
Deployment of a Class 2 Tensegrity Boom

Jean-Paul Pinauda, Soren Solaria, and Robert E. Skeltona

aUniversity of California, San Diego
9500 Gilman Drive, La Jolla, California 92093, U.S.A.

Abstract

Tensegrity structures are special truss structures composed of bars in compression and cables in tension. Most
tensegrity structures under investigation, to date, have been of Class 1, where bars do not touch. In this article,
however, we demonstrate the hardware implementation of a 2 stage symmetric Class 2 tensegrity structure,
where bars do connect to each other at a pivot. The open loop control law for tendon lengths to accomplish
the desired geometric reconfiguration are computed analytically. The velocity of the structure’s height is chosen
and reconfiguration is accomplished in a quasi-static manner, ignoring dynamic effects. The main goal of this
research was to design, build, and test the capabilities of the Class 2 structure for deployment concepts and to
further explore the possibilities of multiple stage structures using the same design and components.
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1. INTRODUCTION

Tensegrity structures are built of bars and tendons attached to the ends of the bars.1 The bars can resist
compressive force and the strings cannot. Most bar-string configurations which one might conceive are not in
equilibrium, and if actually constructed will collapse to a different shape. Only bar-string configurations in a
stable equilibrium will be called tensegrity structures.2–5

If well designed, the application of forces to a tensegrity structure will deform it into a slightly different shape
in a way which supports the applied forces. Tensegrity structures are very special cases of trusses, where members
are assigned special functions. Some members are always in tension and others are always in compression. We
will adopt the words “tendons” for the tensile members, and “bars” for compressive members.6 A tensegrity
structure’s bars cannot be attached to each other through joints that impart torques. The end of a bar can be
attached to tendons or ball jointed to other bars.

Tensegrity structures are natural candidates to be actively controlled structures since the control system can
be embedded in the structure directly; for example tendons can act as actuators and/or sensors.7–9 Shape control
of the tensegrity structure can be accomplished by moving along its equilibrium manifold. The tensegrity unit
shown in Fig. 1 is the simplest three–dimensional tensegrity unit which comprises three bars held together in
space by strings so as to form a tensegrity unit. A tensegrity unit comprising of three bars will be called a
3–bar tensegrity. A 3–bar tensegrity is constructed by using three bars in each stage which are twisted either in
clockwise or in anti–clockwise direction. The top strings connecting the top of each bar support the next stage
in which the bars are twisted in a direction opposite to the bars in the previous stage. In this way any number
of stages can be constructed which will have an alternating clockwise and anti–clockwise rotation of the bars in
each successive stage. This is the type of structure in Snelson’s Needle Tower.
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Figure 1. Simplest tensegrity unit: three-bar unit.

In contrast to the Class 1 structure,10, 11 a Class 2 structure can also be constructed with the same 3–bar
tensegrity unit. Assembly of two units, with clockwise and anti–clockwise sense, can be “stacked” directly on
each other, resulting in bars connecting shown in Fig. 2a. The following section addresses the analysis and
construction of a prototype Class 2 tensegrity structure that verifies the deployment methodology used.

2. TWO STAGE CLASS 2 TENSEGRITY STRUCTURE

Design of a two-stage Class 2 tensegrity structure begins with the design of the base. The allowable twist angle,
α, of a two-stage Class 2 structure with fixed base nodes is π

2 − π
n , where n is the number of bars in each stage

(n = 3 in this paper). The addition of a Reinforcing tendon, to be described in the next section, increases the
admissable twist angle range to (π

6 , π
2 ).12–14 In addition, from these papers, by Masic, we conclude the forces

in the three bar tensegrity unit are realisable and can be scaled with respect to each other. We now turn
our attention to geometry of the structure and writing the equations that describe the reconfiguration of the
structure. These equations are vital in deriving the motor command signals that actuate the structure. Choosing
the coordinate axes as shown in Fig. 2 we write the coordinates of each node as follows

First Stage
Nodal Number Fixed Node? Coordinates

1 yes (rbase, 0, 0)
2 no (r cos α, r sin α, h)
3 yes (rbase cos(β + α), rbase sin(β + α), 0)
4 no (r cos(β + 2α), r sin(β + 2α), h)
5 yes (rbase cos(2β + 2α), rbase sin(2β + 2α), 0)
6 no (r cos(2β + 3α), r sin(2β + 3α), h)

Second Stage
7 top platform (rbase, 0, 2h)
8 top platform (rbase cos(β + α), rbase sin(β + α), 2h)
9 top platform (rbase cos(2β + 2α), rbase sin(2β + 2α), 2h)

Table 1. Table of nodal coordinates shown in Fig. 2.

where the chosen parameters to describe the geometry of the structure are r, h, and α. From symmetry, the
angle β is defined

β + α =
2π

3
.



(a) VRML Simulation (b) Top View

Figure 2. Views of 2 stage tensegrity indicating nodal positions and coordinate axes.

The saddle tendon length can be computed by calculating the distance between nodes 4 and 2 as

S =
(

[r cos(
2π

3
+ α)− r cos α ]2 + [r sin(

2π

3
+ α)− r sin α]2

) 1
2

= r
√

3. (1)

Similarly, the vertical tendon length can be computed by calculating the distance between nodes 2 and 1 as

V =
(
[r cos α− rbase]2 + r2 sin2 α + h2

) 1
2 , (2)

and the reinforcing tendon length can be computed from the distance between nodes 2 and 3 as

R =
(

[r cos α− rbase cos(
2π

3
)]2 + [r sin α− rbase sin(

2π

3
)]2 + h2

) 1
2

. (3)

The parameter r can be shown to depend on h and α, therefore, only two independent parameters are needed
to describe the structure completely. Figure 3 can be used to derive the dependence as follows: Apply the law
of cosines to 4ABC

(l2bar − h2) = r2
base + r2 − 2rrbase cos(

2π

3
+ α), (4)

and solving for r via the quadratic formula yields

r = rbase cos(
2π

3
+ α)± (r2

base cos2(
2π

3
+ α) + l2bar − h2 − r2

base)
1
2 . (5)



(a) Top View (b) Side View of a single bar

Figure 3. Geometric relations used to derive the dependence of r on height, h.

Equations (1) and (2) can now be written as functions of h and α, although α will be chosen to be in the
admissible range (π

6 , π
2 ) and h will be determined by choice of the function ḣ(t). In practice, the bars of the

structure will intersect at π
3 so the admissible range of interest will be either (π

6 , π
3 ) or (π

3 , π
2 ). Since the first

term in (5) is always negative for the given range for α, the only positive solution for r will result in taking the
positive in the second term.

The addition of the reinforcing tendon is optional and its benefit is to increase stiffness of the structure by
locking the infinitesimal mechanism mode that is present in the structure. This feature is highly desirable to
increase the stiffness to mass ratio. It should also be noted that the reinforcing tendon allows for a non-unique
twist angle, α. That is, a three bar tensegrity unit with only saddle and vertical tendons has only one unique
twist angle to be α = π

3 .15 Since we are considering a symetric deployment, two actuators are needed to deploy
the tensegrity: one to control the three saddle tendons and one to control the vertical tendons. This is the
minimum configuration of actuators needed to control the structure. The addition of the reinforcing tendon
offers two choices. First, to add an additional actuator to control the reinforcing tendons, or second, to find a
deployment trajectory that allows for a constant reinforcing tendon length, thus eliminating the need for an extra
actuator and benefiting from the added stiffness the tendon offers. The trajectory analysis can be accomplished
by examination of (1)-(3).

3. CONSTANT REINFORCING TENDON DEPLOYMENT

As mentioned in the previous section, the addition of the reinforcing tendon is desirable, and to benefit from the
tendon without need for its actuation is highly desirable. In order to fully deploy the tower, while maintaining
equilibrium, only two actuators are needed. Each actuator controls the lengths of the vertical tendons and the
saddle tendons respectively. The lengths of the vertical and saddle tendons must be calculated and controlled
over time to maintain a constant reinforcing tendon length, so that the structure will maintain its pre-tensioned
equilibrium.

In order to deploy along a trajectory that incorporates a constant reinforcing tendon length, R must be set
to a constant value in (3) and then a relation between α and h must be found from this expression. This relation
was found numerically and the choice for the constant R was found by the level contours in Fig. 4. The contour
at 10 inches was selected since it offers a good range of height variation while maintaining a good distance from
the 30 degree twist angle, which results in a slack reinforcing tendon.

In addition, the velocity of the structure height is chosen to be constant, ḣ(t) = k. Therefore we compute

h(t) =
∫

ḣ(t) dt = kt + c, (6)



and with the boundary conditions h(0) = h0 and h(tf ) = hf , results in

h(t) =
hf − h0

tf
t + h0, (7)

where tf is the time of deployment.

Given the numerical function α(h) obtained from (3) and (7), the trajectories can be computed by substitution
into (1)-(3) resulting in

S(t) = r(t)
√

3, (8)

V (t) =
(
(r(t)2 + r2

base − 2r(t)rbase cos(α(h(t))) + h(t)2
) 1

2 , (9)
R(t) = 10, (10)

where

r(t) =

(
rbase cos

(
2π

3
+ α(h(t))

)
+

√
(r2

base cos2
(

2π

3
+ α(h(t))

)
+ l2bar − h(t)2 − r2

base)

)
. (11)
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Figure 4. Contour plots of constant Reinforcing tendon length.

4. HARDWARE AND MOTOR CONTROL SYSTEM

The experimental hardware was constructed at the Structural Systems and Control Laboratory at the University
of California, San Diego, by Jean-Paul Pinaud and Soren Solari and is shown in Fig. 5. The deployment of the
boom was accomplished in 120 seconds and is shown in Fig. 6. The initial height of the structure was 6 inches
and the final height is 16.4 inches. The reader should be reminded that the analysis is based on a single stage
and multiple stages can be assembled by “stacking” the units on top of each other and reversing the orientation
of the bars in each stage. In this paper, we demonstrate two units “stacked” on each other, thus the total height
is double the height of one stage. The experiment shown in this paper can be augmented by the addition of
another two stages mounted to the top of the structure shown.



Figure 5. Experimental hardware used to validate the deployment concept. Center - PIC Microcontroller

Figure 6. Deployment sequence right to left.

A Programmable Integrated Circuit (PIC) microcontroller and two stepper motors were used to actuate the
deployment of the tower. Specifically, the PIC microcontroller was selected because of its portability, minimal
cost, and its wide spread use. Stepper motors were the first choice as actuators because of their accuracy and
repeatability in open loop position control applications.



The trajectories in (7)-(11) to be programmed into the PIC microcontroller are implemented with the following
constants

rbase = 6 inches, lbar = 12.8 inches,
h0 = 3 inches, hf = 8.2 inches,
tf = 120 seconds.

The tendon length vs. time profile is shown in Fig. 7a.
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(a) Tendon trajectories for deployment. (b) Stepper motor commands.

Figure 7. Discretization of tendon trajectories to stepper motor control signal.

Because of the limitations on the stepper motor and microcontroller, the tendon length vs. time trajectory
for each string cannot be implemented continuously. Instead a total of n samples in time, each sample containing
the number of steps the motor should take at a time t, is used as tendon trajectory sent to the motor, as seen
in Fig. 7b. The tendon trajectories from Fig. 7a were sampled into n + 1 samples, where each sample, ns

corresponds to the number of steps the motor must take to change the tendon length from its initial position
po to the sampled position at a given time pt. The number of steps per sample st is calculated by taking the
difference between successive ns values as

st = round[ns(pt)− ns(pt−1)] for t = 1, 2 . . . n, (12)

where round(∗) represents rounding to the closest integer. The graph of st vs. t is given in Fig. 7b. The discrete
nature of the stepper motor forces st to be rounded to the nearest integer, since the motor must take an integer
number of steps. The number of samples was chosen such that the total number of samples, n summed over all
trajectories could fit within the memory of the microcontroller. Constraining st < 256 steps allows st = 1 byte
of memory. Therefore, the resulting graph is an approximation of the non-linear curves. The approximation
is improved as the change in tendon length per step is reduced. The final error in position due to rounding is
calculated as

ne = round(ns(pn))−
n∑

t=1

st. (13)

Adding ne, number of steps of error, to the final step trajectory will eliminate the final position error.

5. CONCLUSION

Once the equilibrium conditions are found for a given tensegrity structure’s configuration variables, the generation
of trajectories can be accomplished using the methodology presented here. In addition, this methodology relies
on the use of high stiffness tendon material. The consequences of using a high stiffness tendon allows for
the designers to concentrate on the length control of the tendon via position control of the actuating motors,



in contrast to implementing force control with length control. The latter, of course, complicates the control
strategy significantly.

The use of stepper motors for open loop position control has proven to be an effective method for the deploy-
ment and repeatability for this structure. Further research into closed loop control strategies and vibrational
control11 is in progress.
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