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Abstract

This paper introduces rigid body dynamics in a new form, as a matrix
differential equation, rather than the traditional vector differential equa-
tion. We characterize the dynamics of a broad class of systems of Rigid
Bodies in a compact form, requiring no inversion of a mass matrix, yet
preserving the second order character of the dynamics (that state space
formulations do not preserve). For a system of nb rigid bodies, the equa-
tions are characterized by a 3×2nb configuration matrix, and the dynamics
are written as a second order differential equation in the configuration ma-
trix. One significance of these equations is the complete characterization
of the statics and dynamics of all class 1 tensegrity structures, where bar
lengths are constant and the strings may be controlled. The form of the
equations allow much easier integration of structure and control design
since the control parameters (force density in the strings) and the topol-
ogy of the structure (configuration space) appear in bilinear form, which
might be a significant help to the control design tasks.

1 Introduction

The characterization of the dynamics of systems of rigid bodies is well-documented
in a variety of vector forms. This paper introduces rigid body dynamics in a
new form, as a matrix differential equation, rather than the traditional vector
equation. This paper describes the dynamics and the static equilibria of a sys-
tem of discontinuous rigid bodies, connected via a continuous set of strings to
stabilize the system. In our theory, the ”strings” are ”springs” which can take
compression or tension. However, in the special application of greatest interest,
the ”strings” can only take tension. All equilibria of such bar and string con-
nections are described, and the dynamics of such systems are described in a new
form, a second order differential equation of a 3× 2nb matrix, called the config-
uration matrix. By parametrizing the configuration in terms of the components
of vectors, the usual nonlinearities of angles, angular velocities and coordinate
transformations are avoided. Indeed, there are no trigonometric functions in
this formulation. We seek simplicity in the analytical form of the dynamics, for
ease in designing control laws later. We believe these equations will turn out to
be the simplest of all the available equations for a system of rigid bodies.



In the 18th and 19th centuries, the fundamental principles of dynamics of
mechanical systems emerged. Many papers were written to uncover the secrets
of Hamilton’s Principle, to try to determine an answer to the question “When is
Hamilton’s Principle an extremal principle?”. Unfortunately, many papers and
books quoted Hamilton’s principle incorrectly, setting off a hundred years of de-
bate of the issue. Many books on dynamics characterize “Hamilton’s Principle”
in terms of a fixed-end-point variation. Hamilton’s original work [?]attributes
the idea of a fixed end-point variation to Lagrange, but Hamilton defines a vari-
ation with possibly free end-points. This subtle distinction about the boundary
conditions will not change the dynamics of the motion, but the question of min-
imization involves the boundary conditions. Therefore, texts that state Hamil-
ton’s principle as the Lagrangian variety with fixed end-points will come to a
different conclusion than those that state Hamilton’s principle in the way that
Hamilton did. The book by Lancos [?] gives Hamilton’s principle correctly. Of
course, control researchers have always been interested in minimization, so it is
natural that Hamilton’s work was revisited by the control community since the
1980s, under various labels as ”Hamiltonian Systems” [?]. These papers present
control and dynamics in a common setting of vector differential equations.

1.1 Vector-Second Order Form

In the 60s and 70s, a variety of Newtonian and energy approaches (Hamilton
and Lagrange) were introduced and traded for numerical efficiencies. NASA
had great interest in building accurate deployable spacecraft simulations [?],
[?] composed of a large number of rigid bodies in a topological tree. Rules
of thumb emerged from these studies, such as ”energy approaches (based upon
Hamilton’s principle)” are more efficient than Newtonian approaches when there
are many constraints, compared to degrees of freedom” [?]. Of course, the
human energy to write the equations versus the computer resources required to
solve the equations were traded, as well. Much of the human energy involves
the book-keeping associated with constraints, and much of the computer energy
involves inverting the ”mass” matrix M(q) at every time step in the simulation.
The typical form of these equations was vector-second order as shown in (1)
below.

M(q)q̈ + D(q, q̇)q̇ + K(q)q = f (1)

where q ∈ IRn, f ∈ IRn.

1.2 State Form

The first order form of dynamic systems was introduced by Hamilton using his
concept of generalized momenta [?]. The lack of computers prevented the gener-
alized momenta (state form) from gaining wide acceptance in the 19th century.
125 years later the first order form was given a name, the state equations. In the
1960s the space age rapidly developed computer technology, allowing state space



computation to be popular. Indeed, computer availability and the state space
form of system dynamics combined to promote a rapid acceleration of modern
control theory in the 60s [?]. However, much structural information might be
lost in a generic state form, and knowledge of this structural information is vital
to the design of successful control strategies. Much effort has focused on the
creation of analytical or numerical inversion of the mass matrix, M(q). Ro-
driques [?] and others developed elegant factorization strategies, but the effort
to factorize the mass matrix required significant amounts of computation also.
This paper derives the dynamic equations in a form which, in effect, inverts the
”mass” matrix analytically, without the need for any numerical factorization
schemes or matrix inversion.

For a large class of problems it is reasonable to assume that the rigid bodies
are rod-shaped and have negligible inertia about their longitudinal axes. We
will make this assumption, although the fundamental method we employ does
not require this assumption.

1.3 Tensegrity Systems

Class k tensegrity systems [?] are defined by the number (k) of rigid bodies that
connect to each other (with ball frictionless joints) at a specific point (node).
This paper entertains only class 1 tensegrity systems, so no rigid bodies are in
contact, and the system is stabilized only by the presence of tensile members
connecting the rigid bodies. Such a system has only axially-loaded members,
since the rigid bodies do not touch each other and the strings connected to the
rigid bodies cannot apply torques at the site of the attachment. These fea-
tures not only simplify the equations of motion, but the resulting models will
be much more accurate than models of rigid bodies that are subject to bending
moments. That is, the internal stresses in the rigid bodies have a specific direc-
tion. Creating structures, and models of structures, that are accurate for forces
in multiple directions requires complicated design decisions that eventually re-
quire additional mass in the structure, and less confidence in the structural
model. Of course rigid bodies do not exist, except in our imagination and our
engineering idealization, but one can justify the ”rigid body assumptions” in our
multi-body analysis if the rigid body can tolerate the worst force is the worst
direction within specified “small enough” deformations. This is a formidable
task, to analyze all possible loading conditions in a 1000 body system to choose
the mass properties of each rigid body to justify the ”rigid body assumptions”,
to yield a minimal mass design. Hence, if 1000 bars are used in the structure,
and 3 moments and 1 axial force is applied to each bar, there are 4000 load
directions to be analyzed for reasonableness of the rigid body assumptions (and
the corresponding design of each rigid body). In the absence of reliable meth-
ods for this design task, engineers today make conservative assumptions, and
over-design the system at the expense of mass.

This task becomes much less formidable if the load directions within each
body can be reduced by a factor of 4. Hence, if each bar can be loaded in
only one direction (axially), there are only 1000 possible loads to analyze in our



example, instead of 4000. Furthermore, the material choices can be specialized
to handle loads in a prespecified direction with much less mass than would be
required of material choices that must take loads in a variety of directions. Sand
and mortar are very good materials in compression, but one would not use them
if the dynamic loads ever allowed the structural member to experience tension.

Tensegrity systems have been around for over 50 years as an artform [?],
with some architectural appeal [?], but analytical tools to design engineering
structures from tensegrity concepts are still inadequate. The primary motivation
for this paper is to provide a convenient analytical tool to describe both the
statics and dynamics of class 1 tensegrity systems. Moreover, the results are
more general than tensegrity systems, having application to a large class of
systems of rigid bodies.

1.4 Notation

Definition 1 The set of vectors ei, i=1,2,3, form a dextral set, if the dot
products satisfy ei · ej = δij (where δij is a Kronecker delta), and the cross
products satisfy ei×ej = ek, where the indices i,j,k form the cyclic permutations,
i,j,k=1,2,3 or 2,3,1, or 3,1,2.

Definition 2 Let ei, i = 1, 2, 3 define a dextral set of unit vectors fixed in an
inertial frame, and define the vectrix E by E =

[
e1 e2 e3

]
.

The Gibbs concept of a vector [?] from dynamics, and the linear vector space
from systems theory have distinctions that must be made clear. Let r be
the label we use to represent a (Gibbs) vector in the three-dimensional (non-
relativistic) space in which we live. This vector can be described in any chosen
reference frame. Consider two reference frames, described by the dextral sets
E and X, where the coordinate transformation between these two frames is
described by the 3 × 3 direction cosine matrix Ψ. Hence, E = XΨ. Let the
3× 1 matrices rX and rE describe the components of the same vector r in the
two reference frames X and E, respectively. Hence, if we wish to describe the
relationship between the components of the same vector r, described in two
different reference frames, then

r = XrX = ErE (2)
E = XΨ (3)

XrX = ErE = XΨrE , (4)

yields
rX = ΨrE . (5)

The item we call r is a Gibbs vector. The items we call rX and rE are
vectors in the linear vector spaces of linear algebra, where we use the notation,
rX ∈ IR3 and rE ∈ IR3 to denote that the items rX and rE live in a real three-
dimensional space. However, the items rX and rE tell us nothing unless we
have previously specified the frames of reference X and E for these quantities.



If we must assign a ”dimension” to these quantities X and E, then we must say
they are 3 × 1 arrays, composed of the three elements ei, i = 1, 2, 3. However,
these arrays contain quantities we call Gibbs vectors ei. So the 3× 1 item E is
not a vector in either the sense of Gibbs, nor in the sense of linear algebra. For
these reasons [?] makes the logical choice to call the quantity E a vectrix.

This paper uses only one coordinate frame to describe all vectors, unlike
many problems in aerospace, where the convenience of multiple coordinate
frames is utilized. Since we always use the same frame of reference, the in-
ertial frame, described by the vectrix E, we shall not complicate the notation
of vectors with different superscripts, as would be required above to distinguish
between components of a vector represented in different frames. Hence, we use
the notation for the vector ni, as follows

ni = Eni, (6)

where nT
i =

[
ni1 , ni2 , ni3

]
describes the components of the vector ni in

coordinates E. Note that we have dropped the superscript E that would be
used in the more complete and more general notation above (nE

i ), and we will
write only ni, hereafter, instead of nE

i .
We generate a diagonal n × n matrix from an n-dimensional vector vT =[

v1 v2 v3 v4 . . .
]
, by denoting the hat operator by

v̂ = diag
[

v1 v2 v3 v4 . . .
]
. (7)

We generate a 3×3 matrix ṽ from the 3-dimensional vector vT =
[

v1 v2 v3

]
by the tilde operator as follows

ṽ =




0 −v3 v2

v3 0 −v1

−v2 v3 0


 . (8)

We often use the fact that for any two n-dimensional vectors v ∈ IRn, and
x ∈ IRn,

v̂x = x̂v. (9)

We refer to the Schur compliments of the matrix
[

A B
BT C

]
as the matrices

A−BC−1BT , and C−BT A−1B. It is well known that the positive definiteness
of the original (big) matrix is equivalent to the positive definiteness of the Schur
compliments, given that the diagonal blocks A and C are positive definite.

2 Description of a Network of Bars/Strings

We show below how to describe all dynamics in the E frame, after the usual def-
inition of dot and cross products. The 3×1 matrix bi represents the components
of vector bi with respect to the fixed frame E. That is,

bi =
3∑

j=1

ejbij =
[

e1 e2 e3

]



bi1

bi2

bi3


 = Ebi. (10)



Lemma 1 Let for some chosen inertial reference frame E,

bi = Ebi, f
i
= Efi, ni = Eni.

Then the cross product is given by

bi × f
i+nb

= (Ebi)× (Efi+nb
) = Eb̃ifi+nb

where

b̃i =




0 −bi3 bi2

bi3 0 −bi1

−bi2 bi1 0


 , bi =




bi1

bi2

bi3


 ,

and the dot product is given by,

bi · f i+nb
= (Ebi) · (Efi+nb

) = bT
i ET · Efi+nb

= bT
i fi+nb

where the dot product ET · E = I since ei, i = 1, 2, 3 form a dextral set of unit
vectors.

Let a structural system be composed of nb bars and ns strings. The definitions
below will later allow us to describe the connections between the rigid members
and the strings.

Definition 3 A node (the ith node ni) of a structural system is a point in space
at which members of the structure are connected. The coordinates of this point
in the E frame are ni ∈ IR3, as in (6).

Definition 4 A string (the ith string) is characterized by these properties:

• A massless structural member connecting two nodes.

• A vector connecting these two nodes is si. The direction of si is arbitrarily
assigned.

• The string provides a force to resist lengthening it beyond its rest-length,
but provides no force to resist shortening the string below its rest-length.

• A string has no bending stiffness.

Definition 5 A bar (the ith bar of a nb bar system) is characterized by these
properties:

• A structural member connecting two nodes ni and ni+nb
.

• The vector along the bar connecting nodes ni and ni+nb
is bi = ni+nb

−
ni, i = 1, 2, . . . nb.

• The bar bi has length ‖bi‖ = Li =
√

bT
i bi.

Definition 6 The vector ri locates the mass center of bar bi, and ri = Eri.



Definition 7 The vector ti represents the force exerted on a node by string si,
where the direction of ti is defined to be parallel to string vector si. That is,
ti = γisi and hence, ti = γisi for some positive scalar γi.

Definition 8 The force density γi in string si is defined by γi = ‖ti‖
‖si‖ .

Definition 9 f
i
represents the net sum of vector forces external to bar bi ter-

minating at node ni. The set of all nodal forces external to the bar bi is described
by figure 1.

Figure 1: Bar force definition

From these definitions, define matrices, F ∈ IR3×2nb , N ∈ IR3×2nb , T ∈
IR3×ns , S ∈ IR3×ns , B ∈ IR3×nb , Γ ∈ IRns×ns , as follows,

F =
[

F1 F2

]
=

[
f1 f2 . . . fnb

| fnb+1 . . . f2nb

]
(11)

N =
[

N1 N2

]
=

[
n1 n2 . . . nnb

| nnb+1 . . . n2nb

]
(12)

T =
[

t1 t2 . . . tns

]
(13)

S =
[

s1 s2 . . . sns

]
(14)

B =
[

b1 b2 . . . bnb

]
(15)

R =
[

r1 r2 . . . rnb

]
(16)

γ̂ = Γ = diag
[

γ1 . . . γns

]
. (17)

It follows from (12), (15), and Definition 5 that

B = N2 −N1 = N

[ −I
I

]
, (18)

and the locations of the mass centers of all bars are described by

R = N1 +
1
2
B. (19)

It follows from Definition 8 and (13), (14) that

T = SΓ. (20)

Lemma 2 Assume that the mass of the bar is uniformly distributed only along
its length, and that its length is much longer than its diameter. Then the angular
momentum of the bar bi about the center of mass of bar bi, expressed in the E
frame, is

hi =
mi

12
b̃iḃi (21)



i
r

i
b

dm

Figure 2: Rectilinear mass distribution of bar

Proof: The angular momentum vector of a bar about its mass center is de-
scribed by (see Fig 2)

hi =
∫

m

β
i
× β̇

i
dm

where dmi = midµ, β
i
= biµ, and − 1

2 ≤ µ ≤ 1
2 . Hence,

hi =
∫ 1

2

− 1
2

(µbi)× (µḃ)midµ =
mi

12
bi × ḃi

From lemma 1
bi × ḃi = Eb̃iḃi

Hence hi = Ehi, where hi is given by (21). 2

3 Dynamics of a rigid bar

Refer to figure 1 for a single bar, with bar vector b, nodes n1 and n2, at which
are applied forces f

1
and f

2
.

Lemma 3 The translation of the mass center of bar b , located at position r
obeys

mr̈ = f
1

+ f
2

(22)

or, in the E frame of reference,

mr̈ = f1 + f2 (23)

Lemma 4 The rotation of bar bi about it mass center obeys

m

12
b̃b̈ =

1
2
b̃(f2 − f1). (24)



Proof: From angular momentum and Newton’s second law

ḣ =
1
2
b× (f

2
− f

1
), h =

m

12
b× ḃ. (25)

Note that
ḣ =

m

12
(ḃ× ḃ + b× b̈) =

m

12
(b× b̈). (26)

Hence, in the E frame

ḣ =
1
2
b̃(f2 − f1), h =

m

12
b̃ḃ. (27)

Thus,
ḣ =

m

12
b̃b̈. (28)

2

3.1 Constrained Dynamics

We now wish to develop the dynamics constrained for constant bar lengths. We
add a non-working constraint force f to get

m

12
b̃b̈ =

1
2
b̃(f2 − f1) + f (29)

Φ = bT b− L2 = 0, (30)

where the added constraint is Φ = 0, and f is the non-working force associ-
ated with this constraint. The force f does no work in the presence of any
feasible perturbation of the generalized coordinate b. Hence, fT δb = 0. The
constraint must also hold in the presence of a feasible perturbation. Hence,
dΦ = (∂Φ

∂b )T δb = 0. Thus, [
fT

(∂Φ
∂b )T

]
δb = 0, (31)

requiring that the matrix coefficient of δb must have deficient rank. Thus,
f = (∂Φ

∂b )ζ, for some ζ (called a Lagrange multiplier). Furthermore, ∂Φ
∂b = 2b.

Hence, the constrained dynamic system obeys,

m

12
b̃b̈ =

1
2
b̃(f2 − f1) + bζ (32)

Φ = bT b− L2 = 0. (33)

where we have absorbed some constants into the scalar ζ. Note that the con-
straint holds over time, hence Φ = Φ̇ = Φ̈ = 0. Differentiating the constraint
yields,

ḃT b + bT ḃ = 0 = 2bT ḃ. (34)

Differentiating (34) yields
ḃT ḃ + bT b̈ = 0,



or ,
bT b̈ = −ḃT ḃ. (35)

The conclusion thus far is that constant length rigid bar rotations obey, for some
scalar ζ, [

b̃
bT

]
b̈ =

[
b̃(f2 − f1) 6

m

−ḃT ḃ

]
+

[
b
0

]
ζ. (36)

The following identity will be useful.

Lemma 5
b̃2 = bbT − bT bI

Lemma 6 The unique Moore-Penrose inverse of
[

b̃
bT

]
is given by

[
b̃
bT

]+

=
[ −b̃ b

]
L−2

Proof: First prove that
[

b̃
bT

]T [
b̃
bT

]
= L2I

Then

[
b̃
bT

]+

=

([
b̃
bT

]T [
b̃
bT

])−1 [
b̃
bT

]T

=
[

b̃T b
]
L−2

where b̃T = −b̃. 2

Lemma 7 The solution of (36) for b̈ has the unique solution

b̈ =
6
m

(f2 − f1)− b

(
ḃT ḃ

L2
+

6
mL2

bT (f2 − f1)

)
(37)

Proof: Solve (36) for b̈ using lemma 6 to get

b̈ = L−2
[ −b̃ b

] ([
b̃(f2 − f1) 6

m

−ḃT ḃ

]
+

[
b
0

]
ζ

)
(38)

= L−2
(
−b̃2(f2 − f1) 6

m − bḃT ḃ
)

, (39)

since, b̃b = 0. Lemma 5 and (39) yield

b̈ =
(
−(bbT − bT bI)(f2 − f1)

6
m
− bḃT ḃ

)
L−2

where bT b = L2. Hence (37) follows. 2



3.2 Example: Constrained Dynamics of a two-Bar System

Lemma 8 In a system of two bars, the dynamics for the bar bi with fixed length
Li (i=1,2), are described by

b̈i + bi

(
6Hi

mi
+ Vi

)
= (fnb+i − fi)

6
mi

(40)

r̈i =
1

mi
(fi + fnb+i), (41)

where

Vi =
‖ḃi‖2
L2

i

, Hi =
bT
i (fnb+i − fi)

L2
i

Proof: (37) yields (40) and (22) yields (41). 2

It follows from (40, 41) that a two-bar system satisfies

[
b̈1 b̈2 r̈1 r̈2

]
+

[
b1 b2 r1 r2

]



(6H1
m1

+ V1) 0 0 0
0 ( 6H2

m2
+ V2) 0 0

0 0 0 0
0 0 0 0




=
[

f1 f2 f3 f4

]



−6
m1

0 1
m1

0
0 −6

m2
0 1

m2
6

m1
0 1

m1
0

0 6
m2

0 1
m2




or

Q̈+QK0 = FJ−1,

J−1 =
[ −6M−1 M−1

6M−1 M−1

]
, M = diag

[
. . . mi . . .

]
, Q =

[
B R

]
,

B =
[

b1 b2

]
= N2 −N1, N =

[
N1 N2

]
=

[
n1 n2 n3 n4

]
,

H = diag
[

. . . Hi . . .
]
, Hi = bT

i (fnb+i − fi)/L2
i ,

V = diag
[

. . . Vi . . .
]
, Vi = ‖ḃi‖2/L2

i ,

K0 =
[

I
0

]
(6HM−1 + V )

[
I 0

]
.



3.3 An nb-Bar System

Theorem 1 Consider an nb-bar system with constant length bar vectors bi, i =
1, 2, . . . , nb, and matrices defined by,

R = N1 +
1
2
B (42)

B =
[

b1 b2 . . . bnb

]
= N2 −N1, N =

[
N1 N2

]
(43)

N1 =
[

n1 n2 . . . nnb

]
, N2 =

[
nnb+1 . . . n2nb

]
(44)

F =
[

F1 F2

]
, F1 =

[
f1 . . . fnb

]
(45)

F2 =
[

fnb+1 . . . f2nb

]
(46)

Q =
[

B R
]

(47)

K0 =
[

I
0

]
(6HM−1 + V )

[
I 0

]
(48)

H = diag
[

. . . Hi . . .
]
, Hi = bT

i (fnb+i − fi)/L2
i (49)

V = diag
[

. . . Vi . . .
]
, Vi = ‖ḃi‖2/L2

i (50)

M = diag
[

. . . mi . . .
]

(51)

J−1 =
[ −6M−1 M−1

6M−1 M−1

]
. (52)

Then the rigid body dynamics are given by

Q̈+QK0 = FJ−1. (53)

Proof: Follows trivially from (40, 41). 2

4 Characterizing Bar/String connections

Definition 10 Define the ”string connectivity matrix” C by

Cij =





1 if string vector si terminates on node nj .

−1 if string vector si eminates from node nj .

0 if string vector si does not connect with node nj .

(54)

C =
[

C1 C2

]
, C1 ∈ IRns×nb , C2 ∈ IRns×nb

Definition 11 Define the ”disturbance connectivity matrix” D by

Dij =





1 if disturbance vector wi terminates on node nj .

−1 if disturbance vector wi eminates from node nj .

0 if disturbance vector wi does not connect with node nj .

(55)

D =
[

D1 D2

]
, D1 ∈ IRnw×nb , D2 ∈ IRnw×nb



For nw disturbance vectors applied at nodes selected by the matrix D,

W =
[

w1 w2 · · · wnw

]
(56)

D =
[

D1 D2

]
, D1 ∈ IRnw×nb , D2 ∈ IRnw×nb . (57)

Theorem 2
F = −(TC + WD)

S = NCT

.

Proof: The result S = NCT follows immediately from the definition of the
connectivity matric C. The force vectors fi have direction defined as terminating
on a node ni. The force vectors contained in WD and TC have also been defined
(by the connectivity matrices C and D) as positive when terminating on the
nodes ni, n2, ....nnb

. Hence, by sign convention, F must be defined such that all
force vectors entering (terminating) on the nodes must add to zero. Hence,

F + TC + WD = 0. (58)

2

Lemma 9

F = −QΦT CT ΓC −WD, ΦT =
[ − 1

2I 1
2I

I I

]
. (59)

Proof: From Theorem 2 and (20),

TC = SΓC = NCT ΓC

.
However,

N =
[

N1 N2

]
, B = N2 −N1, Q =

[
B R

]
, R = N1 +

1
2
B

.
Hence,

N = QΦT (60)

F = −QΦT CT ΓC −WD. (61)

2

Define Θ = 6HM−1 + V , and define bJc = diag
[

. . . Jii . . .
]
. Then,

noting that Θ and M are diagonal matrices, one has the following result.

Corollary 1

ΘM =
⌊
L−2

[
I 0

] Q̇T Q̇
[

I
0

]
M + 6L−2

[
I 0

]QT (QΦT CT ΓC + WD)
[

I
−I

]⌋



Proof: From Theorem 1,

Θ = (6HM−1 + V ),

where
H =

⌊
L−2BT (F2 − F1)

⌋
,

V =
⌊
L−2ḂT Ḃ

⌋
=

⌊
L−2

[
I 0

] Q̇T Q̇
[

I
0

]⌋
.

Noting that

F2 − F1 = F

[ −I
I

]

= (−QΦT CT ΓC −WD)
[ −I

I
,

]

then,

H =
⌊
L−2

[
I 0

]QT (QΦT CT ΓC + WD)
[

I
−I

]⌋
.

2

Theorem 3 The dynamics of all Class 1 tensegrity systems with rigid, fixed
length bars are described by

Q̈M+QK = −WDΦ, (62)

Q =
[

B R
]
, (63)

M =
[

1
12M 0

0 M

]
, (64)

K =
[

θ̂ 0
0 0

]
+ ΦT CT ΓCΦ, (65)

ΦT =
[ − 1

2I 1
2I

I I

]
(66)

θ̂ =
1
12

L−2

⌊
6

[
I 0

]QT (QΦT CT ΓC + WD)
[

I
−I

]
+

[
I 0

] Q̇T Q̇
[

I
0

]
M

⌋
.

(67)

Proof: From lemma 9 and theorem 1,

Q̈+QK0 − FJ−1 = 0, (68)

where

K0 =
[

I
0

]
Θ

[
I 0

]
. (69)

J−1 =
[ −6M−1 M−1

6M−1 M−1

]
=

[ − 1
2I I

1
2I I

] [
12M−1 0

0 M−1

]
= ΦM−1, (70)



and note from (61) that these expressions for F and J−1 allow (68) to be
multiplied from the right by M to get the result (62). 2

From (67), the ith element of the diagonal matrix θ̂ is given by

θi =
1
2
L−2

i bT
i (QΦT CT (Ĉ1i − Ĉ2i)γ −W (D2i −D1i)) +

mi

12L2
i

||ḃi||2. (71)

5 Class k Tensegrity Systems

This section deals with constraints of the form

QC = 0, (72)

for some specified matrix C. We give two examples of this type of constraint:
(i) class 2 structures formed by pinning nodes together, (ii) fixed boundary
conditions, where some nodes are pinned to ground, and (iii) constraints that a
selected set of nodes lie in a plane (such that a flat surface is maintained).

5.1 Class 2 Tensegrity

Suppose we wish to pin nodes ni and nj together. This creates a class 2 tenseg-
rity structure, since two bars are pinned together. (The end of one bar is already
at each of the nodes ni and nj , prior to pinning these two nodes together). First
note that,

ni = ri − 1
2
bi if i ≤ nb, (73)

ni = ri−nb
+

1
2
bi−nb

if i > nb. (74)

Now the constraints ni = nj reduce to

rα = rβ +
1
2
(ψibi − ψjbj), (75)

where,

α = i ψi = +1 if i ≤ nb (76)
α = i− nb ψi = −1 if i > nb (77)

β = j ψj = +1 if j ≤ nb (78)
β = j − nb ψj = −1 if j > nb. (79)

In matrix form this yields the reduced coordinates (Λ ∈ IR2nb−1×2nb)

Q = QΛ, Λ =
[

Inb
0 0 0 µi 0 0

0nb−1×nb
e1 e2 ... ηi ... enb

]
, (80)



where,
ek =

[
0 ... 1 ... 0

]T (81)

µi =
[

0 ... 1
2ψi ... − 1

2ψj ... 0
]T (82)

ηi =
[

0 ....... 0 .......... 1 ... 0
]T

. (83)

These discussions lead to the following result

Theorem 4 Let the nb bar tensegrity system have the constraint ni = nj. Then
the dynamics of the reduced order system are described by

Q̈ + QK = −WDΦTM−1Λ+, (84)

where,
K = ΛKM−1Λ+, (85)

where
Λ+ = ΛT (ΛΛT )−1, (86)

and
Q = QΛ. (87)

5.2 Fixed Boundary Conditions

Now consider that nodes ni and nj are fixed in inertial space. The dynamics
are modified as follows.

ni = ňi (88)
nj = ňj , (89)

where, ňi and ňj are specified constant vectors. Hence,

rα =
1
2
ψibi + ňi, (90)

rβ =
1
2
ψjbj + ňj . (91)

This leads to

Q = QΛBC + Ň , (92)

Ň =
[

03×nb
0 ... ňi ... 0

]
, (93)

where, ΛBC is the same as Λ in(80) except that ηi = 0 in ΛBC , and the constant
term Ň has been added.

Theorem 5 Suppose constraints (boundary conditions) in (88) apply. Then
the reduced order dynamics are

Q̈ + QKBC = −(WDΦT + ŇK)M−1ΛBC+
, (94)

where
K = ΛBCKM−1ΛBC+

(95)



5.3 Flat Shape Constraint

Suppose we require a subset ΩF of nodes ni, i ∈ ΩF to lie in a specified plane.
Then all vectors connecting nodes in this plane are perpendicular to the vector
normal to this plane. That is, all vectors parallel to the specified plane (with
specified normal v), satisfy,

vT (ni − nj) = vT NCij i, j ∈ ΩF (96)

vT N
[

Cij Cik Cjk ...
]

= vT NCF = 0, (97)

where (i, j, k, ...) ∈ ΩF . Hence,

vT NCF = vTQΦT CF = 0. (98)

The standard way of handling the above constraint is to use Lagrange multi-
pliers. If we add a matrix of forces and torques that can enforce the constraint
(98), then the system dynamics are described by

Q̈M+QK = −WDΦT + Fλ (99)

vT NCF = vTQΦT CF = 0. (100)

As before, from (29-33), the Lagrange multiplier must lie in the range space of
the first variation of the constraint. Let Fλij denote the nonworking constraint
force associated with constraint (96).

6 Statics of Class 1 Tensegrity Systems

Define
Q̄ = limt→∞Q(t). (101)

Lemma 10 All stable equilibria of class 1 tensegrity structures satisfy

−f̄i = f̄i+n2 = b̄iθ̄i, (102)

for some scalar θ̄i.

Proof: All static equilibria of (68) satisfy

Q̄K̄0M = F̄Φ, (103)

where,
F̄Φ =

[
1
2 (F̄2 − F̄1) F̄1 + F̄2

]
. (104)

Hence the last nb columns of (103) yield

F̄

[
I
I

]
= F̄1 + F̄2 = 0, (105)

and the first nb columns of (103) yield,

B̄ ˆ̄θ =
1
2
(F̄2 − F̄1) = F̄2. (106)

The ith columns of (105) and (106) yield the result (102). 2



Lemma 11 If θ̄i > 0, in a class 1 tensegrity structure, the bar bi can be replaced
by a string, without changing the equilibrium, where

θ̄i =
1
2
L−2

i b̄T
i (Q̄ΦT CT (Ĉ1i − Ĉ2i)γ̄ − W̄ (D2i −D1i)) +

mi

12L2
i

|| ˙̄bi||2. (107)

where, (C1)i and (C2)i denote the ith column of matrices C1 and C2.

Proof: The result (107) follows from (71), noting that x̂v = v̂x, for any two
vectors x and v. 2

Note that if θ̄i > 0 the bar bi is in tension, and if θ̄i < 0, the bar bi is
in compression. In class 1 tensegrity, the bars should all be in compression.
Otherwise, we would replace the bar with a string to provide a more efficient
tensile member. We note from above that in the equilibrium, θ̄i must be a
negative for all i to have all bars in compression.

Lemma 12 All class 1 tensegrity equilibria satisfy

Q̄ΦT CT Γ̄C

[
I
I

]
= −W̄ (D1 + D2). (108)

Proof: From (104) and (105) observe that

F̄

[
I
I

]
= (−Q̄ΦT CT Γ̄C − W̄D)

[
I
I

]
= 0. (109)

2

All stable equilibria of (62) satisfy

Q̄K̄ = −W̄DΦ, (110)

where,

K̄ =
[ ˆ̄θ 0

0 0

]
+ ΦT CT Γ̄CΦ, (111)

where, for i 6 nb, θi is given by lemma 11 above.
Furthermore we note the fact that

CΦ =
[

1
2 (C2 − C1) C1 + C2

]
. (112)

The ith column of (110) yields, using (111), and (112),

(I −L−2
i b̄ib̄

T
i )(Q̄ΦT CT (Ĉ2i− Ĉ1i)γ̄ + W̄ (D2i −D1i))+

mi

6L2
i

|| ˙̄bi||2b̄i = 0. (113)

For i > nb, the ith column of (110) yields,

Q̄ΦT CT (Ĉ1i + Ĉ2i)γ̄ = 0. (114)



Assembly of equations (114) and (113) yields

Aγ̄ = y, (115)

where, the ith row block (3× ns) of A is

Ai = (I − L−2
i b̄ib̄

T
i )Q̄ΦT CT (Ĉ2i − Ĉ1i), (116)

and

yi = −(I − L−2
i b̄ib̄i

T )W̄ (D2i
−D1i

)− mi

6L2
i

|| ˙̄bi||2bi, i ≤ nb. (117)

For i = 1, 2...nb, the i + nb row blocks of A (also 3× ns),

Ai+nb
= Q̄ΦT CT (Ĉ1i + Ĉ2i), (118)

and for i = 1, 2...nb,
yi+nb

= −W̄ (D1i + D2i). (119)

Lemma 13 Any static equilibrium ( ¯̇Q = 0), for class 1 tensegrity structures
satisfy: column rank of A < ns, where matrix A(Q̄) is given by (116) and
(118).

Proof: Note that y = 0 for any static equilibrium. 2

Note the equivalence between (105), (108), and (115)/ (118), and the equiv-
alence between (106) and (115)/(116).

6.1 Buckling Load Constraints

From (105) and (106), the static loads in the bars are described by F̄2. The
following characterizes the Euler buckling load constraint for all bars.

FT
2 F2 < ML−2ΛL−2M, (120)

where, Λ is diagonal with elements Eiπ
4ρ2

i
, and ρi is mass density of the bar

material, and Ei is Young’s modulus of elasticity.

Lemma 14 The Euler buckling of the bars is prevented by satisfying the matrix
inequality [

ML−2ΛL−2M FT
2

F2 I

]
> 0. (121)

Noting that N = QΦT and that F = −QΦT CT ΓC, this lemma is equivalent to
the inequality,




ML−2ΛL−2M
[

0 I
]
CT ΓCNT

NCT ΓC

[
0
I

]
I


 > 0, (122)



which is easy to test if the nodal positions of interest, N̄ , are specified. These
two above matrix inequalities describe a condition that is conservative, for two
different reasons. The actual buckling constraint limits the force directed along
the bar, whereas, the force F2(t) is not directed along the bar, accept at t →∞.
Secondly, the actual buckling constraints limits the diagonal elements of the
matrix FT

2 F2, and the matrix inequality is conservative because FT
2 F2 is not

diagonal. If only the diagonal elements of the matrix must be diagonal, then
the ”matrix positive definite” condition is conservative by the size of the Schur
compliments. So, the off-diagonal elements of FT

2 F2 relate to the orthogonality
of the bar forces. That is, FT

2 F2 is diagonal if fi+nb
is orthogonal to fj+nb

for
j > i. Such conservatism is trivial to accommodate in practice, since the safety
margins always involve an inflation in the values used for Λ (Λ selected ”twice”
the actual buckling load, for a factor of ”two” margin, etc). Hence, (120),(121),
or (122) are practical buckling constraints, considering that Λ might be scaled
for safety margins.

7 Material Selections

The previous section helps one to design the geometry and the force distribution
among the members to get a stable equilibrium, (Q̄ and Γ̄). This section must
choose material properties to synthesize the decisions made in the previous
design of Q̄ and Γ̄.

Let the following definitions apply:

• σiy = yield strength of string si

• Ei = Young’s modulus of the bar material

• Ai = cross-sectional area of string si

• si0 = si(0)
||si|| , where si(0) represents the unstretched length (rest-length) of

the string, and ||si|| denotes the actual length

• ki= spring constant of string si

For linear elastic material,

||ti|| = ki(||si|| − si(0)). (123)

From the definition of the string force density γi, and the above definitions it
follows that

Γ = γ̂ = k̂(I − ŝ0), (124)

where, γ̂ is diagonal with diagonal elements γi, k̂ is diagonal with diagonal
elements ki, and ŝ0 is diagonal with elements si0 = si(0)

||si|| . Note that si(0)
||si|| < 1

when the rest length does not exceed the actual length (hence γi > 0), and
si(0)
||si|| > 1 if the rest length exceeds the actual length (yielding γi < 0). This



latter event cannot happen with strings that cannot take compression, but this
may happen if strings are replaced by springs which can be in compression or
in tension.

8 Control Problems

This section treats γ as a control variable, where we state a variety of control
problems. We shall describe the imprecision in control actuation by uncorrelated
zero-mean white noise sources. We shall assume that the state is measured with-
out error for feedback control, but noisy sensors can be added in future work.
Let (110) and (111) characterize all equilibria. Let the expectation operator be
written E . Let Y , defined by,

Y = QP (125)

for a given matrix P, characterize the particular subset of the generalized co-
ordinates Q that we wish to control to some specified accuracy Ω. That is, we
require the dynamic response to satisfy the following performance constraint,

E(Y − Ȳ )T (Y − Ȳ ) < Ω, (126)

where the output Y at equilibrium is Ȳ = Q̄P. Suppose we further constrain
the control effort by covariance upper bound U ,

E(γ − γ̄)(γ − γ̄)T < U. (127)

The first problem we seek to solve is to find (Q̄, ˙̄Q, γ̄, γ) such that the following
constraints are satisfied (126), (127), (110),(111), and (62).

8.1 Linearization

The nonlinear stochastic problem stated above is difficult and we shall not
attempt to solve it directly. However, in nonlinear systems theory it is well
known that a solution (Q̄, ˙̄Q, γ̄, W̄ )) of the nonlinear system is locally stable, if
the null solution of the system linearized about (Q̄, ˙̄Q, γ̄, W̄ )) is asymptotically
stable. Therefore, to guarantee at least a local stability of the solution of the
nonlinear system, we shall linearize (62) about solution (Q̄, ˙̄Q, γ̄, W̄ )) satisfying
(110),(111).

Theorem 6 A linearization of (62) about the solution (Q̄, ˙̄Q, γ̄, W̄ )), satisfying
(110),(111), satisfies

¨̃QM+ Q̃K̄ + Q̄K̃ = −W̃DΦ, (128)

where, (Q̄, ˙̄Q, γ̄, W̄ )) represents any chosen solution of

¨̄QM+ Q̄K̄ = −W̄DΦ, (129)



and the Q̃ notation denotes the small difference between the actual solution Q
and the desired solution Q̄, (Q̃ = Q− Q̄). The matrix K̄ is given by

K̄ =
[ ˆ̄θ 0

0 0

]
+ ΦT CT ˆ̄γCΦ, (130)

and the matrix K̃ is given by

K̃ =

[
ˆ̃
θ 0
0 0

]
+ ΦT CT ˆ̃γCΦ, (131)

where

θ̄i =
1
2
L−2

i b̄T
i (Q̄ΦT CT (Ĉ1i − Ĉ2i)γ̄ − W̄ (D2i

−D1i
)) +

mi

12L2
i

|| ˙̄bi||2, (132)

and,

θ̃i =
1
2
L−2

i γ̄T (Ĉ1i − Ĉ2i)CΦQ̄T b̃i +
1
2
L−2

i b̄i
T (Q̄ΦT CT (Ĉ1i − Ĉ2i)γ̃ (133)

+ Q̃ΦT CT (Ĉ1i − Ĉ2i)γ̄)− 1
2
L−2

i (b̄i
T
W̃ + b̃i

T
W̄ )(D2i −D1i) +

mi

6L2
i

˙̄bT
i

˙̃
bi,

(134)

9 Conclusions

We have derived the dynamics of a system of nb disconnected rigid bodies in
the form of a second order differential equation of a 3 × 2nb configuration ma-
trix. These equations contain no trigonometric nonlinearities, and require no
inversion of a mass matrix containing configuration variables. All equilibria are
characterized, and for any given configuration the equilibria equations reduce
to linear algebra in the steady state control variables, the string force densities.

The nonlinear equations have been linearized about unspecified equilibria,
in order to state control problems that allow freedom in the equilibria to be
determined at the same time the controls are determined. This allows smaller
energy to control to a specified error bound on the configuration.


