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Abstract

Tensegrity structures consist of strings {(in tension) and bars
(in compression). Strings are strong, light, and foldable, so
tensegrity structures have the potential to be light but strong
and deployable. Pulleys, NiTi wire, or other actuators to se-
lectively tighten some strings on a tensegrity structure can
be used to control its shape. This article describes some
principles we have found to be true in a detailed study of
mathematical models of several tensegrity structures. We
describe properties of these structures which hold quite gen-
erally. We describe how pretensing all strings of a tensegrity
makes its shape robust to various loading forces. Another
property asserts that the shape of a tensegrity structure can
be changed substantially with little change in the potential
energy of the structure. Thus shape control should be inex-
pensive. This is in contrast to the control of classical struc-
tures which require substantial energy to change their shape.

1 Introduction

Tensegrity structures are built of bars and strings attached
to the ends of the bars. The bars can resist compressive
force and the strings cannot. Most bar-string configura-
tions which one might conceive are not in equilibrium, and
if actually constructed wilt collapse to a different shape.
Only bar-string configurations in a stable equilibrium will
be called tensegrity structures.

If well designed, the application of forces to a tensegrity
structure will deform it into a slightly different shape in a
way which supports the applied forces. Tensegrity struc-
tures are very special cases of trusses, where members are
assigned special functions. Some members are always in
tension and others are always in compression, We will adopt
the words “strings” for the tensile members, and “bars” for
compressive members. A tensegrity structure’s bars cannot
be attached to each other through joints that impart torques.
The end of a bar can be attached to strings or ball jointed to
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other bars.

The artist Kenneth Snelson [1] built the first tensegrity
structure and his arfwork was the inspiration for the first au-
thor’s interest in tensegrity. Buckminster Fuller coined the
word tensegrity from two words, tension and integrity.

2 The Benefits of Tensegrity

There exists a large literature on the geometry, artform, and
architectural appeal of tensegrity structures, but there ex-
ists little on the dynamics and mechanics of these struc-
tures [2-5]. Work by [6] shows an array of stable tensegrity
units connected to yield a large stable system, which can be
deployable. Tensegrity structures for civil engineering pur-
poses have been built and described in [7,8]. Several rea-
sons are given below why tensegrity structures, which em-
ploy many tendons for prestressibility should receive new
attention from mathematicians and engineers, even though
the concepts are fifty years old.

Tension Stabilizes:
A compressive member looses stiffness as it is loaded,
whereas a tensile member gains stiffness as it is loaded.

Tensegrity Structures are Efficient:

Bendsoe and Kikuchi [9], Jarre [10], and others have shown
that the optimal distribution of mass for specific stiffness
objectives tends to be neither a solid mass of material with
a fixed external geometry, nor material laid out in orthog-
onal components. Material is needed only in the essential
load paths, not the orthogonal paths of traditional man-made
structures. Tensegrity structures use longitudinal members
arranged in very enusual {(and non-orthogonal) patterns to
achieve strength with smal! mass.

Tensegrity Structures are Deployable:

Materials of high strength tend to have very limited dis-
placement capability. Piezoelectric materials are capable of
only small displacement and “smart” structures using such



sensors and actuators have only small displacement capabil-
ity. Since the compressive members of tensegrity structures
are either disjoint, or connected with ball joints, large dis-
placement, deployability and stowage in a compact volume
will be immediate virtues of tensegrity structures {11). This
feature offers operational and portability advantages.

Tensegrity Structures are Easily Tanable:

The same deployment technique can also make small ad-
justments for fine tuning of the loaded structures, or adjust-
ment of a damaged structure. Structures that are designed
to allow tuning will be an important feature of next gen-
eration mechanical structures, including civil engineering
structures.

Tensegrity Structures Can be More Reliably Modeled:
All members of a tensegrity structure are axially loaded.
Perhaps the most promising scientific feature of tensegrity
structures is that while the global structure bends with ex-
ternaj static loads, none of the individual members of the
tensegrity structure experience bending moments. {In this
report, we design all compressive members to experience
loads well below their Euler buckiing loads.) More reliable
models can be expected for axially loaded members com-
pared to models for members in bending [12].

Tensegrity Structures Facilitate High Precision Control:
Structures that can be more precisely modeled can be more
preciously controlled. Hence, tensegrity structures might
open the door to quantum leaps in the precision of con-
trolled structures. The architecture (geometry) dictates the
mathematical properties and hence these mathematical re-
sults easily scale to both large and small scales, from the
nanoscale to the megascale, from applications in micro-
surgery to antennas, to aircraft wings, to robotic manipu-
lators.

Tensegrity is a Paradigm that Promotes the Integration
of Structure and Control Disciplines:

A given tensile or compressive member of a tensegrity
structure can serve multiple functions. It can simultane-
ously be a load-carrying member of the structure, a sensor
(measuring tension or length), an actuator (such as nickel-
titanium wire), thermal insulator, or electrical conductor. In
other words, by proper choice of materials and geometry, a
grand challenge awaits the tensegrity designer: How to con-
trol the electrical, thermal, and mechanical energy in a ma-
terial or structure? Tensegrity structures provide a promis-
ing paradigm for integrating structure and control design.

Tensegrity Structures are Motivated from Biology:

In spider fiber, amino acids of two types have formed hard

B—pleated sheets that can take compression, and thin strands
that take tension (13, 14]. The B—pleated sheets are discon-
tinuous and the tension members form a continuous net-
work. Hence, the nanostructure of the spider fiber is a
Tensegrity Structure. Nature's endorsement of tensegrity
structures warrants our attention because per unit mass, the
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spider fiber is the strongest natural fiber.

If tensegrity is nature’s preferred building architecture (as
claimed by the Harvard biologist D. Ingber), modern analyt-
ical and computational capabilities of tensegrity couid make
the same incredible efficiency possessed by natural systems
transferrable to man-made systems, from the nano- to the
megascale. This is a grand design challenge, to develop sci-
entific procedures to create smart tensegrity structures that
can regulate the flow of thermal, mechanical, and electrical
energy in a material system by proper choice of materials,
geometry, and controls. This report contributes to this cause
by exploring the mechanical properties of simple tensegrity
structures.

3 Definitions

This is an introduction to the mechanics of a class of
prestressed structural systems that are composed only of
axially-loaded members. We need a couple of definitions
to describe tensegrity scientifically.

Definition 1 A Class k Tensegrity Structure is a stable equi-
librium of axially-loaded elements, with a maximum of k
compressive members connected at the node(s).

4 The Structure Analyzed in this Paper

The basic example we analyzed is shown in Fig. 1, where
thin lines are the strings and the thick lines are bars. The
structure was analyzed under several types of loading. The
mass and stiffness properties of such structures will be of
interest under compressive loads, F, as shown. The 2-stage
3—bar was studied under two types of loading, axial and lat-
eral. Axial loading is compressive while lateral loading re-
sults in bending.

5 Two-Stage Three-Bar Tensegrity Properties

The tensegrity unit studied here is the simplest three—
dimensional tensegrity unit which comprises three bars held
together in space by strings so as to form a tensegrity unit.
A tensegrity unit comprising of three bars will be called a
3-bar tensegrity. A 3-bar tensegrity is constructed by using
three bars in each stage which are twisted either in clock-
wise or in anti—clockwise direction. The top strings con-
necting the top of each bar support the next stage in which
the bars are twisted in a direction opposite to the bars in the
previous stage. In this way any number of stages can be
constructed which will have an alternating clockwise and
anti—clockwise rotation of the bars in each successive stage,
This is the type of structure in Snelson’s Needle Tower.



(2) 2~stage 3-bar - axial loads (left) and
lateral loads (right)
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(b) Top view and elevation of a 2-Stage 3-bar tensegrity

Figure 1: Tensegrity studied in this paper{Not to scale).

The four ditferent types of strings are labeled S, V, D, and
BinFig. 1.

A typical 2-stage 3-bar type tensegrity is shown in Fig. | in
which the bars of the bottom stage are twisted in the anti—
clockwise direction. The coordinate system used is also
shown in the same figure. The same configuration will be
used for all subsequent studies on the statics of the tenseg-
rity. The notations and symbols, along with the definition
of angles o and 8, and overlap, /, between the stages, used
in the following discussions are also shown in Fig. 1.

The tensegrity structure exhibits unique equilibrium char-
acteristics. The sum of forces on a bar may be written
F{g)t = 0, where F is a matrix, g describes the geometric
configuration, and ¢ is the vector of tensions in the strings.
There exists a tension # that stabilizes the configuration g
only if matrix F has a nullspace. This is called the “pre-
stressability” condition. Obviously, if F has a nullspace,
the tension vector ¢ can be scaled by any positive scalar, in-
creasing the potential energy of the system without chang-
ing its shape. Figure 2 shows the restrictions between the
geometrical parameters &, &, and k, which allow an equilib-
rium. Thus, any point on this equilibrium surface in Fig. 2
corresponds to a configuration that is prestressable.
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Figure 2: Equilibrium Surface with Deployment Path of 2—stage
3—bar Tensegrity Structure. (b = .27 m, Ly, = .4 m)

5.1 Load-deflection Curves and Axial Stiffness as a
Function of the Geometrical Parameters

The load deflection characteristics of a two stage 2-stage
3—bar type tensegrity is next studied and the corresponding
stiffness properties are investigated.

Figure 3 depicts the axial stiffness as a function of prestress,
drawn for the case of a 2-stage 3—bar type tensegrity sub-
jected to axial loading. The axial stiffness 1s defined as the
external force acting on the structure divided by the axial
deformation of the structure,

The characteristics of the axial stiffness of the tensegrity as
a function of the geometrical parameters (i.e. o, §) are next
plotted in Fig. 3. The effect of the prestress on the axial
stiffness is also shown in Fig. 3. In obtaining the Fig. 3,
vertical loads were applied at the top nodes of the 2-stage
tensegrity. The load was gradually increased until at least
one of the strings exceeded its elastic limit. As the com-
pressive stiffness and the tensile stiffness were cbserved to
be nearly equal to each other in the present example, only
the compressive stiffness as a function of the geometrical
parameters, is plotted in Fig. 3. The change in the shape
of the tensegnity structure from a “fat” profile to an “hour—
glass” like profile with the change in o is also shown in
Fig. 3(b).

The following conclusions can be drawn from Fig. 3:

1. Fig. 3(a) suggests that the axial stiffness increases
with the decrease in the angle of declination & (mea-
sured from the vertical axis).

. Fig. 3(b) suggests that the axial stiffness increases
with increase in the negative angle o. Negative o
means a “fat” or “beer—barrel” type structure whereas
a positive o¢ means an “hour—glass” type structure, as
shown in Fig. 3(b). Thus a “fat” tensegrity performs
better than an “hour—glass™ type tensegrity subjected
to compressive loading.

. Fig. 3(c) suggests that the prestress has an important
role in increasing the stiffness of the tensegrity in the



region of small external loading. However, as the ex-
ternal forces are increased, the effect of the prestress
becomes practically negligible.
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Figure 3: Axial stiffness of a 2~stage 3-bar tensegrity for (a) dif-
ferent § with o = —5%,£g = 0.05%, K = 1/9, (b} dif-
ferent angle &« with & = 35% €y = 0.05%, K = 1/9 and
(c) different g with ot = —5°,8 = 352, K = 1/9. Ly,
for all cases is 0.4m.

5.2 Load—deflection Curves and Bending Stiffness as a
Function of the Geometrical Parameters

The bending characteristics of the 2-stage 3-bar tensegrity
are presented in this section. The force is applied along the
x—direction and then along the y—directicn. The force is
gradually applied until at least one of the strings exceeds its
elastic limit.

The characteristics of the bending stiffness of the tensegrity
as a function of the geometrical parameters (i.e. ¢, &) are
next plotted in Fig. 4. Figure 4 is plotted for lateral force
applied in the y—direction, as shown in Fig. 4. The effect of
the prestress on the bending stiffness is also shown.

The following conclusions about the bending characteristics
of the 2—stage 3-bar tensegrity could be drawn from Fig. 4:

L. It is seen in Fig. 4, that the bending stiffness of the
tensegrity with no slack strings is practicaily equal in
both the x— and y—directions. However, the bending
stiffness of the tensegrity with slack string is greater
along y—direction than along the x—direction.
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Figure 4: Bending stiffness of a 2-stage 3-bar tensegrity for (a)
different § with @ = —35%, 65 = 0.05%, K = 1/9, (b} dif-
ferent angle & with & = 35%, g9 = 0.05%,K = 1/9 and
{c) different £¢ with o = =598 = 35, K = 1/9. Ly,
for all cases is G.4m.

2. The bending stiffness of a tensegrity is constant and is
maximum for any given values of o, § and prestress
when none of the strings are slack. However, as soon
as at least one string goes slack {marked by sudden
drop in the stiffness curves in Fig. 4), the stiffness
becomes a nonlinear function of the external load-
ing and decreases monotonically with the increase in
the external loading. As seen in Fig. 4, the onset of
strings becoming slack, and hence the range of con-
stant bending stiffness, is a function of o, & and pre-
siress.

3. Fig. 4(a) suggest that the bending stiffness of a
tensegrity with no slack strings increases with the in-
crease in the angle of declination 8 (measured from
the vertical axis). The bending stiffness of a tenseg-
rity with a slack string, in general, increases with in-
crease in d.

4. Fig. 4(b) suggest that the bending stiffness increases
with the increase in the negative angle . As neg-
ative ¢ means a “fat” or “beer—barrel” type struc-
ture whereas a positive 0. means an “hour—glass” type
structure, a “fat” tensegrity performs better than an
“hour—glass” type tensegrity subjected to lateral load-
ing.
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5. Figs. 4(a,b) indicate that both o and & play a very
interesting and important role in not only atfecting
the magnitude of stiffness, but they also affect the on-
set of slackening of the strings {robustness to external
disturbances). A large value of negative ¢ and a large
value of & (in general) delay the onset of slackening of
the strings, thereby increasing the range of constant
bending stiffness. However, there exists a certain &
for which the onset of the slack strings is maximum.

. Fig. 4(c) suggests that prestress does not affect the
bending stiffness of a tensegrity with no slack strings.
However, prestress has an important role in delay-
ing the onset of slack strings and thus increasing the
range of constant bending stiffness.

6 Controlling Properties

Tensegrity structures are natural candidates to be actively
controlled structures since the control system can be em-
bedded in the structure directly; for example tendons can act
as actuators and/or sensors. Shape control of the tensegrity
structure in Fig. 1 can be accomplished by moving along the
equilibrium manifold shown in Fig. 2.

6.1 Deployment

An interesting application of this tensegrity is the controlled
deployment of the structure from a near zero initial height
to a greater height. Moving along the equilibrium man-
ifold consists of moving along symmetrical prestressable
configurations. We use an open loop control strategy based
upon slowly moving from one stable equilibrium to another.
Stability along the deployment path is assured only if this
movement 1S slow enough. The necessary and sufficient
conditions for a symmetric prestressable equilibrium to ex-
ist for a. =0 are
Lbarcosd
~z W

Therefore, under symmetrical reconfiguration, where o = 0
and all rod declinations, 8, are equal, the total height of the
structure is

h= . 3Lpgrsind > 2b, 0<5<g.

3Lparcosd

Total Height = =2 2
The length of the S, V, D, and B strings are:
b2
S=1/h2+ 3+ L}, sin*8 — Lygrbsind (3)
V = /1L, + b2~ 2Ly bsind @
bz
D= \/ Lga, + 7 + 12— 204, hcos® ~ Lipgrbsing — (5)

Therefore, we can prescribe a time varying function 8(t) 10
modify the objective: structure height. For example choos-
ing &(r) =90° - 63°t satisfies the inequality constraints on 8
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in(1}forQ <r < 1, where b = .27m and L;,, = .4m. Substi-
tution of (1) into the string length equations yields the open
loop control laws for each tendon length

2 2 2
Stt) = \/ B+ - Loy pinsey
V() = Ly, + % = 2Lobsind(0) (8)
D(r) = S(1) ®)
B(r) = b. (10)

The structure deployment is shown in Fig. 5. Further detail
can be found in [15].

@r=1

(c)t=006

Figure 5: Deployment sequence followed on line shown in Fig. 2.

6.2 Stiffness Control

The stiffness analysis done in the previous sections, shows
that stiffness is most effected by the geometrical parame-
ters, o, 8. Since we have shown that reconfiguration of a
tensegrity is possibie, we now investigate the use of control
to directly modify the mechanical properties of the tenseg-
rity. The control of stiffness can be accomplished in exactly
the same way as the deployment sequence. In fact, the de-
ployment sequence presented is changing stiffness proper-
ties and geometrical properties at the same time. According
to the equilibrium manifold shown in Fig. 2, we can sim-
ply choose a reconfiguration path that sets structure height
to a constant and modifies only the angles ¢t and & (this in
turn modifies stage overlap k). According to the stiffness
plots shown in Figs. 3-4, we can move to different curves of
higher or lower stiffness as we prefer, while changing only
the shape of the structure and keeping the height constant.
Keeping the height constant may be motivated by support-
ing some external load or used as a platform of some kind.

7 Conclusion

Tensegrity structures present a remarkable blend of geom-
etry and mechanics. Out of various available combinations



of geometrical parameters, there exists only a small subset
that guarantees the existence of the tensegrity. The choice
of these parameters dictate the mechanical properties of the
structure. The choice of the geometrical parameters have a
great influence on the stiffness. Pretension serves the impor-
tant role of maintaining stiffness until a string goes slack.
The geometrical parameters not only affect the magnitude
of the stiffness either with or without slack strings, but they
also affect the onset of slack strings. We now list the major
findings of this paper that also apply to other tensegrities we
have studied [16] .

Pretension vs. Stiffness Principle

This principle states that increased pretension increases ro-
bustness to uncertain disturbances:

When a load is applied to a tensegrity struc-
ture the stiffness does not decrease or barely
decreases as the loading force increases, un-
less a string goes slack.

The greater the pretension, the greater the
load required to make a string go slack.

The bending stiffness of a tensegrity without slack strings is
not affected appreciably by the amount of pretension.

Smali Control Energy Principle

The second principle is that the shape of the structure can
be changed with very small control energy along the pa-
rameter set dictated by Fig. 2. This is due to the fact that
shape changes are achieved by changing the equilibrium of
the structure. Thus we are moving from one equilibrium to
another. In this case, control energy is not required to hold
the new shape. This is in contrast to the control of classical
structures, where shape changes required control energy to
work against the old equilibrium.
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