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Glossary

Range space:A column vectorx such thatx= Ay for some column vectory is said to be in therange
spaceof matrixA, i.e.,x∈ R (A).

Null space: A column vectorx such thatAx = 0 is said to be in theright null spaceof matrix A,
i.e., y ∈ NR (A). A row vectorx such thatxA = 0 is said to be in theleft null spaceof A,
i.e., y ∈ NL (A). In this text the symbol(⊥) is used to denote a basis toNL (A). That is,
x 6= 0∈ NL (A) if and only if ∃y 6= 0 : x = yA⊥.



SISO system: Single-input-single-output system.
MIMO system: Multiple-input-multiple-output system.
Singular values: Any real matrixA ∈ R

m×n admits a decomposition in the formUΣV = A where
U ∈ Rm×m, V ∈ Rn×n are unitary matrices (UTU = I , VTV = I ) andΣ ∈ Rm×n is a matrix with
positive diagonal entriesσi , i = 1, . . . ,min(m,n), and zeros elsewhere. The symbolσ̄ denotes
the maximum singular value, i.e.,̄σ := maxi σi .

Positive definite matrix: A real, square and symmetric matrixA∈ Rn×n is said to be positive (neg-
ative) definite if the inequality (quadratic form) xTAx > 0 (xTAx < 0) holds for all vectors
x∈ Rn, x 6= 0. Equivalently,A is positive (negative) definite if all eigenvalues ofA are positive
(negative). Notice thatA has only real eigenvalues due to symmetry.

Summary

Modeling physical systems usually results in complex high-order dynamic models. It is often desir-
able to replace (approximate) these models by simpler models with reduced order. In this process
it is important todesignthe reduced model so as to capture theimportantproperties of the original
high-order model. This chapter describes some procedures that are available for the model reduction
of linear time-invariant systems.

1. Introduction

Throughout history, quantum leaps in technology have occurred when certain technical ingredients
were sufficiently mature to launch a new discipline to integrate old ones. Relativity provided inte-
grations of field theory and classical dynamics. Control science emerged from a maturation of the
necessary mathematics, computer science, and a maturationof sensing/actuator technology. The in-
tersection of fluid dynamics and structures created “aeroelasticity” fields of study. What will become
of structural control? A revolution is before us at the interface of material science, system science,
signal processing, and structural engineering. On the nearhorizon, structural systems will result from
the integration of material science, system science and control science. The structural systems of
the future will integrate the functions of material to simultaneously provide communication channels,
sensing networks, actuating, thermal management, antennafunctions, and power generation. Algo-
rithms will utilize the information provided by such networks to predict life, detect failures, update
models and control laws, and even update and relieve stresses in the structure. It might be said that
physics paved the way for technology in the first half of the 20th century, and engineering paved the
way in the second half. What will drive and enable new technology as we round the corner of the new
millennium? Engineering has produced sophisticated component technologies without instructions
how to put them together. We have multidisciplinary problems begging for an interdisciplinary the-
ory. There is ample evidence that analytical and numerical tools for interdisciplinary research (loosely
called “system design”) will be the next major enabler of technology. This idea is more than a century
old. Michael Faraday said “we should begin with the whole, then construct the parts”. Folloing the
lead of Faraday, we refer to system design as the task of determining the design requirements of the
multiple components that make up the system, given only the requirements of the system.



Universities teach component technology, drawing narrow boundaries around subjects for tractability,
or easy management. Of course, this training leads the industrial project managers and engineers to
uncoordinated decisions about system design. For example,afterwe select what components to man-
ufacture, we have good guidelines how to manufacture them.After we choose components we have
good first principles how to model them.Afterwe choose the distribution of sensors and information,
and if all other components are already designed, then thereare guidelines how to control the system
using existing control theory. Synergism is a popular concept, but when is the whole less than the
sum of the parts? In system design, the answer is usually. In the absence of a necessity theory, we
overdesign the components, dealing with what is sufficient,rather than what is necessary. However,
contrary to popular opinion, the best system is not necessarily constructed from the best parts. We
can waste money on components that are not necessary, or by making a component too precise. There
is often more to be gained by unifying two disciplines than byimproving the technology of either
discipline. Yet, the best system performance (defined to include cost) cannot be achieved simply by
inserting the best component technologies.

The first challenge is to overcome language barriers, to describe what’s new using old words. The
words “system” and “design” are much overused words that must be explained carefully before any
real communication can take place. There are a number of “system design” principles available. Over
the last twenty years much has been written about “concurrent” engineering, and “system engineering
management” principles. Control theory is also a componenttechnology in the sense that all the other
components are assumed to be first specified. We believe that the next grand challenge is to enlarge
the existing tools of control design and structure design toembrace the much more general problem
of system design.

The sequence in which the components of a system are designedand introduced into the system
dynamics can be quite varied. Traditionally, control has been the last component to design. Indeed,
the decision whether control design should occur first, last, or during the structure design is a recurring
theme in this chapter. At some universities, “design” is notviewed as a scholarly activity, because a
scientific method to do it is lacking.

How can one identify the performance-limiting technology in a design? Perhaps we could get better
performance by improving the manufacturing precision of selected components. If so, which com-
ponents? Maybe we need a better model of the system components. If so, which components? Or
maybe we’re limited by computational precision, or, maybe by the algorithm we are using for signal
processing or control design. Or, maybe we need better sensors, or a different distribution of the
sensor or actuator locations. Or, maybe, more money in any ofthe component technologies would
be wasted, because we are already operating at the fundamental limits of physics. Oddly enough,
a systems theory is not available that even allows one to answer these basic questions. We have no
systematic process to decide where to spend money to enable acertain level of performance of the
system.



1.1. The Critical Challenge : System Modeling

The point of this section is that good component models do notimply good models for system design
purposes. Indeed, the critical challenge in finding a systemdesign methodology is to find a system
modeling methodology. Component models are usually considered good if the output error is zero,
but for any model,M in Figure 1, there is always some input to excite unmodeled dynamics, making
the open-loop error, e, large. Clearly, modeling decisionsfor a component ought to be influenced by
inputs from neighboring components that dynamically interact with this component. For example, the
basis functions chosen to model the displacement in a structure ought to be influenced by the inputs.
Even though there exist natural basis functions from physics to match stated boundary conditions to
make e small, these are not the most appropriate basis functions for other inputs, such as control.
Recall also from Mullis & Roberts that the optimal basis for aphysical component depends on the
disturbances in the computational component.

Figure 1: Component Modeling

Figure 2: Is System Modeling Just Physics?

Modeling is not just Physics

Let’s discuss 3 models of a plant, in Figure 2.P is the exact model from physics, a damped 2nd
order system. M and N are erroneous models. In fact, both models have unbounded errors relative to
the exact model, P. M is an undamped 2nd order system and N is a first order system. Now suppose
the models are to be used for control design to minimize some specific objective function, shown in



the Figure 2. For this particular objective function, all 3 models, P,M,N, yield the same controller.
Note that these models are arbitrarily far apart, by open loop criteria, but entirely equivalent by a
closed loop criteria. Hence, the same controller can be optimal for many different models of the plant
besides the exact model from physics. In fact, there might exist a better model for System Design
than the Actual model from physics. The first order model would be simpler and yet yields the same
controller. This point needs emphasis. Not only is the exactmodel inferior, assuming that it could be
available, but searching for the exact model is more costly.Hence, modeling for system design is not
just physics, physics, physics of the components, to make the open loop error smaller. Yet bounding
this open loop error is the focus of robust control. These examples show that bounding the open loop
error is neither necessary nor sufficient for a good control design. The conclusion is that “An Ounce
of Model Improvement is worth a Ton of Robust Control”. System Modeling is a discipline. It seems
to require more than just Component Technology, and more than what each discipline (including
controls) already knows.

2. What is Model Reduction?

The description of a physical dynamic system by a set of differential (or difference) equations is a
very useful tool in science. These equations, refereed hereas a mathematicalmodel, can be obtained
from basic physical principles or as a result of experiments. A measure of the “complexity” of the
system model is the number of first order equations used to describe it. This number is often referred
as theorder of the model. Models with elevated order are able to describevery complex phenomena.
Consequently, models with high order may be required in order to provide an accurate description
of a dynamic system. For instance, models with an infinite number of differential equations often
appears in several fields. To name one, the behavior of materials based on continuum physics is often
described by partial differential equations or by an infinite number of ordinary differential equations.

If the capacity of a model to accurately describe a system seems to increase with the order of the
model, in practice, models with low orders are required in many situations. In some cases, the amount
of information contained in a complex model may obfuscate simple, insightful behaviors, which can
be better captured and explored by a model with low order. In cases such as control design and
filtering, where the design procedures might be computationally very demanding, limited computa-
tional resources certainly benefit from low order models. These examples justify the need to develop
procedures that are able to approximate complex high order models by generating adequatereduced
order models. As a result, some degree of detailing will be permanently lost in the reduced order
model. The differences between the dynamics of the high order model and the obtained low order
model (theunmodeleddynamics) can be often taken into account in the low order model as anoise,
which can be handled using stochastic process methods. In any case, the model reduction procedures
might be flexible enough to let the user indicate the essential behaviors that need to be captured for
its application.
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Figure 4: Multi-Component Model Reduction

2.1. Single Component Model Reduction

Given a dynamic system modelG of usually high ordern, a model reduction method is a procedure
that yields some approximate modelGr of ordernr < n. The quality of the approximation is usually
evaluated by looking at themodel reduction error, that is, the signal obtained as the difference between
the outputs of the original system and the outputs of the reduced order model driven by the same input
signal. That arrangement is depicted in Figure 3. With respect to this figure, the single component
model reduction problem can then be loosely stated as follows:

Given a systemG , chose a procedure that yields a reduced order modelGr so that the
model reduction error is small.

2.2. Multi-Component Model Reduction

Quite often model reduction procedures might be applied to one component of a system while the
other component to which it is connected remain the same. Twoexamples of such occasion are given.
Figure 4(a) characterizes two components of a system interconnected in series. As an illustration, if
this system represents a spacecraft, componentG1 might represent a solar panel while componentG2

could be the body of the spacecraft. The solar array and the body of the spacecraft might be manu-
factured by different companies and it would be useful to know how to write contracts so that the two
companies can manufacture products withcomponentdynamic properties such that the connections
of the two components producesystemdynamic properties that meet stringent specifications. The
contracts must also characterize through the reduced ordermodelsG1r andG2r the accuracy required



of the models of each component when measured from the systemof connected components. No-
tice thatweightedsingle-component model reduction problems are defined by fixing componentG1

(for input weighting) or componentG2 (for output weighting). Several weighted model reduction
procedures are available in the literature.

Of course, one can have more complex arrangements of components than the simple example of Fig-
ure 4(a). For instance, in Figure 4(b), a second example of multi-component model reduction involves
feedback. In a typical controlled system, componentG1 is usually the plant and componentG2 is the
controller. Both plant and controller might be subject to order reduction, where the reduced order
models are represented in the picture byG1r andG2r .

The general multi-component model reduction problem that includes all the special cases mentioned
above can be loosely stated as follows

GivenN system componentsGi , i = 1, . . . ,N and an interconnection architecture (as in
Figures 3–4 or other), chose procedures for each component that yield reduced order
modelsGir , i = 1, . . . ,N so that the overall system error (characterized bye in Figures 3–
4) is small.

It is important to note that model reduction methods that make the single-component model reduction
error small for some component in the system do not necessarily yield small errors in an intercon-
nected architecture. Conversely, a given reduced order model of a single component might produce
unbounded single-component error and small multi-component error. In other words, the architecture
of components tend to have a major impact on errors and on the selection of adequate model reduction
procedures. One consequence of this fact in the context of control synthesis is that the determination
of the model of the plant (in this case also affected by the model reduction procedure) and the design
of the control laware not independent problems. The recognition of this fact (see the references for
examples) has led to a large research effort devoted to the integration of the disciplines of model
identification and control design.

The general multi-component model reduction problem is significantly more involved than the single-
component model reduction problem. Two particular cases ofthe multi-component model reduction
problem have been extensively studied and several approaches are available in the literature: con-
troller reduction and frequency weighted model reduction.The former is a particular case of the
multi-component problem under feedback connection, depicted in Figure 4(b). The latter is a partic-
ular case of the series connection depicted in Figure 4(a).

2.3. The Quality of the Reduced Order Model

Whenever the systemsG andGr can be interpreted as operators, the norm of the difference betweenG
and the reduced order modelGr may be a useful measure of the size of the model reduction error. In
the statements of both single- and multi-component model reduction problems, the statement that the
model reduction error should be kept small can be quantified through the scalar‖G −Gr‖. If such



objective is accomplished, it is expected that the error signaleresulting from the connections depicted
in Figures 3 and 4 be small for input signalsu in some well defined class.

Quantities other than norms can also be used in model reduction. Indeed, given a model for a physical
system, it is usually possible (and sometimes very useful) to characterize it in terms of its response
to certain input signals. For instance, a linear system model can be completely characterized by
its impulsive response, and a number of moments (derivatives) of the impulse response evaluated
at a given instant might capture important features of the original model. Hence,matchingcertain
properties constitute an alternative model reduction criterion than keeping norms small. In fact, given
a physical plant, it is not even necessary to have a complete model in hand to be able to perform model
reduction (or identification), since the response of the system to properly generated inputs might be
evaluated experimentally. Therefore, a reduced order model can be designed (identified) to match
certain frequency or time response properties.

2.4. Characterization of the Single-Component Model Reduction Error

In the interest of brevity, this chapter will focus on model reduction of the plant as a single compo-
nent model reduction problem. This problem is the most elementary model reduction problem and
yet displays the essential mathematical concepts encountered in the more complex multi-component
model reduction problem.

It will be assumed thatG is a linear, continuous-time and time-invariant model of order n < ∞ de-
scribed by the set of equations

ẋ(t) = Ax(t)+Bu(t), x(0) = 0 (1)

y(t) = Cx(t)+Du(t), (2)

where thex(t) ∈ R
n is the state,u(t) ∈ R

m is the input andy(t) ∈ R
q is the system output. For

simplicity, the dependence of these vectors with respect tothe independent variablet will be omitted
whenever possible. References to the state-space realization (1–2) will frequently appear denoted by
the quadruple of matrices(A,B,C,D).

The reduced order modelGr to be determined has the same structure asG , that is, it is a linear,
continuous-time and time-invariant model described by

ẋr = Arxr +Bru, xr(0) = 0 (3)

yr = Crxr +Dru, (4)

where thexr ∈ Rnr is the reduced order state andyr ∈ Rq is the output of the reduced order model.

In order to emphasize the fact that these systems are linear,they will be henceforth denoted byG(s)
and Gr(s), respectively. Where the complex variables alludes to the possibility of computing a
Laplace transform (frequency-domain) representation of systems (1–2) and (3–4).

The connection ofG(s) andGr(s) as in Figure 3 produces the model reduction error signale:= y−yr .
The relation between the common input signalu ande can be described by defining the augmented



state

x̃ :=

(

x
xr

)

, (5)

so that the connection of the systemG(s) andGr(s) as in Figure 3 produces the linear time-invariant
system

˙̃x = A x̃+Bu, x̃(0) = 0 (6)

e= C x̃+Du (7)

defined with the following matrices

A :=

[

A 0
0 Ar

]

, B :=

[

B
Br

]

, C :=
[

C −Cr
]

, D := D−Dr . (8)

Theerror system(6–8) is denoted byE(s). Notice thatE(s) = G(s)−Gr(s).

3. Linear System Properties

This section introduces several concepts and properties associated with linear systems that are of inter-
est of the model reduction problem. It intends to summarize some important results that will be used
in the model reduction methods to be described in Sections 4 .(See Description and Classification,
System Characteristics)

3.1. Input-Output Transfer Function

Given an arbitrary input signalu(t), the value of the output signaly(t) of the linear system (1–2) can
be calculated by the convolution integral

y(t) =
Z ∞

0
g(t − τ)u(τ)dτ (9)

whereg(t) is a function that describes the response of system (1–2) to independent impulsive inputs
at all input channels, that is, the linear systemimpulse response. That relation can be equivalently
characterized in the somewhat simpler form

Y (s) = G(s)U(s), (10)

whereY (s), U(s) andG(s) denote theLaplace transformof, respectively, the outputy(t), the input
u(t) and the impulse responseg(t). In particular, it can be shown that, for the linear system (1–2), the
impulse responseg(t) and its associatedtransfer functionG(s) are given by

g(t) := CeAtB+Dδ(t), G(s) := C(sI−A)−1B+D. (11)

The transfer functionG(s) is a rational function of the complex variables and provides a frequency-
domain description of the input-output behavior of the system (1–2).



From (11), more than one realization(A,B,C,D) of a linear system can produce the same impulse
responseg(t) and transfer functionG(s). That is, different system realizations can produce the same
input-output behavior. In particular, all linear systems whose coordinates are related by

x = Tz, z= T−1x. (12)

where the square matrixT is nonsingular, share the same input-output transfer function. Such systems
are said to be related by asimilarity transformationwhich is completely characterized by matrixT.
Notice that the transformed system produced by (12) has the state-space representation

ż= T−1ATz+T−1Bu, z(0) = 0 (13)

y = CTz+Du, (14)

and that
GT(s) = (CT)

(

sI−T−1AT
)−1(

T−1B
)

+D = C(sI−A)−1B+D = G(s) (15)

which is indeed independent of the choice of similarity transformation matrixT.

3.2. Controllability and Observability

The following concepts play an important role in the analysis of linear systems.

Definition 1 Given the pair of matrices(A,B) where A∈ R
n×n and B∈ R

n×m, the following state-
ments are equivalent:

a) (A,B) is controllable,

b) There exists no scalarλ ∈ C and no vector v∈ Cn 6= 0 such that

v∗ (λI −A) = 0, v∗B = 0, (16)

c) Thecontrollability matrix
Wc :=

[

B AB . . . An−1B
]

(17)

has rank n.

Definition 2 Given the pair of matrices(A,C) where A∈ Rn×n and C∈ Rr×n, the following state-
ments are equivalent:

a) (A,C) is observable,

b) There exists no scalarλ ∈ C and no vector v∈ Cn 6= 0 such that

(λI −A)v = 0, Cv= 0, (18)



c) Theobservability matrix

Wo :=











C
CA
...

CAn−1











(19)

has rank n.

By extension, a realization(A,B,C,D) is said to be controllable if the pair(A,B) is controllable and
observable if the pair(A,C) is observable.

For asymptotically stable systems, controllability and observability can be equivalently checked by
solving the Lyapunov equations

APc +PcA
T +BBT = 0, (20)

ATPo+PoA+CTC = 0. (21)

The solutionsPc andPo are called, respectively, controllability and observability Grammians. The
following lemmas are standard.

Lemma 1 The controllability Grammian Pc is positive definite if, and only if, matrix A is asymptoti-
cally stable and(A,B) is controllable.

Lemma 2 The observability Grammian Po is positive definite if, and only if, matrix A is asymptoti-
cally stable and(A,C) is observable.

It is worth noticing that the Grammians are not realization independent since

PcT = T−1PcT
−T , PoT := TTPoT. (22)

However, the product of the Grammians, that is,

PcTPoT = T−1PcPoT (23)

possess invariant eigenvalues.

3.3. Frequency Moments and Markov Parameters

Assume that the transfer functionG(s) is strictly proper (D = 0) and analytic on the imaginary axis.
Its Fourier power series expansion arounds= jω, 0≤ ω < ∞, provides

G(s) = C(sI−A)−1B =
∞

∑
i=0

Mi( jω)(s− jω)i, (24)



where the matrices
Mi( jω) := C( jωI −A)−(i+1) B, i = 0,1, . . . , (25)

are known as thelow frequency momentsof the transfer functionG(s). Thehigh frequencymoments

Mi( j∞) := lim
ω→∞

Mi( jω) = CAiB, i = 0,1, . . . , (26)

can be obtained by performing a Laurent expansion arounds = 0. The high frequency moments
Mi( j∞), i = 0,1, . . . are also calledMarkov parameters. In single input systems, the Markov pa-
rameters can be given a physical interpretation by applyingan unitary impulse at the input channel.
Using (9–11), such input produces the output

y(t) =
Z ∞

0
CeA(t−τ)Bδ(τ)dτ = CeAtB. (27)

Therefore, Markov parameters are associated with theith derivative (time moment) of the impulse
response at instant zero

diy(t)
dti

∣

∣

∣

∣

t=0
= Mi( j∞), i = 0,1, . . . . (28)

Notice that the frequency moments are input-output properties and should remain invariant under a
similarity transformation. Indeed, the low frequency moments (25) are such that

Mi( jω)T = (CT)
(

jωI −T−1AT
)−(i+1) (

T−1B
)

= C( jωI −A)−(i+1) B = Mi( jω) (29)

for all i = 0,1, . . .. The same pattern can be used to shown that the Markov parameters are also
invariant.

3.4. Output Correlation and Power Moments

Another quantity related to the input-output behavior of a linear system is the deterministicoutput
correlation for impulsive inputs (white noise inputs in the stochastic case). Assume that the linear
model (1–2) is asymptotically stable and strictly proper (D = 0). The output correlation for impulsive
inputs is defined by

R(t) =
m

∑
i=1

Z ∞

0
yi(t + τ)yiT(τ)dτ, (30)

whereyi(t), i = 1, . . . ,m denotes the output of the system due to an impulse applied at the ith input
channel. It can be shown that (30) can be computed as

R(t) = CeAtPcC
T , (31)

wherePc is the controllability Grammian, i.e., the positive semidefinite solution to the Lyapunov
equation (20). Following Section 3.3, the output covariance (31) can be Laplace transformed and
expanded in Fourier series

R (s) = C(sI−A)−1PcC
T =

∞

∑
i=0

Ri( jω)(s− jω)i. (32)



The matrices
Ri( jω) = C( jωI −A)−(i+1) PcC

T , i = 0,1, . . . (33)

are known as thelow frequency power moments. Thehigh frequencymoments

Ri( j∞) := lim
ω→∞

Ri( jω) = CAiPcC
T , i = 0,1, . . . , (34)

are calledcovariance parameters.

The same reasoning used to show that the frequency moments and Markov parameters are independent
of state-space realizations can be used to show that the power momentsRi( jω), i = 0,1, . . ., are also
invariant under a similarity transformation.

3.5. H2 and H∞ Norms

Given the transfer functionG(s) defined in (11), theH2 norm ofG(s) is defined as

‖G(s)‖2 :=

(

1
2π

Z ∞

−∞
trace

(

G( jω)GT(− jω)
)

dω
)1/2

. (35)

For a stable transfer function, Parseval’s Theorem can be used to show that the above defined quantity
is equivalent to

‖G(s)‖2 = trace
(

CPcC
T)1/2

= trace(R(0))1/2 . (36)

That is, theH2 norm of a transfer functionG(s) matches the trace of its output correlation (30) evalu-
ated at instant zero. The quantityR(0) is known as theoutput covariance. Another characterization of
theH2 norm is given by a set of LMI (Linear Matrix Inequalities). For a given asymptotically stable
realization(A,B,C,0) it is possible to show that‖G(s)‖2

2 < γ if, and only if, there exist symmetric
matricesP andW such that the LMI

[

AP+PAT B
BT −I

]

< 0,

[

W CP
PCT P

]

> 0, trace(W) < γ, (37)

hold feasible. In the above, matrixP serves as an upperbound to the controllability Grammian, that
is, P > Pc. The matrix variablesP andW appear affinely on the matrices.

Another norm of interest is defined by

‖G(s)‖∞ := sup
ω

‖G( jω)‖ = sup
ω

σ̄(G( jω)). (38)

This quantity is known as theH∞ norm ofG(s). For SISO systems, theH∞ norm can be evaluated by
finding the supreme value of the Bode magnitude plot1 over all frequencies. In the case of a stable
transfer function, theH∞ norm coincides with the induced norm

‖G(s)‖∞ = sup
R ∞

0 uT(τ)u(τ)dτ<∞

(
R ∞

0 yT(τ)y(τ)dτ
)1/2

(
R ∞

0 uT(τ)u(τ)dτ)1/2
(39)

1For MIMO systems, the same information can be obtained from amaximum singular value (sigma) plot.



where the signalsu(t) andy(t) are supposed to be square integrable. For a given asymptotically stable
realization(A,B,C,D) it is possible to show that‖G(s)‖2

∞ < γ if, and only if, there exists a symmetric
matrixP such that the LMI





AP+PAT B PCT

BT −I DT

CP D −γI



< 0, P > 0, (40)

are feasible.

3.6. The Conjugate System, Inner, Outer and All-pass Transfer Functions

Given a linear time-invariant system with transfer function (11), the system

G∼(s) := GT(−s) = −BT (sI+AT)−1
CT +DT (41)

is known as theconjugatesystem ofG(s). If G∼(s)G(s) = αI , whereα is positive scalar,G(s) is said
to beinner. The following lemma provides an useful characterization of an inner transfer function.

Lemma 3 Given the transfer functionG(s) defined in (11) assume that matrix A is asymptotically
stable. Assume also that the observability Grammian Po ≥ 0 given by (21) exists. If

BTPo +DTC = 0 and DTD = αI , (42)

whereα > 0 thenG(s) is inner.

Proof: The product of a linear system and its conjugate is given by

G∼(s)G(s) =
[

DTC BT
]

[

sI−A 0
CTC sI+AT

][

B
−CTD

]

+DTD,

which is still a linear system. A similarity transformation(12) defined by the matrices

T =

[

I 0
Po I

]

, T−1 =

[

I 0
−Po I

]

,

on the above system provides

G∼(s)G(s) =
[

BTPo+DTC BT
]

[

sI−A 0
ATPo +PoA+CTC sI+AT

][

B
−PoB−CTD

]

+DTD.

Now, using (42) and (21)

G∼(s)G(s) =
[

0 BT
]

[

sI−A 0
0 sI+AT

][

B
0

]

+DTD = DTD = αI

which shows thatG(s) is indeed inner. 2



If G(s)G∼(s) = αI , thenG(s) is said to beco-inner. The following lemma follows from Lemma 3
by duality.

Lemma 4 Given the transfer functionG(s) defined in (11) assume that matrix A is asymptotically
stable. Assume also that the controllability Grammian Pc ≥ 0 given by (20) exists. If

PcC+BDT = 0 and DDT = αI , (43)

whereα > 0 thenG(s) is co-inner.

A square transfer functionG(s) which is inner (and co-inner) is said to beall-pass.

4. Model Reduction by Truncation

Given a linear system (1–2), apreferred realizationwill be obtained via the similarity transformation
T :=

[

T1 T2
]

[

T1 T2
]

(

z1

z2

)

= x,

(

z1

z2

)

=

[

RT
1

RT
2

]

x, T1RT
1 +T2RT

2 = I , (44)

This operation transforms the coordinates of the original system into
(

ż1

ż2

)

=

[

A11 A12

A21 A22

](

z1

z2

)

+

[

B1

B2

]

u, (45)

y =
[

C1 C2
]

(

z1

z2

)

+Du, (46)

where
[

A11 A12

A21 A22

]

:=

[

RT
1 AT1 RT

1 AT2

RT
2 AT1 RT

2 AT2

]

,

[

B1

B2

]

:=

[

RT
1 B

RT
2 B

]

,
[

C1 C2
]

:=
[

CT1 CT2
]

. (47)

A reduced order model (3–4) is then obtained by truncating the state vector so as to preserves only
the statexr = z1. That operation produces a reduced order model (3–4) with state-space realization

(Ar ,Br ,Cr ,Dr) = (A11,B1,C1,D) =
(

RT
1 AT1,R

T
1 B,CT1,D

)

. (48)

Notice that, by construction,RT
1 T1 = I , which characterizes

P := R1TT
1 (49)

as anoblique projection operator. This operator is such that for anyx∈ R (R1), Px= x. In particular,
it can be shown that allprojectorsonR (R1) can be parametrized with the help of an arbitrary square
and nonsingular matrixJ in the form

T1 = JTR1
(

RT
1 JTR1

)−1
. (50)



One can verify that the above defined projector satisfies the properties

P2 = PP= P, PR1 = R1, PTJTR1 = JTR1. (51)

WhenP = PT it is called anorthogonal projector.

In the computational component of the system referred to as the “ODE solver”, suppose we want to
build a simulation (or a controller) in a digital computer. The computer uses fixed point arithmetic,
with beta bits in the fractional part of the wordlength, and with a uniformly distributed white noise
model for round-off errors. The error in computing the stateis e. T fixes the coordinates we choose
for the calculations. G is the transfer function from input to output, and of course, it is independent of
the realization (the choice ofT). However, the effect of round-off error, e, is realizationdependent.
Thus, here is a class of problems that cannot be studied with input/output methods, such as transfer
fucntions. There is no clue from the component technology, physics, how to choose the basis func-
tions for modeling so that computational errors are small. It is clearly a waste of resources to model
the physics more precisely than the computational error. Hence, an important question for all mod-
eling problems designed for computer computations is “justhow large can the round-off error be?”
It has been shown by Liu and Skelton that the variance of the round-off error is unbounded overT,
regardless of the wordlength. That is, one can compute in an arbitrarily bad set of coordinates. Hence,
one can spend a lot of money getting good component models that are worthless is a system of inter-
connected components. This example shows that the manner inwhich one models one component of
the system can affect the dynamics of another component. This illustrates the general principle that
the Design and Modeling of components should not be independent decisions.

Mullis and Roberts, Williamson, and others have shown the optimal realization for digital computa-
tion, to minimize the roundoff, subject to a scaling constraint. From a component technology view-
point, one can model the system first, and then compute the optimal realization,T. However, since
T depends on the choice of the model, and the model may contain free parameters, such as material
models or control parameters to be selected, the systems approach would be to jointly choose the
model and the realization. Following this procedure one candesign LQG controllers that are optimal
for the specific finite-precision computing environment. There is no separation principle in this case,
but two Riccati equations appear with a coupling term that disappears as the number of bits in the
wordlength go to infinity. This theory yields controllers that are tailored to the specific computational
environment, and the classical separation principle results as a special case when the computation is
with infinite precision. This result has been applied in a redesign of the controller for the Hubble
Space Telescope.

The original HST controller was designed assuming infinite precision computing. A redesign, using
the above procedure, is accomplished , using the fact that the A/D and D/A converters have 16 bits
and the control computer has 24 bits (The recent HST servicing mission changed this computer to
a floating point machine). The simulation result produced 2 orders of magnitude improvement in
pointing efficiency (ratio of pointing variance to control variance). This is a no cost solution, in the
sense that the control complexity is not increased. Telemetry can send up new coefficients within
the existing algorithm. Furthermore, using the new controldesign technology, one needs only 4-
bit arithmatic to obtain the same performance as the existing controller achieved with 24 bits. This
is perhaps not a significant contribution to either Signal Processing or Control disciplines, but the
extraordinary improvement is due to integration of the disciplines.



Given a linear system in the form (1–2), the fastest and simplest way to produce a reduced order
model is by truncation. For instance, a “natural” frequencydomain model reduction procedure is to
truncate poles and zeros. While deleting poles and zeros maybe simple in SISO (Single-Input-Single-
Output) systems, the many subtleties involving the definition of zeros imposes some extra difficulties
for MIMO (Multiple-Input-Multiple-Output) systems. In this aspect, state-space methods seems to
provide a more adequate framework, and will be the methodology of choice used throughout this
chapter.

In state-space, truncation of the state vector is the “natural” choice for obtaining a reduced order
model. The fundamental question iswhat states are “important” and should be kept in the reduced
order model? In this section, answers to this question will be provided by transforming the original
system intopreferred realizations, where truncation of some states will be able to partially preserve
selected properties of the original system. All model reduction procedures to be derived in this section
follow the pattern:transform and truncate. Frequency domain interpretations of these results will be
provided whenever available.

4.1. Minimal Transfer Equivalent Realizations

In Section 3.1, it has been shown that different realizations can have the same transfer function. This
motivates the following definition.

Definition 3 Two distinct state-space realizations of a linear time-invariant system are said to be
transfer equivalentif they have the same transfer function, defined by (11).

In the context of model reduction, and given a state-space realization (A,B,C,D) of order n, one
might wonder whether the given realization isminimal in the sense that there exists no other transfer
equivalent realization(Ar ,Br ,Cr ,Dr) of ordernr with nr smaller thann. The answer to this question
relies on the concepts ofcontrollability andobservabilityintroduced in Section 3.2 (see also). The
following lemma is standard.

Lemma 5 The state-space realization(A,B,C,D) is minimal if, and only if, it is controllable and
observable. In this case, all transfer equivalent realizations are related by a similarity transformation.
The order of a minimal realization is called theminimal degree.

The proof of this lemma can be found in the books on linear systems theory cited in the bibliography.
An immediate implication is that if a given realization is not minimal, one should be able to obtain a
transfer equivalent realization with reduced order. A transfer function with minimal degree is obtained
when (Ar ,Br ,Cr ,Dr) is controllable and observable. A constructive procedure to compute such a
minimal realization is based on the calculation of the controllable and observable subspaces. This is
the subject addressed in the next lemmas.



Lemma 6 Given the state-space realization(A,B,C,D) of order n and the controllability matrix Wc
defined in (17), compute the singular value decomposition

Wc =
[

U1 U2
]

[

Σ 0
0 0

][

VT
1

VT
2

]

= U1ΣVT
1 (52)

where U1U
T
1 +U2U

T
2 = I, V1V

T
1 +V2V

T
2 = I andΣ = diag(σ1, . . . ,σnc) > 0, and calculate

T1 := U1Σ1/2, R1 := U1Σ−1/2. (53)

The state-space realization (3–4) with (48) of order nc is controllable.

Proof: Notice that the matrices(R1,T1) given in (53) define the orthogonal projectorP= PT =U1U
T
1 .

Hence
PWc = PU1ΣVT

1 = U1ΣVT
1 = Wc

or, using (17),
PWc =

[

PB PAB . . . PAn−1B
]

=
[

B AB . . . An−1B
]

.

Furthermore,

APB = AB,

(AP)2B = AP(APB) = APAB= A2B,

...

(AP)nB = APAn−1B = AnB,

which implies that

Ai
rBr =

(

RT
1 AT1

)i (
RT

1 B
)

= RT
1 (AP)i B = RT

1 AiB, i = 0, . . . ,n.

Hence, the controllability matrix of the reduced order model satisfies

Wcr =
[

Br ArBr . . . Anc−1
r Br

]

,

= RT
1

[

B AB . . . Anc−1B
]

,

= RT
1Wc.

Notice that the reduced order model is controllable sinceWcr = RT
1Wc = Σ1/2VT

1 has ranknc. 2

Lemma 7 Given the state-space realization(A,B,C,D) of order n and the observability matrix Wo
defined in (17), compute the singular value decomposition

Wo =
[

U1 U2
]

[

Σ 0
0 0

][

VT
1

VT
2

]

= U1ΣVT
1 (54)

where U1U
T
1 +U2U

T
2 = I, V1V

T
1 +V2V

T
2 = I andΣ = diag(σ1, . . . ,σno) > 0, and calculate

T1 := V1Σ−1/2, R1 := V1Σ1/2. (55)

The state-space realization (3–4) with (48) of order no is observable.



Proof: The matrices(R1,T1) given in (55) define the orthogonal projectorP = PT = V1V
T
1 so that

PWT
o = WT

o . Consequently,Wor = WoT1 = U1Σ1/2, which has rankno. 2

Lemmas 6 and 7 are able to extract, respectively, thecontrollableandobservable subspacesof a given
realization. Using these tools, a minimal transfer equivalent realization can be built in two steps. In
the first step, Lemma 6 obtains the controllable subspace of(A,B,C,D). In the second step, Lemma 7
is used to build the observable subspace of the controllablesystem obtained in step one. The resulting
system is controllable and observable. This procedure is summarized as the following algorithm.

Algorithm 1 Given the state-space realization(A,B,C,D) of order n, follow the steps:

Step 1.Calculate the singular value decomposition

Wc =
[

Uc U c̄
]

[

Σc 0
0 0

][

VT
c

VT
c̄

]

= UcΣcV
T
c . (56)

where UcU
T
c +U c̄U

T
c̄ = I, VcV

T
c +V c̄V

T
c̄ = I and Σc = diag(σc1, . . . ,σcnc) > 0. Define Tc := UcΣ1/2

c .

Step 2.Calculate the singular value decomposition

WoTc =
[

Uco U c̄o
]

[

Σco 0
0 0

][

VT
co

VT
c̄o

]

= UcoΣcoV
T
co (57)

where UcoU
T
co+U c̄oU

T
c̄o= I, VcoV

T
co+V c̄oV

T
c̄o= I andΣco = diag(σco1, . . . ,σconco) > 0.

Step 3.Calculate the matrices

T1 := UcΣ1/2
c VcoΣ−1/2

co , R1 := UcΣ−1/2
c VcoΣ1/2

co . (58)

The state-space realization (3–4) with (48) of order nco is a minimal transfer equivalent realization
of (A,B,C,D).

Notice that in Lemmas 6, only the matricesU1 andΣ obtained from the singular value decomposi-
tion (52) are used to build the reduced order model. MatricesV1 andV2 are never involved in the
computations. This fact may be used to replace the singular value decomposition (52) by the sym-
metric eigenvalue problem

WcW
T
c =

[

U1 U2
]

[

Σ 0
0 0

][

UT
1

UT
2

]

= U1ΣUT
1 ,

which may lead to improved numerical performance. The same argument can be carried over 7 to
replace (54) by the symmetric eigenvalue problem ofWT

o Wo. These simplifications can be incorpo-
rated in Algorithm 1 with no further ado. For asymptoticallystable systems, the positive semidefinite
GrammiansPc andPo can also be used instead of matricesWcWT

c andWT
o Wo (see also Section 4.4).

Caution must be exerted when these results are to be followedby the design of a control law. It should
be said that the deletion of unobservable states is always desirable (given that the output includes all
variables of interest), but it is not always desirable to delete uncontrollable states. For example, one



might augment the plant dynamics of external disturbances to the plant dynamics so that deleting
uncontrollable disturbances from the augmented system before control design may not be wise.

In the forthcoming sections, truncation of a realization beyond its minimal degree is pursued. Of
course, there is no hope that transfer equivalence will be preserved, and some other system properties
will be matched or preserved.

4.2. Matching Frequency and Power Moments

In Sections 3.3 and 3.4, it has been shown that the high and lowfrequency and power moments
are input-output properties that remain invariant under a similarity transformation. Therefore, the
minimal transfer equivalent realization obtained in Section 4.1, which preserves the transfer functions,
also preserves these parameters. In this section, reduced order models that do not preserve transfer
function equivalence will be obtained by matching a subset of the frequency and power moments.

One can ask the following question. “How much information about the plant do we really need to
compute the optimal control?” If we use the separation principle in the finite time LQG problem, we
need the entire state space model. Yet, in the problem shown in Figure 2, only the firstN Markov
parameters are needed to compute the exact optimal control.Modeling from first principles, physics,
focuses on modelingA andB andC, over-parametrizing the model by a large margin. In a 1000th
order system, there are more than a million parameters inA,B, andC. It is only a special combination
of these parameters that is important to controlled performance. The use of a separation principle
seems to utilize much more information about a model than is really necessary. Note that any model
obtained from data that matches the firstN Markov parameters will produce the exact optimal control
for the finite horizon optimal control problem, regardless what other properties the model possesses.
There are several identification methods which can preservethe firstN Markov parameters. Since
Markov parameters can be obtained from data, one can eliminate the step that computes the markov
parameters and compute the optimal control directly from data.

To illustrate how many models might be equivalent to a given set of data. Suppose we compute the
first q auto-correlations and the firstq cross-correlations, from the real data, (which of course evolves
from a nonlinear system). Then we can construct the matrixR andH as following.

Ri = E
[

yk+iy
T
k

]

, Hi = E
[

yk+iu
T
k

]

whereE [·] is the expectation operator.

R=









R0 RT
1 RT

2 RT
3

R1 R0 RT
1 RT

2
R2 R1 RT

0 RT
1

R3 R2 R1 R0









, H =









H0 HT
1 HT

2 HT
3

H1 H0 HT
1 HT

2
H2 H1 HT

0 HT
1

H3 H2 H1 H0









“Does there exist any linear model that can match these 2q pieces of data exactly?” The answer is
none if the matrixR−HH has a negative eigenvalue, and an infinite number otherwise.(Note that
only one of these models is the exact model derived from physics). There is aq Markov COVER



algorithm (matches the firstq covariance parameters and the firstq Markov parameters) to generate
all models that can match this data. Note that any of these infinite number of models (q Markov
COVERS) will yield the exact optimal control for an LQG problem with horizon equal toq.

The basic tool is the use of projectors. The next lemma shows how to develop reduced order models
that match a subset of the high frequency and power moments, that is, the Markov and the covariance
parameters.

Lemma 8 Given the minimal and asymptotically stable realization(A,B,C,0) of order n, compute
the symmetric and positive definite controllability Grammian Pc. Calculate the singular value decom-
position

Wq =
[

U1 U2
]

[

Σ 0
0 0

][

VT
1

VT
2

]

= U1ΣVT
1 , (59)

where U1U
T
1 +U2U

T
2 = I, V1V

T
1 +V2V

T
2 = I andΣ = diag(σ1, . . . ,σnr ) > 0, where

Wq :=











C
CA
...

CAq−1











. (60)

Calculate

T1 := PcV1
(

VT
1 PcV1

)−1
, R1 := V1, (61)

The state-space realization (3–4) with (48) of order nr is asymptotically stable and matches the first
q Markov Mi( j∞) and the first q covariance parameters Ri( j0), i = 0, . . . ,q−1, of (A,B,C,0).

Proof: The matricesR1 andT1 define the projectorP = R1TT
1 such that2

PWT
q = WT

q , PTPcW
T
q = PcW

T
q .

Proceeding as in the proof of Lemma 6 one can show that

WqPT = Wq ⇒ CrA
i
r = CAiT1, i = 0, . . . ,q

so that

Wqr =











Cr

CrAr
...

CrA
q−1
r











=











C
CA
...

CAq−1











T1 = WqT1.

Furthermore, one can verify that the reduced order model satisfies

ArPcr +PcrA
T
r +BrB

T
r = 0,

2The free parameterJ in (50) is set toPc.



where the controllability GrammianPcr = RT
1 PcR1. Consequently

Wqr

[

Br PcrC
T
r

]

=
[

WqT1RT
1 B WqT1RT

1 PcR1TT
1 CT

]

,

=
[

WqPTB WqPTPcPCT
]

,

=
[

WqB WqPcPCT
]

,

= Wq
[

B PcCT
]

.

Notice that

Wq
[

B PcCT
]

=











M0( j∞) R0( j∞)
M1( j∞) R1( j∞)

...
...

Mq( j∞) Rq( j∞)











,

which guarantees the matching of the desired parameters. The stability of the reduced order system
comes from the minimality of the original system. Indeed, the observability Grammian of the reduced
order system isPor := TT

1 PoT1, wherePo is the observability Grammian of the original system. Notice
that(A,B) being controllable impliesPc > 0 which implies thatT1 is nonsingular. Now(A,C) being
observable implies thatPo > 0 ⇒ Por > 0. SinceWor = Wqr ⇒ rank(Wor) = nr the reduced order
system is certainly observable and Lemma 2 ensures thatAr is asymptotically stable. 2

According to Section 3.3, matching the firstq Markov parameters guarantee that the firstq time
moments of the impulse response are matched. This guarantees that the time-response of the reduced
order model will have the “right start”. The preservation ofthis feature is specially important in
nonminimum phasesystems. For instance, the response of a nonminimum phase system to a positive
step might present at timet = 0 a negative derivative. This behavior can be captured by matching
high frequency moments (see Section 5.1 for an example). Lowfrequency parameters can be matched
through the following lemma.

Lemma 9 Given the minimal and asymptotically stable realization(A,B,C,0) of order n, compute
the symmetric and positive definite controllability Grammian Pc. Calculate the singular value decom-
position

Wp =
[

U1 U2
]

[

Σ 0
0 0

][

VT
1

VT
2

]

= U1ΣVT
1 , (62)

where U1U
T
1 +U2U

T
2 = I, V1V

T
1 +V2V

T
2 = I andΣ = diag(σ1, . . . ,σnr ) > 0, where

Wp :=











CA−1

CA−2

...
CA−p











. (63)

Calculate

T1 := PcV1
(

VT
1 PcV1

)−1
, R1 := V1, (64)

If the matrix Ar obtained in the state-space realization (3–4) with (48) of order nr is nonsingular,
then the reduced order system is asymptotically stable and matches the first p low frequency moments
Mi( j0) and the first p power moments Ri( j0), i = 0, . . . , p−1 of (A,B,C,0).



Proof: The proof of this lemma follows the same pattern as the one of Lemma 8 sincePWT
p = WT

p

andPTPcWT
p = PcWT

p . WhenAr = RT
1 AT1 is nonsingular

CA−1T1 = CA−1T1ArA
−1
r = CA−1T1RT

1 AT1A−1
r = CA−1PTAT1A−1

r = CA−1AT1A−1
r = CrA

−1
r .

Working recursively as in the proof of Lemma 6, one can show that

WpPT = Wp ⇒ CrA
−i
r = CA−iT1, i = 0, . . . , p

The rest of the proof is identical to the proof of Lemma 8. Notice that whenAr is nonsingular the
observability matrixWor =WprA

p
r has ranknr , which ensures the stability of the reduced order system.

2

When matrixAr is singular the obtained reduced order model is not guaranteed to match any low
frequency moments. Although in most casesAr will be nonsingular, it does not seem to be easy to
show that the proposed projection will always provide a nonsingular matrixAr . Also notice that, in
general,A−1

r 6= RT
1 A−1T1.

Matching low frequency moments guarantee that the steady-state values will be preserved. For in-
stance, the steady-state value to a step response is matchedwhen the first low frequency moment is
matched (see Section 5.1 for an example). High and low frequency moments can be simultaneously
matched by combining Lemmas 8 and 9 as in the next algorithm.

Algorithm 2 Given the minimal and asymptotically stable state-space realization(A,B,C,0) of order
n, follow the steps:

Step 1.Calculate the singular value decomposition
[

Wq

Wp

]

=
[

U1 U2
]

[

Σ 0
0 0

][

VT
1

VT
2

]

= U1ΣVT
1 , (65)

where U1U
T
1 +U2U

T
2 = I, V1V

T
1 +V2V

T
2 = I andΣ = diag(σ1, . . . ,σnr ) > 0, and matrices Wq and Wp

are defined, respectively by (59) and (63).

Step 2.The matrices

T1 := PcV1
(

VT
1 PcV1

)−1
, R1 := V1, (66)

produce the state-space realization (3–4) with (48) of order nr . If the reduced order system has a
nonsingular matrix Ar , then it is asymptotically stable and matches the first p low frequency moments
Mi( j0) and power moments Ri( j0), i = 0, . . . , p−1 and the first q high frequency moments Mi( j∞)
and power moments Ri( j∞), i = 0, . . . ,q−1 of (A,B,C,0).

These results can be extended to cope with moments evaluatedat any set of finite frequencies. It is
interesting to notice that the projections generate reduced order models that are not guaranteed to ap-
proximate the original system according to any system norm.On the other hand, it gives the engineer
the opportunity totuneup the reduced order model to an specific application by arbitrarily selecting
the appropriate sets of frequencies and the order of momentsthat are significant to the problem. Fur-
thermore, as the examples in Section 5 illustrate, this doesnot prevent the model reduction error to
have a small norm.



4.3. Component Cost Analysis

Several system and control problems are formulated with theobjective of monitoring or controlling
the system output covariance (see Sections 3.4 and 3.5). Thetrace of the output covariance is referred
in this section simply as thecost function. When the system disturbance inputs are modeled as im-
pulses (white noise), these problems can be seen as equivalent to the minimization of theH2 norm of
the transfer function from the disturbances to the outputs,as discussed in Section 3.4. This justifies
the need to develop reduced order models that are able to preserve theH2 norm of the original system.
The analysis of this model reduction problem is significantly simplified when the original system is
transformed into the particular set of coordinates defined below.

Definition 4 The asymptotically stable and time-invariant state-spacerealization(A,B,C,0) of order
n, is said to be incost decoupled coordinatesif the H2 norm of the transfer functionG(s) (cost

function) can be expressed in the form‖G(s)‖2 = (∑n
i=1 αi)

1/2 where the scalarsαi > 0, i = 1, . . . ,n
representindependentcontributions of each state to the cost function.

For a given linear system, there exists more than one realization whose coordinates qualify as cost
decoupled coordinates. The following lemma provide two of these realizations.

Lemma 10 An asymptotically stable and time-invariant realization(A,B,C,0) where

a) the controllability Grammian Pc given in (20) is diagonal, or

b) the matrix PcCTC is diagonal

is in cost decoupled coordinates.

Proof: The proof of this lemma consists in finding the independent factorsαi mentioned in Defini-
tion 4. Ina), matrixPc is diagonal, therefore

‖G(s)‖2
2 = trace

(

CPcC
T)=

n

∑
i=1

(Pc)ii cic
T
i =

n

∑
i=1

αi

whereαi := (Pc)ii cicT
i and the row vectorci denotes theith row of matrixC. In b), matrixPcCTC is

diagonal and the cost function can be calculated as

‖G(s)‖2
2 = trace

(

PcC
TC
)

=
n

∑
i=1

(

PcC
TC
)

ii =
n

∑
i=1

αi

whereαi :=
(

PcCTC
)

ii . 2



The next lemma shows how to transform a given realization into a realization with cost decoupled
coordinates that simultaneously satisfies itemsa) andb) of Lemma 10. A realization with cost de-
coupled coordinates that only satisfies itema) will be introduced in Section 4.4.

Lemma 11 Given the controllable and asymptotically stable realization (A,B,C,0) of order n, com-
pute the symmetric and positive definite controllability Grammian Pc. Calculate a nonsingular matrix
F ∈ Rn×n such that

Pc = FTF, (67)

and the singular value decomposition

FCTCFT = UΛUT , (68)

where UUT = I andΛ = diag(α1, . . . ,αn) ≥ 0. The similarity transformation (12) where

T := FTU (69)

puts the original realization in cost decoupled coordinates.

Proof: Since the original realization is assumed to be controllable and asymptotically stable, the con-
trollability GrammianPc is positive definite, which ensures the existence of the nonsingular factorF
which can be obtained, for instance, by a Cholesky decomposition. Furthermore

PcT = T−1PcT
−T =

(

UTF−T)(FTF
)(

F−1U
)

= I ,

PcTCT
TCT = TTCTCT = UTFCTCFTU = Λ,

which shows that the transformed system satisfies both itemsa) andb) of Lemma 10. 2

For model reduction, the previous lemma can be used to transform the original system into cost-
decoupled coordinates while truncation follows as in the following algorithm.

Algorithm 3 Given the asymptotically stable and controllable time-invariant state-space realization
(A,B,C,0) of order n follow the steps:

Step 1.Calculate the controllability Grammian Pc and compute matrix F∈ Rn×n as in (67).

Step 2.Compute the singular value decomposition

FTCCTF =
[

U1 U2
]

[

Λ1 0
0 Λ2

][

UT
1

UT
2

]

, (70)

where U1U
T
1 +U2U

T
2 = I, Λ1 = diag(α1, . . . ,αnr ) ≥ 0 andΛ2 = diag(αnr+1, . . . ,αn) ≥ 0.

Step 3.The matrices

T1 := FTU1, R1 := F−1U1, (71)

produce the reduced order state-space realization (3–4) with (48) of order nr .



Because the truncation is performed in cost decoupled coordinates, where the cost function is consti-
tuted of independent contributionsfrom each state, the reduced order model obtained by the above
algorithm has the following properties.

Theorem 12 Consider the reduced order model of order nr produced by Algorithm 3. The following
statements are true.

a) The reduced order model is asymptotically stable if and only if (Ar ,Br) is controllable.

b) If the reduced order model is asymptotically stable, the H2 norm of the reduced order model is
such that

‖Gr(s)‖2 =

(

nr

∑
i=1

αi

)1/2

, (72)

c) If the reduced order model is asymptotically stable, the difference between the H2 norm of the
original system and H2 norm of the reduced order model is such that

‖G(s)‖2
2−‖Gr(s)‖

2
2 =

n

∑
i=nr+1

αi , (73)

Proof: Assume that the realization(A,B,C,0) has already been transformed into cost decoupled co-
ordinates through Lemma 11. In these coordinates,Pc = I such that

A+AT +BBT = 0 ⇒ A11+AT
11+B1BT

1 = 0.

That is,Pcr = I . Hence, according to Lemma 1,A11 is asymptotically stable if, and only if,(Ar ,Br) =
(A11,B1) is controllable, which proves itema). Itemb) comes from

‖Gr(s)‖
2
2 = trace

(

CrPcrC
T
r

)

= trace
(

CT
r Cr

)

= trace
(

CT
1 C1

)

=
nr

∑
i=0

αi .

Notice thatb) immediately implies that

‖G(s)‖2
2−‖Gr(s)‖

2
2 =

n

∑
i=1

αi −
nr

∑
i=0

αi =
n

∑
i=nr+1

αi ,

which is itemc). 2

Unfortunately, the above lemma does not guarantee any upperbound on the norm of the model reduc-
tion errorE(s) = G(s)−Gr(s). This fact will be overcome in the Section 4.4. A lowerbound on the
H2 norm of the model reduction error is available

‖G(s)−Gr(s)‖2 ≥ ‖G(s)‖2−‖Gr(s)‖2 =

(

n

∑
i=1

αi

)1/2

−

(

nr

∑
i=1

αi

)1/2

. (74)



The expression above comes by combining itemb) of Lemma 12 and a generic property of norms.

It is important to stress that the use of the results of this section require the careful intervention of
the engineer in the selection of the system output. In the most common situations, an engineering
system will have less outputs than its order. Hence, the square matrixPcCTC will be, typically, rank
deficient. For single-output systems, for example, it will have rank one and, regardless of the order
of the original system, Theorem 12 tells that Algorithm 3 is able to produce a reduced order model
of order one that perfectly matches theH2 norm of the original system (αi = 0, i = 2, . . . ,n). This
fact reinforces the need for a good selection of the system output, which should be able to capture the
important aspects of the system behavior. An appropriate output for model reduction will often be
constituted by the measured output of the original system augmented by some of its derivatives3 and
other selected important signals which are internal to the model.

It is interesting to notice that it is also possible to generate a reduced order systems that matches ex-
actly theH2 norm of the original system by extracting from this system its inner component. Indeed, a
standard result in linear systems theory lets one writes anyminimal and asymptotically stable transfer
functionG(s) in the factored form

G(s) = Gi(s)Go(s),

whereGi(s) is asymptotically stable and inner (Gi(s)
∼Gi(s) = I ) andGo(s) is asymptotically stable

and minimum phase (outer). Notice that

‖G(s)‖2
2 =

1
2π

Z ∞

−∞
trace

(

GT
o (− jω)GT

i (− jω)Gi( jω)Go( jω)
)

dω

=
1
2π

Z ∞

−∞
trace

(

GT
o (− jω)Go( jω)

)

dω = ‖Go(s)‖
2
2

and thatGo(s) is usually of reduced order.

4.4. Balanced Realization and Truncation

This section discuss one of the the most celebrated truncation methods for model reduction. It starts
investigating the possibility of transforming a stable realization (A,B,C,D) into a privileged set of
coordinates, known asbalanced coordinates.

Definition 5 The asymptotically stable and time-invariant state-spacerealization(A,B,C,D) of or-
der n, is said to be inbalanced coordinatesif the controllability and observability Grammians are
both diagonal.

Under the similarity transformation (12), the controllability and observability Grammians are trans-
formed as

PcT := T−1PcT
−T , PoT := TTPoT, PcTPoT := T−1PcPoTT . (75)

3See Section 4.2 for a method that matches frequency moments and Section 3.3 for the relation between frequency
moments and time moments.



Hence, it is possible to transform a given realization into balanced coordinates whenever there exists a
nonsingular matrixT that simultaneously diagonalize (75). For minimal realizations, the next lemma
shows in a constructive way that this is always possible.

Lemma 13 Given the minimal and asymptotically stable realization(A,B,C,D) of order n, compute
the symmetric and positive definite controllability and observability Grammians Pc and Po. Calculate
a nonsingular matrix F∈ Rn×n such that

Pc = FTF, (76)

and the singular value decomposition

FPoFT = UΣUT , (77)

where UUT = I andΣ = diag(σ1, . . . ,σn) > 0. The similarity transformation (12) where

T := FTUΣ−1/4 (78)

puts the original realization in balanced coordinates.

Proof: Since the original realization is assumed to be minimal and asymptotically stable, the Gram-
miansPc andPo are positive definite, which ensures the existence of nonsingular matricesF andΣ.
Furthermore one can verify that

T−1PcT
−T = Σ1/2, TTPoT = Σ1/2, T−1PcPoT = Σ. (79)

which shows that the transformed system is in balanced coordinates. 2

Notice that sincePc is diagonal, balanced coordinates are also cost decoupled coordinates. Truncation
of the original model is performed as in the next algorithm.

Algorithm 4 Given the minimal and asymptotically stable realization(A,B,C,D) of order n, follow
the steps:

Step 1.Calculate the controllability Grammian Pc and compute matrix F∈ R
n×n as in (76).

Step 2.Calculate the observability Grammian Po and the singular value decomposition

FPoFT =
[

U1 U2
]

[

Σ1 0
0 Σ2

][

UT
1

UT
2

]

, (80)

where U1U
T
1 +U2U

T
2 = I, Σ1 = diag(σ1I , . . . ,σr I) > 0, Σ2 = diag(σr+1I , . . . ,σpI) > 0 and σi 6= σ j

for all i 6= j. The singular valueσi is assumed to have multiplicity mi so that∑p
i=1mi = n and

∑r
i=1mi = nr . Partition matrix C in p blocks of columns according to the blocks ofΣ1 and Σ2 and

calculate the component costs

αi = σ1/2
i trace

(

cic
T
i

)

, i = 1, . . . , p. (81)



Step 3.The matrices

T1 := FTU1Σ−1/4
1 , R1 := F−1U1Σ1/4

1 , (82)

produce the reduced order state-space realization (3–4) with (48) of order nr .

Notice the similarities between the above algorithm and Algorithm 3. At least for discrete-time sys-
tems, the latter can be generated as a particular case of the former by defining the infinite dimensional
output vector

C̃ =











C
CA
CA2

...











.

In this case, (80) and (70) become identical sincePo = ∑∞
i=0(CAi)T(CAi) = C̃TC̃.

The next theorem summarizes the properties of the obtained reduced order model.

Theorem 14 Consider the reduced order model of order nr produced by Algorithm 4. The following
statements are true.

a) The reduced order model is asymptotically stable.

b) The H∞ norm of the model reduction error is such that

‖G(s)−Gr(s)‖∞ ≤ 2
p

∑
i=r+1

σ1/2
i . (83)

c) The H2 norm of the model reduction error is such that

‖G(s)−Gr(s)‖2 ≤ 2
p

∑
i=r+1

(

σi

i

∑
j=1

α j

σ j
−αi

)1/2

. (84)

Proof: For simplicity, it is assumed throughout this proof that theoriginal system has already been
transformed into balanced coordinates.

a) For the moment, consider theone stepmodel reduction, that is, assume that Algorithm 4 has
produced a reduced order modelG p

r (s) by truncating only the singular valueσp. In this case,r =
(p−1) andΣ2 = σpI . Furthermore, the original model satisfies the Lyapunov equations

A11Σ1/2
1 +Σ1/2

1 AT
11+B1BT

1 = 0, AT
11Σ1/2

1 +Σ1/2
1 A11+CT

1 C1 = 0, (85)

A21Σ1/2
1 +σ1/2

p AT
12+B2BT

1 = 0, AT
12Σ1/2

1 +σ1/2
p A21+CT

2 C1 = 0, (86)

σ1/2
p
(

A22+AT
22

)

+B2BT
2 = 0, σ1/2

p
(

A22+AT
22

)

+CT
2 C2 = 0. (87)



Let λ ∈ C andv∈ Cn be such thatA11v = λv. Multiplying the second equation in (85) byv on the
right and byv∗ on the left one obtains

(λ+λ∗)v∗Σ1/2
1 v = v∗Σ1/2

1 A11v+v∗AT
11Σ1/2

1 v = −v∗CT
1 CT

1 v≤ 0.

SinceΣ1 > 0, this implies that Re(λ) ≤ 0, that is, matrixA11 should be asymptotically stable or, in
the worst case, it has one or more eigenvalues on the imaginary axis. Hence, in order to prove the
asymptotic stability of the reduced order model, it sufficesto show thatA11 has no eigenvalues on
the imaginary axis. For that sake, assume thatA11 has some eigenvaluejω on the imaginary axis and
denote byV the set of eigenvectors associated with this eigenvalue. SinceΣ1 andσp are nonsingular,
the equations on the right of (85–86) can be rewritten as

A11

(

σpΣ−1/2
1

)

+
(

σpΣ−1/2
1

)

AT
11+σpΣ−1/2

1 CT
1 C1Σ−1/2

1 = 0, (88)

A21

(

σpΣ−1/2
1

)

+σ1/2
p AT

12+σ1/2
p CT

2 C1Σ−1/2
1 = 0. (89)

Equations (85–87) and (88–89) can then be added

A11Σ+ +Σ+AT
11+B1BT

1 +σpΣ−1/2
1 CT

1 C1Σ−1/2
1 = 0, (90)

A21Σ+ +2σ1/2
p AT

12+B2BT
1 +σ1/2

p CT
2 C1Σ−1/2

1 = 0, (91)

2σ1/2
p
(

A22+AT
22

)

+B2BT
2 +CT

2 C2 = 0, (92)

or subtracted

A11Σ− +Σ−AT
11+B1BT

1 −σpΣ−1/2
1 CT

1 C1Σ−1/2
1 = 0, (93)

A21Σ− +B2BT
1 −σ1/2

p CT
2 C1Σ−1/2

1 = 0, (94)

B2BT
2 −CT

2 C2 = 0, (95)

where

Σ+ :=
(

Σ1/2
1 +σpΣ−1/2

1

)

, Σ− :=
(

Σ1/2
1 −σpΣ−1/2

1

)

.

Notice thatΣ+ > 0 and thatΣ− is nonsingular since no diagonal entry inΣ1 equalsσp. Now, select a
nonzero vectorz∈ V , that is,

(A11− jωI)z= 0 ⇒ z∗
(

AT
11+ jωI

)

= 0.

Equation (93) can be rewritten in the form

(A11− jωI)Σ− +Σ−

(

AT
11+ jωI

)

+B1BT
1 −σpΣ−1/2

1 CT
1 C1Σ−1/2

1 = 0, (96)

which right multiplied byv := Σ−1
− z on the right and byv∗ on the left provides

v∗
(

B1BT
1 −σpΣ−1/2

1 CT
1 C1Σ−1/2

1

)

v = 0 ⇒ BT
1 v = 0, C1Σ−1/2

1 v = 0. (97)

Now, the multiplication of (94) on the right byv using (97) provides

A21Σ−v = A21z= 0.



Hence, there exists
[

A11 A12

A21 A22

](

z
0

)

= jω
(

z
0

)

.

which implies thatA also hasjω as an eigenvalue. This contradicts the hypothesis thatA is asymptot-
ically stable and shows thatA11 must have no eigenvalues on the imaginary axis, that is,A11 is asymp-
totically stable. By noticing that the reduced order modelG p

r (s) is asymptotically stable and that it is

still in balanced coordinates, a one step model reduction can again be used to obtainG (p−1)
r (s) which,

following the same reasoning as above, should also be asymptotically stable. The desired asymptot-
ically stable reduced order modelGr(s) is then obtained by applying as many successive one step
model reductions as necessary.

b) Consider the reduced order modelG p
r (s) obtained by a one step application of Algorithm 4. The

model reduction errorEp(s) := G(s)−G p
r (s) is given by (6–8) withD = D−Dr = 0. The equa-

tions (90–95) can be used to show that

ÂP̂c + P̂cÂ
T + B̂B̂T = 0, (98)

where

Â := A , B̂ :=
[

B B̄
]

,

P̂c :=





Σ+ 0 Σ−

0 2σ1/2
p I 0

Σ− 0 Σ+



 , B̄ :=







σ1/2
p Σ−1/2

1 CT
1

CT
2

−σ1/2
p Σ−1/2

1 CT
1






.

Additionally, one can define matrices

Ĉ :=

[

C
−C̄

]

, C̄ :=
[

σ1/2
p BT

1 Σ−1/2
1 BT

2 σ1/2
p BT

1 Σ−1/2
1

]

, D̂ :=

[

0 2σ1/2
p

2σ1/2
p 0

]

,

such that
P̂cĈ

T + B̂D̂T = 0.

From Lemma 4, the system

Êp(s) := Ĉ
(

sI− Â
)−1

B̂+ D̂

is all-pass, that is,̂Ep(s)Ê∼
p (s) = D̂D̂T = 4σpI . Notice that the relation

Ep(s) =
[

I 0
]

Êp(s)

[

I
0

]

characterizes the system̂Ep(s) as adilation of the error systemEp(s). Therefore, it is possible to
establish the following inequality

‖Ep(s)‖∞ ≤ ‖Êp(s)‖∞ = 2σ1/2
p .

As in the proof of itema), successive one step model reduction operations can be applied so that, at
each iteration, the bound on the error

‖Ei(s)‖∞ = ‖G i+1
r (s)−G i

r(s)‖∞ ≤ ‖Êi(s)‖∞ = 2σ1/2
i



is available. The bound on the fully reduced order model can be obtained by noticing that

‖G(s)−Gr(s)‖∞ = ‖
p

∑
i=r+1

Ei(s)‖∞ ≤
p

∑
i=r+1

‖Ei(s)‖∞ ≤ 2
p

∑
i=r+1

σ1/2
i .

c) Consider once more the one step model reduction errorEp(s) and evaluate the quantity

trace
(

C P̂cC T)= 4σp trace
(

C1Σ−1/2CT
1

)

+2σ1/2
p trace

(

C2C
T
2

)

,

= 4σp

p

∑
i=1

αi

σi
−2αp,

where matrixP̂c is the solution to the Lyapunov equation (98). The controllability GrammianPc

associated with the error systemEp(s) is given by

APc +PcAT +BB = 0.

Notice that sincêA = A andB̂B̂T = BBT + B̄B̄T ≥ BBT , which implies thatPc ≤ P̂c. Therefore,

‖Ep(s)‖
2
2 = trace

(

CPcC T)≤ trace
(

C P̂cC T)= 4σp

p

∑
j=1

α j

σ j
−2αp.

Taking successive one step iterations one obtains that

‖Ei(s)‖2 = ‖G i+1
r (s)−G i

r(s)‖2 ≤ 2

(

σi

i

∑
j=1

α j

σ j
−αi

)1/2

.

The bound on the fully reduced order model is then obtained through

‖G(s)−Gr(s)‖2 = ‖
p

∑
i=r+1

Ei(s)‖2 ≤
p

∑
i=r+1

‖Ei(s)‖2 ≤ 2
p

∑
i=r+1

(

σi

i

∑
j=1

α j

σ j
−αi

)1/2

,

which completes this proof. 2

The above theorem provides upperbounds for the norms of the model reduction error. The bound on
theH∞ norm given at itemb) is sufficiently simple to be used with Algorithm 4. In fact, Algorithm 4
can be used to generate a reduced order model that minimize that bound by simply ordering the
diagonal entries ofΣ in (80) in ascending order (standard balanced truncation). This guarantee that
Σ2 will contain the largestp− r +1 smallest singular values, which minimizes (83). The boundon the
H2 norm given in itemc) seems to be somewhat more involved. In fact, the minimization of (84) can
not be achieved by simply ordering the singular values in ascending or descending order. A simpler
alternative seems to order the singular values ofΣ in descending order ofΛ (balanced truncation with
component cost analysis). Notice that balanced coordinates are also cost decoupledcoordinates and
this choice reflects the desire to match the output covariance as stated in Section 4.3. Notice that
regardless of the singular value ordering, the bounds are still guaranteed to hold. Examples of both
choices will be given in Section 5.



4.5. Singular Perturbation Truncation

In this section it is assumed that the original system has been transformed into the form
(

ż1

ε ż2

)

=

[

A11 A12

A21 A22

](

z1

z2

)

+

[

B1

B2

]

u, (99)

y =
[

C1 C2
]

(

z1

z2

)

+Du, (100)

whereε > 0 is a sufficiently small scalar. In this form, the statesz1 andz2 represent, respectively,
“slow” and “fast” modes of the system. That structure may arise naturally in several systems. For
instance, in an electrical machine, the mechanical parts generate the slow modes while the electric
components are associated with the fast modes. Such systemsare calledsingularly perturbed systems.

In singularly perturbed systems, the transient responses of the fast modes usually attain their steady-
state in very small time, as compared with the time response of the slow modes. In this sense, the
slow modes “dominate” the response of the system and, in someapplications, the fast modes can
be simply replaced by its steady-state solution. That is, the fast statesz2 can be simply replaced
by z̃2(t) = limt→∞ z2(t) whenever that limit is finite. WhenA22 is nonsingular, this quantity can be
computed by solving the second equation in (99) by takingε ż2 → 0, that is

A21z1+A22z̃2+B2u = 0 ⇒ z̃2 = −A−1
22 (A21z1+B2u) . (101)

The substitution ofz2 by z̃2 in (99–100) provides the reduced order model

ż1 = Arz1+Bru, (102)

y = Crz1+Du, (103)

where

Ar := A11−A12A
−1
22 A21, Br := B1−A12A

−1
22 B2, Cr := C1−C2A−1

22 A21. (104)

5. Tutorial Examples

5.1. Example 1

The use of the model reduction procedures discussed so far will be illustrated by two examples. The
first example is the third order stable SISO system

ẋ =





−1 3 0
−1 −1 1
4 −5 −4



x+





−2
2
4



u (105)

y =
[

1 0 0
]

x. (106)



Model Gr(s) ‖Gr(s)‖2 ‖Gr(s)‖∞ ‖G(s)−Gr(s)‖2 ‖G(s)−Gr(s)‖∞

Full see (107) 1.41 2.00 ? ?

#1, #2
−2

s+1
1.41 2.00 2.34 4.00

#3
0.69

s+0.35
0.83 2.00 1.11 0.78

#4
0.58

s+0.21
0.89 2.72 1.12 0.77

#5
−2.85

s+3.41
1.09 0.84 1.61 2.84

#6
−2.02(s−2.09)

(s+0.78)(s+2.51)
1.41 2.15 0.24 0.23

#7
−2.54(s−2.24)

(s+0.71)(s+4.03)
1.37 2.00 0.20 0.14

#8
−2(s−2.12)

(s+1)(s+2.12)
1.41 2.00 0.22 0.21

#9
−2.27(s−2.16)

(s+0.98)(s+2.64)
1.41 1.89 1.15 0.12

Table 1: Example 1: model comparison

This system is strictly proper and its transfer function is given by

Huy(s) =
−2(s−2.16)(s+4.16)

(s+0.67)(s2+5.33s+13.43)
. (107)

Notice that this transfer function has a zero on the right half of the complex plane, hence it isnonmin-
imum phase.

First, five different reduced order models of order one have been produced using the techniques in-
troduced in this chapter. The bode diagrams of the full ordermodel (105–106) and the reduced order
models is depicted in Figures 5(a) and 5(b). The impulse response and the step response are given
respectively in 5(c) and 5(d). All the obtained models and the H2 andH∞ norms of the model error
are given in Table 1. Then, five different reduced order models of order two have been generated.
The bode diagrams of the full order model and the obtained reduced order models are in Figures 6(a)
and 6(b). The impulse response and the step response are in Figures 6(c) and 5(d). A comparison of
the models is given in Table 1. Some comments on the generation of the reduced order models and
their performance follow.

Reduced order model #1 (component cost analysis)The reduced order model #1 has been ob-
tained using Algorithm 3 withnr = 1. Notice thatCCT has rank one (Λ = diag(2,0,0)) and, as
expected, the reduced order model matches exactly theH2 norm of (105–106). Notice that this does
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Figure 5: Example 1: reduced order models of order one

not guarantee any property on theH2 norm of the model reduction error. Indeed, Table 1 reveals that
this reduced order model is outperformed by all other models.

Reduced order model #2 and #3: (moment match) The reduced order model #2 has been ob-
tained using Algorithm 2 withq = 1, p = 0. That is, only the first high-frequency moment (Markov
parameter) of system (105–106) has been matched. As the system is nonminimum phase, the obtained
reduced order model has phase 180deg atω = 0. In this example, the reduced model #1, designed
by component cost analysis, is coincidently the same as model #2. Notice that in the design of the
reduced order model #1 only the first high-frequency power moment (and not the first Markov pa-
rameter) is guaranteed to be match, and the two disctinct methods should provide different models in
more complex situations.

The reduced order model #3 has been obtained using Algorithm2 with q = 0, p = 1. The first low-
frequency moment has been matched, which guarantees that the steady-state value of the step response
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Figure 6: Example 1: reduced order models of order two

will be matched (see figure 5(d)).

Reduced order model #4 and #5: (balanced truncation) Transforming the system (105–106) into
balanced coordinates produces

P1/2
o = P1/2

c = Σ := diag(σi) = diag(1.8541,0.1750,0.0032).

The reduced order model #4 has been obtained using Algorithm4 with nr = 1 and the singular values
ordered in decreasing order ofΣ (standard balanced truncation). Notice that all entries are distinct
and thatσ1 is one order larger thanσ2 and three orders larger thanσ3, which suggests that a model
of order one might be used to approximate (105–106). In balanced coordinates, the component cost
analysis produces

Λ := diag(αi) = diag(0.7921,1.1926,0.0153),

which suggests that the second singular value should be kept, if the H2 norm is to be matched. The
reduced order model #5 has been obtained using Algorithm 4 with nr = p = 1 and the singular values



ordered in decreasing order ofΛ (balanced truncation with component cost analysis).

Reduced order model #6: (component cost analysis)In order to generate model #6 the output of
system (105–106) has been augmented to

ỹ =
[

yT xT(CA−1)T xT(CA−2)T
]T

and Algorithm 3 has been used withnr = 1. As commented in Section 4.3, the purpose of augmenting
the output is to increase the “meaning” of the output covariance to be matched. In this case, the
augmented outputs introduce terms that are similar to low-frequency power moments in the output
covariance. As the number of outputs have increase the obtained

Λ := diag(αi) = diag(20.2391,1.4338,0.0034)

has now three distinct diagonal entries. The number of outputs in the reduced order model produced
by Algorithm 3 now reflects the dimension of the augmented output and a model that is appropriate
for comparison is obtained by keeping only the first output.

Reduced order model #7 and #8: (moment match) The reduced order model #7 has been ob-
tained using Algorithm 2 withq = 0, p = 2. That is, the two first low-frequency moments of sys-
tem (105–106) have been matched. The reduced order model #8 has been obtained using Algorithm 2
with q= 1, p= 1. The first low-frequency moment and the first Markov parameter have been matched.
As both models match the first low-frequency moment, the steady-state of the step response should
be exactly reproduced (see Figure 6(d)). Models #7 and #8 arevery similar and present excellent
performance. Notice that the norms of the model reduction error is also very small even though the
moment matching does not guarantee any norm bounds. Also notice that model #7 captures the non-
minimum phase characteristics of the model even without explicitly being asked to match the first
high frequency moment.

Reduced order model #9: (balanced truncation) For a second order system, the ordering of the
singular values coincides for both matricesΣ andΛ (see the generation of models #4 and #5) and
Algorithm 4 with nr = p = 2 produces a unique system, the reduced order model #9. The obtained
model performs very well and capture the nonminimum phase characteristics. There remains a small
error in the steady state response to a step input.

5.2. Example 2

The second example is the four mass mechanical system with springs and dampers depicted in Fig-
ure 7. The system has a vector second order representation

Mq̈+Gq̇+Kq = Du, (108)

y = Pq+Qq̇, (109)



m1 m2 m3 m4b1 b5

k1 k2 k3 k4 k5u1 u2

q1 q2 q3 q4

y1 = q1 y2 = q̈4

Figure 7: Four mass mechanical system

Model ‖Gr(s)‖2 ‖Gr(s)‖∞ ‖G(s)−Gr(s)‖2 ‖G(s)−Gr(s)‖∞

Full 0.65 1.23 ? ?

#1 0.59 1.12 0.34 0.55
#2 0.65 1.37 0.39 0.75
#3 0.58 1.44 0.36 0.54
#4 0.61 1.38 0.53 0.85

Table 2: Example 2: model comparison

where

M =









m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4









, G =









b1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 b5









, K =









k1 +k2 −k2 0 0
−k2 k2+k3 −k3 0

0 −k3 k3 +k4 −k4

0 0 −k4 k4+k5









,

D =

[

1 0 0 0
0 1 0 0

]T

, Q =

[

0 0 0 0
0 0 0 −b5/m4

]

, P =

[

1 0 0 0
0 0 k4/m4 −(k4 +k5)/m4

]

,

and

m1 = m2 = m4 = 1, m3 = 2, k1 = k3 = k4, k2 = 2, k5 = 4, b1 = 2, b5 = 1

Before applying the model reduction procedures this systemwith four modes should be converted
into state-space form (with eight states) using, for instance,

ẋ =

[

0 I
−M−1K −M−1G

]

x+

[

0
M−1D

]

u, x =

(

q
q̇

)

, u =

(

u1

u2

)

, y =

(

q1

q̈2

)

,

y =
[

P Q
]

x.

This is a MIMO system with 2 inputs and 2 outputs. The singularvalues and the component costs
obtained in balanced coordinates are

Σ := diag(σi) = diag(0.7373,0.3060,0.1722,0.1394,0.0735,0.0149,0.0015,0.0009),

Λ := diag(αi) = diag(0.1927,0.0745,0.0117,0.0632,0.0474,0.0318,0.0026,0.0004)

which suggests that a model of order four can be possibly usedto approximate this eight order system.
Six different reduced order models have been computed according to the following guidelines. A brief
comparison chart is given in Table 2.



Reduced order model #1 and #2: (moment match) The reduced order model #1 has been obtained
by matching the first two low frequency moments of the original system. The reduced order model #2
has been calculated to match the first low frequency and the first high frequency moments. Both
models have been calculated using Algorithm 2. As the full order system has two outputs fourth
order systems are needed to match two moments (two degrees per moment). According to Table 2 the
performance of model #1 is better than that of model #2. This fact is justified since the original system
has a more prominent response on low frequency ranges, and matching low frequency information
(moments) seems to capture better these features. The fact that the system is minimum phase also
reduced the importance of matching high frequency moments.

Reduced order model #3 and #4: (balanced truncation) Models #3 and #4 have been obtained
by balanced truncation using Algorithm 4 withnr = p= 4. In model #3 the singular values have been
ordered in descending order (standard balanced truncation) while in model #4 the singular values
have been ordered in descending order of the component cost matrix Λ (balanced truncation with
component cost analysis).

6. Concluding Remarks

We have tried to show that the bottleneck to good system design is the lack of good system modeling
theories. Indeed, we have shown that good component models do not imply good system models. The
controller and the model are compatible, or not, as a pair, and neither the controller nor the model have
any significance in isolation of each other. All the investment we’ve made into modeling the minutia
of component technologies may have little value in the discipline of System modeling. Whether you
are given a controller and are designing a model, or given a model designing a controller, it’s an
iterative process. Obviously control design should occur during, and not after modeling. We should
abandon the classical approach of designing and modeling the plant before control design. This will
require more attention in the future to good systems design procedures, integrating the disciplines of
modeling and control, rather than merely employing these disciplines in a sequential manner, as in
the current practice.
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