0

0 1

0 0

��������

3
775� I3:
Example 9. Consider the 4-bar 8-string planar class 2 tensegrity structure illustrated in Fig. 2. Now the bar

connectivity B and the string connectivity S in (24) are given by



Fig. 2. 4-Bar 8-string class 2 tensegrity.
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S ¼

1 0 0 1 0 0 0

0 1 1 0 0 0 1

1 1 0 0 1 0 0
0 0 1 1 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 1 0

2
6666664

3
7777775
; B ¼

1 0 0 0

1 0 0 1

0 1 1 0
0 1 0 0

0 0 1 0

0 0 0 1

2
6666664

3
7777775
:

Here
rankðBÞ ¼ 4 ¼ nb < np ¼ 6:
Example 10

(a) A 3-dimensional class 1 tensegrity consisting of one stage of nb ¼ 3 bars, np ¼ 6 nodes and ns ¼ 9

strings is illustrated in Fig. 3. The corresponding connectivity matrices fS;Bg are given by
S

S

¼

1 0 0 0 1 0 1 0 0

0 1 0 0 0 1 0 1 0

1 0 1 0 0 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0

2
6666664

3
7777775
; B ¼

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

2
6666664

3
7777775
where rankðBÞ ¼ 3 ¼ nb, np ¼ 2nb.
(b) A class 2 tensegrity structure may be derived from the structure in part (a) by replacing the strings

fs1; s3; s5g by bars fb4; b5; b6g where the nodes fp1; p3; p5g now become ball joints. In this new structure,

np ¼ nb ¼ ns ¼ 6. With s ¼ ½sT2 sT4 sT6 sT7 sT8 sT9 �
T
, b ¼ ½bT1 bT2 bT3 bT4 bT5 bT6 �

T
, we now have that
¼

0 0 0 1 0 0

1 0 1 0 1 0

0 0 0 0 1 0

1 1 0 0 0 1
0 0 0 0 0 1

0 1 1 1 0 0

2
6666664

3
7777775
; B ¼

1 0 0 1 0 1

1 0 0 0 0 0

0 1 0 1 1 0

0 1 0 0 0 0
0 0 1 0 1 1

0 0 1 0 0 0

2
6666664

3
7777775
:



Fig. 3. 3-Bar 9-string class 1 tensegrity.
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Here rankðBÞ ¼ 5 ¼ nb  1 < np ¼ 6. Note that since there is exactly one loop fb4; b5; b6g of bars, it

follows form Lemma 7, rankðBÞ ¼ nb  1.

(c) Another class 2 tensegrity structure may be derived from the structure in part (b) by replacing the string

s9 by a bar b7. In this new structure, nb ¼ 7; np ¼ 6 and ns ¼ 5. Since there are now two independent

loops fb4; b5; b6g and fb2; b7; b5g of bars, we have from Lemma 7 that rankðBÞ ¼ nb  2 ¼ 5 < np ¼ 6.

We have the following result.

Theorem 11. Suppose the np � nb connectivity matrix B of rank qB has the singular value decomposition
B ¼ UB1 UB2½ � RB1 0

0 0

� �
VT

B1

VT
B2

� �
; qB < nb ð28Þ
where UB1 2 Rnp�qB , VB1 2 Rnb�qB or
B ¼ UB1 UB2½ � RB1

0

� �
VT

B ; qB ¼ nb ð29Þ
where UB1 2 Rnp�nb , VB 2 Rnb�nb . Also, given the tensegrity node vector p, define the coordinate transfor-
mation
p ¼ ePPTq ð30Þ

where
 ePP ¼ P� I3; PT ¼ ½PT

1 ;P
T
2 �

P1 ¼ R1
B1U

T
B1 2 RqB�np ; P2 ¼ UT

B2 2 RðnpqBÞ�np :
ð31Þ
Then

i(i) In terms of the transformed tensegrity node vector q, the tensegrity geometry is given by
q
 ¼ qTd qTe
� �T

; s ¼ eSST
1 qd þ eSST

2 qe; qd ¼ ðVT
B1 � I3Þb ð32Þ
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where qd 2 R3qB , qe 2 R3ðnpqBÞ and
eSS1

S1

ðS
ðS

D1
¼ S1 � I3; eSS2 ¼ S2 � I3

where
¼ P1S 2 RqB�ns ; S2 ¼ P2S 2 RðnpqBÞ�ns : ð33Þ

(ii) The tensegrity force equilibrium is given by
1 � I3Þt ¼ ðVT
B1 � I3Þf þ ðD1 � I3Þw

2 � I3Þt ¼ ðD2 � I3Þw
ð34Þ

¼ P1D; D2 ¼ P2D: ð35Þ
Proof. By Lemma 7, qB < np which means fUB1;UB2g are well defined. Part (i) follows directly from the

definition of ePP with eSST
q q ¼ s, eBBT

q q ¼ b with
eSST
q ¼ ½eSST

1 ;
eSST
2 �; eBBT

q ¼ ½VB1 � I3; 0� ð36Þ
with feSS1 ¼ ePP1
eSS; eSS2 ¼ ePP2

eSSg and fePP1
eBB ¼ VT

B1 � I3; eSS2 ¼ ePP2
eBB ¼ 0g. Part (ii) follows from the expansion of

the transformed equilibrium force equation eSSqt ¼ eBBqf þ eDDqw, where
eSSq
eBBq

eDDq

h i
¼ ePP eSS eBB eDD� �

:

For notational simplicity, we assume in subsequent expressions that VB1 ¼ VB whenever qB ¼ nb. h

3.1. Class 1 structures

In a class 1 tensegrity structure, no two bars are connected, and so np ¼ 2nb. Without any loss of

generality, we can then label the nodes of the bar bm to be p2m and p2m1. Hence for class 1 tensegrity
structures, we have
bm ¼ p2m1 þ p2m; m ¼ 1; 2; . . . ; nb: ð37Þ
Lemma 12. Given the tensegrity node vector p with (37), bar vector b, and string vector s, the geometry of the
class 1 tensegrity structure can be described by the algebraic equations
eBBTp ¼ b; eSSTp ¼ s ð38Þ
for some reduced np � ns connectivity matrix S. The reduced np � nb connectivity matrix B is given by
B ¼ Ie  Io ð39Þ
where odd and even node selection matrix Io, Ie 2 R3np�3np are defined by
ITo , blockdiagf½1; 0�; ½1; 0�; . . . ; ½1; 0�; ½1; 0�g
ITe , blockdiagf½0; 1�; ½0; 1� . . . ; ½0; 1�; ½0; 1�g:

ð40Þ
Then in (29)
np ¼ 2nb; qB ¼ np; VB ¼ I: ð41Þ
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The following two corollaries give two special choices for transformations.

Corollary 13. From Theorem 11

ii(i) Let P1, P2 2 Rnb�np in (31) be given by
PT

P

J,

qT

qTe

PT

P

qT

qTe
¼ PT
1 PT

2

� �
¼ 1

2
B J½ � ð42Þ
and the inverse transformation is

1 ¼ 2PT ¼ B J½ � ð43Þ
where B is given by (39) and J 2 Rnb�np are defined by
ðIe þ IoÞ: ð44Þ

i(ii) The transformed coordinate q is given by
¼ ½qTd ; qTe �; qd ¼ b ð45Þ

where b is the bar vector and qe 2 R3nb is the vector of the mass center of each of the bars given by
¼ ½pTc1 ; p
T
c2
; . . . ; pTcnb

� ð46Þ
where pcj ,
1
2
ðp2j þ p2j1Þ.

Corollary 14. From Theorem 11

i(i) Let P1, P2 2 Rnb�np in (31) be given by
¼ Io J½ � ð47Þ

and the inverse transformation is
1 ¼ B Ie½ � ð48Þ

where B and J are given by (39) and (44) respectively, and odd and even selection matrix Io, Ie 2 R3np�3np

are given by (40).
(ii) The transformed coordinate q is given by
¼ ½qTd ; qTe �; qd ¼ b ð49Þ

where b is the bar vector and qe 2 R3nb is a vector of the even nodes given by
¼ ½pT2 ; pT4 ; . . . ; pTnp �: ð50Þ
Example 15. Eqs. (25), (27) of the 2-bar 4-string tensegrity introduced in Example 8 can be written in the

form (22) and (19) where b in (11) is already in the form (37). Then from Corollary 14, we have
S1 ¼
1 0 0 1

1 1 0 0

� �
; S2 ¼

1 1 1 1

1 1 1 1

� �

P1 ¼
1 0 0 0

0 0 1 0

� �
; P2 ¼

1 1 0 0

0 0 1 1

� � ð51Þ
or from Corollary 13, we have
P1 ¼
1

2

1 1 0 0

0 0 1 1

� �
; P2 ¼

1

2

1 1 0 0

0 0 1 1

� �

S1 ¼
1

2

1 1 1 1

1 1 1 1

� �
; S2 ¼

1

2

1 1 1 1

1 1 1 1

� �
:
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4. Analysis of the transformed equilibrium conditions for a tensegrity structure

Definition 16. A tensegrity structure with tensile force coefficients fcm > 0g, compressive force coefficients

fkn > 0g, node vector p, string vector s and bar vector b is said to be in equilibrium if the element rela-
tionships (13), the force equations (23) and the geometric equations (19) are all satisfied.

For the remainder of this paper, we choose to use the coordinate transformation derived in Theorem 11.

Requirements for equilibrium. Given an external force vector w, the problem of determining the geometric

and force configuration of a tensegrity structure consisting of ns strings and nb bars in equilibrium is

therefore equivalent to finding a solution qd 2 R3qB , qe 2 R3ðnpqBÞ of the equations
s ¼ ðST
1 � I3Þqd þ ðST

2 � I3Þqe ð52Þ

t ¼ ðC � I3Þs; C,diagfc1; c2; . . . ; cnsg ð53Þ

ðS2 � I3Þt ¼ ðD2 � I3Þw ð54Þ

ðVT
B1 � I3Þf ¼ ðS1 � I3Þt ðD1 � I3Þw; VT

B1VB1 ¼ I ð55Þ

f ¼ ðK � I3Þb; K, diagfk1; k2; . . . ; knbg ð56Þ
for given matrices
S1 2 RqB�ns ; S2 2 RðnpqBÞ�ns ; D1 2 RqB�nw ; D2 2 RðnpqBÞ�nw : ð57Þ
Beyond equilibrium requirements, one might require shape constraints by requiring p to take on a specific

set of values p ¼ �pp, where p ¼ ePPTq. However, in this paper, our focus is only to characterize possible

equilibria, and so the freedom in choosing the nodal vector p will appear as free variables in the vector qe, as

the sequel shows.

As a result of Lemma 2, conditions for the existence of solutions fqd 2 R3qB ; qe 2 R3ðnpqBÞg of (52)–(56)
are equivalent to conditions for the existence of solutions fq1 2 RqB ; q2 2 RnpqBg of the equations:
sr ¼ ST
1 q1 þ S

T
2 q2 ð58Þ

tr ¼ Csr; C, diagfc1; c2; . . . ; cnsg ð59Þ

S2tr ¼ D2wr ð60Þ

VT
B1fr ¼ S1tr D1wr; VT

B1VB1 ¼ I ð61Þ

fr ¼ Kbr; K, diagfk1; k2; . . . ; knbg: ð62Þ
4.1. Prestressed equilibrium structure

We now proceed to derive necessary and sufficient conditions for the existence of a structure in equi-

librium that is prestressed in the absence of any external load; that is, w ¼ 0 in (52)–(56), or equivalently,

wr ¼ 0 in (58)–(62). Our strategy for the examination of the conditions (58)–(62) is as follows. The solution
of the linear algebra problem (60) yields nonunique tr which lies in the right null space of S2. The existence

condition of q2 for linear algebra problem (58) yields a condition on the left null space of S2. Hence (58) and
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(60) can be combined to obtain a unique expression for tr in terms of q1. This is key to the main results of

this paper.

We now establish necessary and sufficient conditions for a solution of equations (58)–(62) in the absence

of external forces (i.e. wr ¼ 0) by examining each of these equations in turn beginning with the solution of
(58) and (60). The next result follows from Lemma 2.

Lemma 17. Suppose
q2 , rankðS2Þ6 minfnp  qB; nsg ð63Þ

and let S2 have the singular value decomposition fU;R;Vg given by
S2 ¼ URVT 2 RðnpqBÞ�ns ð64Þ

where
U ¼ ½U1;U2�; R ¼ R11 0

0 0

� �
; V ¼ ½V1;V2�

U1 2 RðnpqBÞ�q2 ; U2 2 RðnpqBÞ�ðnbq2Þ; V1 2 Rns�q2 ; V2 2 Rns�ðnsq2Þ:
Then a necessary and sucient condition for (58) to have a solution q2 2 RnpqB is given by
VT
2 ðsr  S

T
1 q1Þ ¼ 0: ð65Þ
Furthermore, when (65) is satisfied, all solutions q2 are of the form
q2 ¼ U1R
1
11 V

T
1 ðsr  S

T
1 q1Þ þU2z2 ð66Þ
where z2 2 Rnbq2 is arbitrary.

We now consider the solution of (60) when wr ¼ 0.

Lemma 18. When wr ¼ 0, all solutions tr of (60) which guarantee (65) are of the form
tr ¼ V2M
1VT

2S
T
1 q1; M,VT

2C
1V2 ð67Þ
in which case
q2 ¼ U1R
1
11 V

T
1 ðC1V2M

1VT
2  I3ÞS

T
1 q1 þU2z2 ð68Þ
where z2 2 Rnbq2 is arbitrary.

Proof. From (64), (65) and Lemma 2, we have tr ¼ V2zt where zt is the free solution of (60). Then from (59)
VT
2 ðsr  S

T
1 q1Þ ¼ VT

2 ðC1V2zt  ST
1 q1Þ:
Since V2 has full column rank, the matrix M ¼ VT
2C

1V2 is invertible if it exists (that is, if cn > 0,

n ¼ 1; . . . ; ns). Hence (65) is satisfied when zt ¼M1VT
2S

T
1 q1, and this gives (67). h

We now consider the solution of (61) and (62) when wr ¼ 0.

Lemma 19. When wr ¼ 0, a necessary and sucient condition for (61) and (62) to have a solution q1 2 RqB is
given by
ðX VT
B1KVB1Þq1 ¼ 0 ð69Þ
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where
X, ðS1V2ÞM1ðS1V2ÞT; M,VT
2C

1V2 ð70Þ

In particular, define
qY , rankðYÞ; Y,X VT
B1KVB1: ð71Þ
Then

ii(i) when qY ¼ qB, q1 ¼ 0 is the only solution of (69),
i(ii) when qY ¼ 0, any q1 2 RqB is a solution of (69), and
(iii) when 0 < qY < qB, all solutions q1 are given by
q1

UY
¼ VY 2z1 ð72Þ

where z1 2 RqBqY is free, and where fUY ;RY ;VY g is the singular value decomposition of the matrix
Y 2 RqB�qB ; that is
¼ ½UY 1;UY 2�; RY ¼ RY 1 0
0 0

� �
; VY ¼ ½VY 1;VY 2�; qY ¼ rankðYÞ ð73Þ
with UY 1 2 RqB�qY , VY 2 2 RqB�ðqBqY Þ.

Proof. From (67), (62) and (61)
S1tr  VT
B1fr ¼ S1V2M

1VT
2S

T
1 q1  V

T
B1Kbr ¼ ðX VT

B1KVB1Þq1

where X is given in (70). The result then follows from the singular value decomposition of X after writing
(69) in the form Xq1 ¼ VT

B1fr, V
T
B1fr ¼ VT

B1KVB1q1. h

There are many choices of fcj; kkg which guarantee a solution q1 6¼ 0 of (69). One choice is provided in

the following result.

Corollary 20. If C1 ¼ cI, and K1 ¼ kI, then all solutions of (69) are characterized by the modal data of the
(symmetric) matrix S1V2ðS1V2ÞT. That is, all admissible values of k=c and q1 are eigenvalues and eigenvectors
of S1V2ðS1V2ÞT.

Proof. From (69) and C1 ¼ cI, K1 ¼ kI, X ¼ cS1V2V
T
2S

T
1 ¼ cX. Then ðc�XX kIÞq1 ¼ 0 or ðX qIÞq1 ¼ 0,

where q ¼ k=c. Hence q and q1 are the eigenvalues and eigenvectors of X. h

We now make reference to Lemma 2, part (iv) to relate solutions of (58)–(62) as provided in Lemma 19

to solutions of (52)–(56).

Theorem 21. Consider a tensegrity structure as defined by the geometry and force equations in the absence of
external load as described by the geometric conditions
ðBT � I3Þp ¼ b; ðST � I3Þp ¼ s; p 2 R3np ; b 2 R3nb ; s 2 R3ns
and the equilibrium force equations
ðS� I3Þt ¼ ðB� I3Þf; t ¼ ðC � I3Þs; f ¼ ðK � I3Þb

where for fcm > 0, kn > 0g,
C ¼ diagfc1; c2; . . . ; cnsg; K ¼ diagfk1; k2; . . . ; knbg:
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Then given any tensile force coefficients fcm > 0; 16m6 nsg, there exist compressive force coefficients

fkn > 0; 16 n6 nbg which define an equilibrium structure, if for some q1 6¼ 0, fK;Cg satisfy the condition:
ðX VT
B1KVB1Þq1 ¼ 0

X, ðS1V2ÞM1ðS1V2ÞT; M,VT
2C

1V2;
ð74Þ
where VB1 is given by (28) and (29), S1 is given by (33), and V2 is given by (65).
Moreover, for any qd 6¼ 0 which satisfies
ððX VT
B1KVB1Þ � I3Þqd ¼ 0;
the nodal vector p is of the form
p ¼ ðPQ� I3Þ½zTd ; zTe �
T ð75Þ
where fzd 2 R3qB ; ze 2 R3ðnpqBÞg may be arbitrarily chosen, and
P ¼ ½UB1R
1
B1 ; UB2�

Q,
I3 0

LVY 2 U2

� �
; L,U1R

1
11 V

T
1 ½C1V2M

1VT
2  I3�S

T
1

ð76Þ
where fUB1;RB1g are given by (28) and (29).

The corresponding tensegrity string vector s, tension vector t, bar vector b and compression vector f are

given in terms of fqd; pg by
s ¼ ðC1 � I3Þt; t ¼ ðV2M
1VT

2S
T
1 � I3Þqd

b ¼ ðBT � I3Þp; f ¼ ðK � I3Þb:
ð77Þ
4.2. Externally loaded structures

Under the action of an external force vector w with component vectors fwjg given by
wT ¼ wT
1 ;w

T
2 ; . . . ;w

T
nw

� �
: ð78Þ
Suppose that the new equilibrium structure is assumed to be given by node vector p, bar vector b, string

vector s, compressive force vector f, tensile vector t, compressive force coefficient matrix K and tensile force
matrix C as described by (52)–(56). As a result of Lemma 2, conditions for the existence of solutions

fqd 2 R3qB ; qe 2 R3ðnpqBÞg of (52)–(56) are equivalent to conditions (58)–(62) for the existence of solutions

fq1 2 RqB ; q2 2 RnpqBg. Note that all force coefficients together with all node geometry will normally

change. We now seek necessary and sufficient conditions for the externally loaded structure to be in geo-

metric and force equilibrium. An extension of Lemmas 18 and 19 gives us the following result.
Theorem 22

i(i) All solutions tr of (60) which guarantee (65) are of the form
tr ¼ V2M
1VT

2S
T
1 q1 þG1wr; M,VT

2C
1V2

G1 ¼ ðIns  V2M
1VT

2C
1ÞV1R

1
11U

T
1D2:

ð79Þ
(ii) A necessary and sucient condition for (61) and (62) to have a solution b 2 Rnb is given by
ðX VT
B1KVB1Þq1 ¼ Gwr

UT
2P2wr ¼ 0

ð80Þ
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where X is given by (70), and
G,D1  S1G1: ð81Þ
Proof. Since (58) is not directly dependent on wr, Lemma 17 applies for wr 6¼ 0. Now consider the solution

of (60) for wr 6¼ 0. A necessary condition for the existence of a solution t is UT
2P2wr ¼ 0, and in this case, all

solutions tr are of the form
tr ¼ V2zt þ V1R
1
11 U

T
1D2wr
for any zt 2 Rnbr where as in (63), r is the rank of S2. Now in order that condition (65) is satisfied, zt must

be selected such that
VT
2C

1ðV2zt þ V1R
1
11U

T
1D2wrÞ  VT

2S
T
1 q1 ¼ 0:
That is
zt ¼M1VT
2S

T
1 q1 M1VT

2C
1V1R

1
11U

T
1D2wr
which gives (79). From (60), (62) and (79)
S1tr D1wr  VT
B1fr ¼ S1V2M

1VT
2S

T
1 q1 þ S1G1wr D1wr  VT

B1Kbr
which gives (81). h

The first condition in (80) is a nonhomogeneous equivalent of condition (69). However it is unlikely

(although not impossible) that VT
B1KVB1 ¼ X for wr 6¼ 0. Instead, is more likely that rY ,qðVT

B1KVB1  XÞ
satisfies 0 < rY 6 nb, where fUY ;RY ;VY g is the singular value decomposition of the matrix Y 2 RqB�qB given

by (73). If rY ¼ nb, then q1 ¼ ðK  XÞ1
Dwr is unique.

When UT
2P2wr ¼ 0, the solution q1 is of the form
q1 ¼ VY 2zY þ VY 1R
1
b11U

T
b1Dwr; UT

2P2wr ¼ 0
where zY 2 Rnbrb is unknown. The possibility of multiple solutions is interesting; either only one solution is

possible and more information is required to determine zY , or many solutions are possible. In the latter

case, the particular equilibrium obtained will then depend on way in which the external load wr is intro-

duced. The structural implications of the null space condition UT
2P2wr ¼ 0 on the external load wr would

then also require a physical interpretation.

The existence of an equilibrium solution however requires the second condition in (80) on the external

force wr to be satisfied. In this regard, we have the following result.

Lemma 23. For all structures fS;Bg, the ðnb  rÞ � ns matrix product UT
2P2 is of the form
UT
2P2 ¼ e½1; 1; . . . ; 1� ð82Þ
for some vector e. Hence UT
2P2wr ¼ 0 if and only if
Xnw

k¼1

wk ¼ 0: ð83Þ
Proof. It follows from Lemma 2 and svdðS2Þ in Lemma 17 that UT
2S2 ¼ 0 which from (33) implies

UT
2P2S ¼ 0. Now from Lemma 6, each column of S has exactly 1 and exactly )1 with all other column

elements 0. Furthermore, for every ith row of S, there exists a column j such that the ijth component of S is
±1. These properties of S then imply that UT

2P2 is of the form (82) for some vector e, and so
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UT
2P2wr ¼ e

Xnp
k¼1

wk:
Now if the full row rank matrix eUU2 is partitioned into the block form eUUT
2 ¼ ½Z1;Z2; . . . ;Znb � it follows from

(42) that
eUUT
2
ePP2 ¼ ½Z1;Z1;Z2;Z2 . . . ;Znb ;Znb �
which then guarantees that eUUT
2
ePP2 also has full row rank, and consequently that the matrix ~ee is invert-

ible. h

Condition (83) expresses the requirement that for an externally loaded tensegrity structure to be in force

and geometric equilibrium, it is necessary (but not sufficient) that the sum of the external forces is zero.
5. Computational algorithm for equilibria

One procedure for construction of a tensegrity structure in equilibrium is provided as follows.

Step 1. Given the connectivity matrices S and B from the network topology, find a nonsingular matrix

P ¼ ½PT
1 ;P

T
2 � such that BT

q ¼ BTP ¼ ½VT
B1; 0nb �, and calculate fS1 ¼ P1S;S2 ¼ P2Sg.

Step 2. Choose fcm > 0g and fkn > 0g such that detðX VT
B1KVB1Þ ¼ 0.

Step 3a. Select suitable zd and compute qd by
qd

b

s

t

D

¼ ðVY 2 � I3Þzd:
Step 3b. When the bar connectivity matrix B has full rank qB ¼ nb (i.e. no loops of bar vectors), then one

can select suitable zd and compute b by
¼ ðVB1VY 2 � I3Þzd:

Step 4. Select ze and compute the node vector p from (75).

Step 5. Compute ft; s; f; bg from
¼ ðC1 � I3Þt; b ¼ ðBT � I3Þp; f ¼ ðK � I3Þb
¼ ðV2M

1VT
2S

T
1 � I3Þqd þ ðD1 � I3Þw

1 ¼ ðIns  V2M
1VT

2C
1ÞV1R

1
11 U

T
1P2:

ð84Þ
6. Illustrated examples

We now illustrate the construction procedure for a simple tensegrity structure.

Example 24. A general force configuration for the class 1 tensegrity structure in Example 8 with

w1 ¼ w2 ¼ 0 will be investigated in this section. Suppose the force coefficient matrices are given by

K ¼ diagfk1; k2g and C ¼ diagfc1; c2; c3; c4g.
Step 1. The connectivity matrices S, B and the coordinate transformation P ¼ ½PT

1 ;P
T
2 � are given in

Example 8. Since B is of full column rank matrix and V2 spans the null space of S2, we compute VB1 ¼ I2
and
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V2 ¼

1 1 1

1 0 0

0 1 0

0 0 1

2
664

3
775:
Step 2. Choose fcm > 0g and fkn > 0g such that detðX VT
B1KVB1Þ ¼ 0, where
X
 ¼ S1V2ðVT
2C

1V2Þ1
VT

2S
T
1 ¼ 1

c1 þ c2 þ c3 þ c4

ðc2 þ c3Þðc4 þ c1Þ ðc3c1 þ c2c4Þ
ðc3c1 þ c2c4Þ ðc3 þ c4Þðc2 þ c1Þ

� �
:

In all choices for fkng that led to the rank of ðX KÞ having rank 1, the 4 · 2 matrix VY 2 is of the form

VT
X2 ¼ ½AT

1 ;�A
T
1 � in (72); that is the two bar vectors fb1; b2g are always parallel, so the equilibrium structure

is one dimensional with fp1 ¼ p3; p2 ¼ p4g. Hence for a two-dimensional structure, X K must have rank

zero. This requires
c4 ¼
c3c1
c2

k1 ¼
ðc2 þ c3Þðc4 þ c1Þ
c2 þ c3 þ c4 þ c1

k2 ¼
ðc3 þ c4Þðc2 þ c1Þ
c2 þ c3 þ c4 þ c1

ð85Þ
where c1, c2, and c3 are free positive constants. We choose fck ¼ 1; k ¼ 1; 2; 3g and then C ¼ I4. It follows
that X ¼ I2 and K ¼ I2 satisfy condition (74) in Theorem 21.

Step 3b. When the bar connectivity matrix B has full rank qB ¼ nb (i.e. no loops of bar vectors), then one

can select suitable zd and compute b by b ¼ ðVB1VY 2 � I3Þzd. Since we choose c and k such that X K ¼ 0,
VY 2 ¼ I; that is the bar vector is arbitrary. Let us choose b1 ¼ ½2; 0�T, b2 ¼ ½0; 2�T.

Step 4. Select ze and compute the node vector p from (75).
The nodes fp1 ¼ ½1; 0�T; p2 ¼ ½1; 0�T; p3 ¼ ½0;1�T; p4 ¼ ½0; 1�Tg define an equilibrium solution from (75)

setting ze is zero. When we set ze ¼ ½1; 1�T, we obtain the nodal vector
p1 ¼
0:6464
0:3536

� �
; p2 ¼

1:3536
0:3536

� �
; p3 ¼

0:3536
0:6464

� �
; p4 ¼

0:3536
1:3536

� �
:

This choices of ze only translate the geometric center of the structure from ½0; 0�T to 0:3536½1; 1�T, since all
force coefficients and b have been specified.

Step 5. Compute ft; s; fg from (84).

Example 25. Consider the ð3; 9; 3Þ class 1 tensegrity structure defined in Example 10. A symmetrical force

configuration will be investigated with equal bar force coefficients fk1 ¼ k2 ¼ k3 ¼ kg, equal �base� string
force coefficients fc1 ¼ c2 ¼ c3 , cbg, equal �top� string coefficients fc4 ¼ c5 ¼ c6 , ctg, and equal vertical

string coefficients fc7 ¼ c8 ¼ c9 , cvg. Then
X ¼ S1V2ðVT
2C

1V2Þ1
VT

2S
T
1 ¼ 1

ð2c2b þ 8cbct þ 6cbcv þ 6cvct þ 2c2t þ 3c2vÞc3t c3bc3v
X1 X2 X3½ �;
where
X1 ¼
ðct þ cv þ cbÞðc2v þ 3cvct þ 3cbcv þ 4cbct þ c2b þ c2t Þ

cbcvct  cbc
2
t  4c2bct  3c2bcv  c3b þ cvc

2
t þ 2ctc

2
v þ c3v

4c c2  c c c  c2c þ 2c c2 þ c2c  3c c2  c3 þ c3

2
4

3
5

b t b v t b t b v b v v t t v
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X2 ¼
cbcvct  cbc

2
t  4c2bct  3c2bcv  c3b þ cvc

2
t þ 2ctc

2
v þ c3v

10cbcvct þ 4cbc
2
t þ 7c2bct þ 5cbc

2
v þ 6c2bcv þ c3b þ 2cvc

2
t þ 3ctc

2
v þ c3v

3cbc
2
t  cbcvct  cvc

2
t þ ctc

2
v  3c2bct þ cbc

2
v  c2bcv þ c3v

2
4

3
5

X3 ¼
4cbc

2
t  cbcvct  c2bct þ 2cbc

2
v þ c2bcv  3cvc

2
t  c3t þ c3v

3cbc
2
t  cbcvct  cvc

2
t þ ctc

2
v  3c2bct þ cbc

2
v  c2bcv þ c3v

6cvc
2
t þ 5ctc

2
v þ 10cbcvct þ 7cbc

2
t þ 4c2bct þ c3t þ c3v þ 3cbc

2
v þ 2c2bcv

2
4

3
5:
Now we need to choose the force coefficients such that
detðX VT
B1KVB1Þ ¼ 0:
Since bar connectivity matrix is of full column rank, VB1 ¼ I and
detðX KÞ ¼  ðk  cvÞ
2c2b þ 8cbct þ 6cbcv þ 6cvct þ 2c2t þ 3c2v

ksecond ¼ 0
where
ksecond , ð2c3t k þ 2c2vc
2
t þ 2cvc

3
t þ 6c3bct þ 15c2bc

2
t þ 2c2bc

2
v þ 6cbc

3
t þ 2c3bcv  6c2vctk  10cvc

2
t k  16c2bctk

þ 2c2bk
2  2c3bk  10c2bcvk þ 6cbk

2cv  6cbkc2v þ 8cbk
2ct  16cbkc2t  22cbkcvct

þ 2k2c2t þ 3k2c2v þ 6k2cvct þ 16cbc
2
t cv þ 8cbctc

2
v þ 16c2bcvctÞ:
Since smaller rank of ðX KÞ yields more freedom for the choice of b, we choose cv ¼ k. Next evaluating
the second term when cv ¼ k, we have
ksecondjcv¼k ¼ 6k2c2t  6c2bk
2 þ 6cbc

3
t þ 6c3bct þ 15c2bc

2
t  6cbk

2ct þ 3k4

¼ ðk2  ctcb  2c2bÞðk
2  ctcb  2c2t Þ:
We conclude k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctcb þ 2c2b

p
or k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctcb þ 2c2t

p
, since k should be positive.

When we apply k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctcb þ 2c2t

p
,

X K ¼ ðcb  ctÞðcb þ ctÞ
2c2b þ 6cbcbt þ 11cbct þ 8c2t þ 6ctcbt

X:
where cbt ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctðcb þ 2ctÞ

p
and
X ¼
cb þ 2cbt þ 3ct cb  4ct  3cbt ct þ cbt
cb  4ct  3cbt cb þ 4cbt þ 6ct 2ct  cbt

ct þ cbt 2ct  cbt ct

2
4

3
5:
Note that the rank of the matrix X is 1. An interesting case is when ct ¼ cb. In this case, an equilibrium

solution with K ¼ X is provided by k ¼ cv ¼
ffiffiffi
3

p
ct for all choices of fctg. Hence the bar vector can be freely

chosen in this case. When ct ¼ cb ¼ 1 and k ¼ cv ¼
ffiffiffi
3

p
, the structural shape is the prism given in Fig. 3.
7. Conclusion

This paper characterizes the static equilibria of tensegrity structures. Analytical expressions are derived

for the equilibrium condition of a tensegrity structure in terms of member force coefficients and string and

bar connectivity information. We use vectors to describe each element (bars and tendons), eliminating the
need to use direction cosines and the subsequent transcendental functions that follow their use. By en-

larging the vector space in which we characterize the problem, the mathematical structure of the equations
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admit treatment by linear algebra methods, for the most part. This reduces the study of a significant portion

of the tensegrity equilibria to a series of linear algebra problems. Our results characterize the equilibria

conditions of tensegrity structures in terms of a very small number of variables since the necessary and

sufficient conditions of the linear algebra treatment has eliminated several of the original variables. This
formulation offers insight and identifies the free parameters that may be used to achieve desired structural

shapes. Since all conditions are necessary and sufficient, these results can be used in the design of any

tensegrity structure. Special insightful properties are available in the special case when one designs a

tensegrity structure so that all strings have the same force per unit length (c), and all bars have the same

force per unit length (k). In this case, all admissible values of k=c are the discrete set of eigenvalues of a

matrix given in terms of only the string connectivity matrix. Furthermore the only bar vectors which can be

assigned are eigenvectors of the same matrix. Future papers will integrate these algorithms into software to

make these designs more efficient.
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