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ABSTRACT

Tensegrity is a light weight deployable structure that is composed of compressive and tensile members.
However, the compressive members, which are made of common metallic structural materials, are not
mass-efficient. In this paper, we replace the compressive member with “self-similar” tensegrity structure
that has same strength but less mass. We start with a non-tensegrity structure called C4T 1i and show that
it can be designed to have the same strength but less weight compared with the compressive member to be
replaced. The stiffness-to-mass ratio of the C4T 1i structure, however, is compromised. We then modify the
C4T 1i structure to a tensegrity structure called C4T 2i by adding another set of string(s) with pre-stress. It
can be shown that C4T 2i is a better substitute of the compressive members in a structure because of less
mass and same strength but higher stiffness-to-mass ratio.

Keywords: Tensegrity, Deployable Structure.

INTRODUCTION

Class 1 tensegrity is a strong and lightweight structure built by a set of axially loaded compressive mem-
bers1 —- bars, which do not touch2 each other but are joined by some continuous network of pre-stressed
tensile members —- strings[1]. The word pre-stress means the tensile members are under tension when the
structure is in stable equilibrium state without external load[2, 3, 4, 5]. This can be expressed as

A(q) t(q) = 0, ‖ t(q) ‖> 0, (1)

where A is the connectivity matrix of tensile members, t is the tension vector of these members and q is
the generalized coordinate. We call (1) the tensegrity condition. Both compressive and tensile members are
complementary to each other and participate against external load. The presence of the strings enable us
to adjust the tensions using actuators or controllable materials like shape memory alloy (SMA), and hence
change the shape of the structure. One application of tensegrity is large deployable space structures that have
a small stowed volume[6].

1Dept. of MAE, Univ. of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411. E-mail: waileung@mae.ucsd.edu.
2Dept. of MAE, Univ. of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411. E-mail: bobskelton@ucsd.edu
1We assume all the compressive members are Euler columns in this paper
2Only end to end contact
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If one reduces the length of a tensile member in the structure to zero, equation (1) can still be satisfied,
treating the contact as node. To classify the tensegrity in such situations, Skelton introduces the definition
Class-k Tensegrity[7] to enrich the variety of tensegrity. Generally, a class-k tensegrity structure is defined
as, at maximum, k compressive members touch each other at a single node.

Given a tensegrity structure A, we would like to ask the question: Can we further improve[8, 9, 10, 11]
the mass and stiffness properties? To answer this question, we first look at the reasons why tensegrity can
be strong and lightweight. In building a tensegrity structure, tensile members are introduced and pre-stressed
to resist external loads. Tensile members are usually more efficient in mass than compressive members. For
this reason, tensegrity structures are lightweight compared with classical structures. Therefore, if the use of
compressive members is minimized while the use of tensile members is maximized in the existing tensegrity
structure, we may be able to improve the strength and reduce the weight of the structure. In this case, we
need to design a tensegrity structure B such that it has at least same strength but less mass compared with the
compressive members (to be replaced) in the existing tensegrity structure A.

After we replace the compressive members by another tensegrity structure B, the resultant structure con-
tains new compressive members(from tensegrity B). This procedure results in a self-similar structure and
we coin the name Self-Similar Tensegrity to describe this feature. With the self-similar idea, the structural
member can be scaled down for easier manufacturing and construction. In control, less energy is required for
actuators to do the structural deployment or stiffness control[12, 13, 14, 6, 11].

We first introduce a planar self-similar non-tensegrity structure called C4T 1i that replaces a compressive
member(a single bar). We will show how to design the C4T 1i structure while the mass is reduced but the
strength is preserved compared to the single bar. Load deflection curves and stiffness will be computed. We
then modify the C4T 1i structure by adding string(s) in suitable positions to obtain a self-similar tensegrity
structure called C4T 2i. In particular, we will show that the C4T 2i structure can be used to replace the
compressive member, as we can reduce the mass and increase the stiffness-to-mass ratio. The remarkable
feature of the design is that we start with a non-tensegrity structure C4T 1i to obtain the design information
of bars and strings and the design information can then be applied directly to the tensegrity structure C4T 2i.

The notation “CxTyi” means a structure composed of x Compressive members and y Tension members.
The index i denotes the total number of self-similar stages/iterations. When i = 0, no self-similar iteration is
taken place. For i≥ 1, new members will be introduced in every iteration and we use subscript, for example
j = 1,2, . . . , i, to represent the members introduced in the j-th iteration. For materials, the notations ρi, ρt j ,
Ei, Et j and σt j represent the density of bars, string, Young’s modulus of bars, string and yield stress of string
respectively. For length quantities, we use li, and lt j to represent the length of bars and strings respectively.
Except the length of the structure l0, the extra subscript ‘0’ of the length quantities like li,0 and lt j ,0 represents
the rest length of that members. The length-to-diameter ratio of bars and strings are denoted as ξi and ξt j

respectively. In particular, we will use capital notation to represent the length and force quantities of structural
members at buckling or yield. For example, Li and Ri represent the length and radius of a bar in i-th iteration
when the buckling load, Fi, of the bar is applied. The length and buckling load of the whole structure will be
represented by L0 and F0 respectively.

All the compressive and tensile members are assumed to be cylindrical and have constant stiffness under
deformation. Hence, Hooke’s law will be applied in the analysis.

In the numerical computation of the structure, we will assume both compressive members and tensile
members are made of steel, which has the density ρ = 7.862 g/cm3, Young’s modulus E = 2.06×1011 N/m2

and Yield strength σ = 6.9×108 N/m2. Also, the angles (as defined later) α j in every stage is assumed the
same. i.e α j = α where α is some constant. The length of structures at buckling, L0, will be normalized in
the numerical calculations. i.e. L0 = 1.
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MOTIVATION

Considering an Euler column, we call it as the “original bar” such that it buckles at the compressive load
F0. For the original bar of radius R0 and length L0 with the buckling load F0 applied, the mass of the bar
m0 = mb0 is

m0 = mb0 = ρ0πR2
0L0 =

ρ0π
4ξ2

0
L3

0. (2)

The buckling load of the bar F0 is given by the Euler’s buckling formula

F0 =
E0π3R4

0

4L2
0

=
E0π3

64ξ4
0

L2
0. (3)

Alternatively, the buckling load F0 can be written in terms of the mass m0 as

F0 =
E0πm2

0

4ρ2
0L4

0
. (4)

Now, consider a simple stable class 1 tensegirty of 2 bars and 4 strings as shown in figure 1. We call this
C2T 4 and would like to design the structure such that it buckles as the same buckling load as the original
bar while less mass is required. Hence F0/2 is applied on each nodal point when the structure is buckle
and the horizontal strings will be slack for mass minimization. Each bar will carry the compressive load of
F1 = F0/2cosθ. With the similar buckling formula (4) applied to each bar, we have the total mass of 2 bars

mb =

√

E0

E1

ρ1

ρ0

m0

cosθ
.

Therefore, if the material of bars are the same as the original bar, we cannot obtain a less mass structure

FIG. 1. Left: A C2T 4 Structure, Right: A C4T 14 Structure

while preserving the strength. But the ability of lateral load resistance drawn us the interest to re-design
the structure. Consider a structure C4T 14 made by the connection of 2 C2T 4 units as shown in figure 1,
equilibrium condition gives

F0

2
+ t2 cosβ+ t3 cosγ = F1 cosα. (5)

With the same argument as before, strings 2 and 3 should be slack (t2 = t3 = 0) when the buckling load F0 is
applied on each side. Therefore, the compressive load of each bar is F1 = F0/2cosθ. With (4) and applying
the buckling formula to bar, we obtain the total mass of 4 bars

mb =

√

8
E0

E1

(

ρ1

ρ0

)

cosα
L1

2L1 cosα−h
m0 ≥

√

E0

E1

(

ρ1

ρ0

)

1
2cos5 α

m0.
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So, the minimal mass structure is obtain when the horizontal overlap h = 0 and is independent of the vertical
overlap w = 0. If the same material is used to make the bars, we may be able to construct the C4T 14 structure
with less mass compared with the original bar. With the consideration of robustness to lateral load and self-
similar construction (as discussed later), we would set w = 0 and hence a rhombus structure called C4T 1 is
obtained.

C4T 1i STRUCTURE

With the idea of the C4T 1 structure, we would like to design a class of self-similar structure called C4T 1i

to replace the original bar such that the structure buckles at the same load F0 (buckling constraint) but yet
requires less mass (minimal mass design for a fixed geometry). Due to the requirement of minimal mass
design, the word “buckled” used for the new structure means all the compressive and tensile members will
buckle and yield at precisely the load F0.

C4T 11

Setting both the vertical w and horizontal h overlap to zero, we obtain a new 4 bars/1 string structure called
C4T 11 that replaces the original bar as shown in Figure 2. We call this step (to replace a single bar) the first
iteration of the self-similar procedure and hence put an index 1 to the structural name. The angle α1 is the
maximum angle between the bar and the axis parallel to applied force F0 without buckling.

The total mass mb1 of the 4 bars is

mb1 = 4ρ1πR2
1L1 =

ρ1π

ξ̂1
2 L3

1, (6)

and the buckling load of each bar F1 is

F1 =
E1π3R4

1

4L2
1

=
E1π3

64ξ4
1

L2
1 =

E1πm2
b1

64ρ2
1L4

1
, (7)

where, from the geometry of the structure,

L1 =
L0

2cosα1
, F1 =

F0

2cosα1
. (8)
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FIG. 2. Left: A C4T 11 Structure, Right: A C4T 12 Structure
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Mass of Bars in a C4T 11 Structure
Since the new structure is subjected to the buckling constraint, we can express the mass of 4 bars mb1

to that of the original bar m0 as

mb1 =
ρ1

ρ0

√

(

E0

E1

)(

1
2cos5 α1

)

m0. (9)

We can see that the mass of bars in the C4T 11 structure is minimum when α1 = 0◦ and increased as α1
increases. With the same materials as the original bar, the condition for the mass of bar mb1 < mb0 = m0 is

α < αmax = cos−1 (0.5)
1
5 = 29.477◦.

So, in order to have a lightweight structure (string is assumed to be massless in this section) which is made
of the same materials and buckles at the same load F0 as the original bar, α ≤ 29.477◦. Note that the mass
reduction is maximum (about 29.3%) when α = 0◦. But in this case, the structure has no robustness to lateral
loads. Therefore, there is a tradeoff between the mass reduction of the bars and robustness to lateral loads.

Mass and Tension of String in a C4T 11 Structure
The mass mt1 , length Lt1 , and yield tension T1 of the string in the C4T 11 structure are

mt1 = ρt1πR2
t1Lt1 =

ρt1π
4ξ2

t1
L3

t1 , (10)

Lt1 = L0 tanα1, (11)

T1 = F0 tanα1 = σt1πR2
t1 =

σt1 mt1
ρt1Lt1

=
σt1 π
4ξ2

t1
L2

t1 , (12)

where we have related T1 to the yield stress of string materials σt1 in (12).
We can also relate the mass of string and the original bar as

mt1 =

(

E0π2 tan2 α1

16σt1 ξ2
0

)(

ρt1
ρ0

)

m0. (13)

The quantity mt1 increases with α1, which is expected since larger cross section area and longer string length
are required in order to resist the external load F0.

Aspect Ratio of Structural Members in a C4T 11 Structure
With the information of buckling or yield load of structural members, the length-to-diameter ratio of

these members can be written in term of ξ0. For bars, the length-to-diameter ratio of bars, ξ1, is

ξ1 =
L1

2R1
=

(

E1

E0

) 1
4
(

1
2cosα1

) 1
4

ξ0, (14)

which is proportional to ξ0 and increases with α1 < αmax. It is less than ξ0 if the bars are made of the same
material as the original bar. Hence, thicker bars should be used to build the C4T 11 structure. For string, the
length-to-diameter ratio, ξt1 , is

ξt1 =
Lt1

2Rt1
=

4
π

√

σt1
E0

tanα1ξ2
0, (15)

which increases with α1.
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Total Mass of a C4T 11 Structure
From (9) and (13), the total mass of the C4T 11 structure, m1, is

m1 =

[

(

E0

E1

) 1
2
(

ρ1

ρ0

)(

1
2cos5 α1

) 1
2
+

(

E0π2 tan2 α1

16σt1 ξ2
0

)(

ρt1
ρ0

)

]

m0. (16)

Using bars and string of the same materials as the original bar, the minimal mass occurs at α = 0◦, yielding
m1 = m0/

√
2. Hence, the C4T 11 structure can be used to replace the original bar which preserves the strength

and decreases mass. Because of the finite string mass, the upper bound of α is always less than αmax = 29.477◦

and depends on ξ0 for mass reduction .

C4T 1i

Since mass reduction is possible for the replacement of the original bar by the C4T 11 structure while the
buckling load is kept the same, we can further reduce the mass of the structure by taking another iteration over
the compressive members of the C4T 11 structure, A C4T 12 structure is shown in Figure 2. A self-similar
structure, called C4T 1i structure, can be obtained as before. Figure 3 shows the C4T 1i structures for i = 3 to 6
and α j = 15◦ where j = 1,2, . . . , i. In With the similar analysis as before, we can relate the total mass of the

i = 3 i = 4

i = 5 i = 6

FIG. 3. Configurations of C4T 1i Structures with α j = 15◦, where j = 1,2, . . . , i.

bars mbi , in the C4T 1i structure to the mass of C4T 10, m0, as

mbi =

(

ρi

ρ0

)

√

(

E0

Ei

)

1

∏i
j=1 2cos5 α j

m0. (17)

For α j < αmax, mbi is decreased with i and with α j and we have the following theorem

Theorem 1 Assume massless strings and valid buckling formula of bars over all iteration, then the mass of
the C4T 1i structure, with the buckling constraint design, approaches zero as i goes to infinity and the form of
the resulting tensegrity fractals appears in figure 3.

In practice, we can obtain arbitrary structural mass since we need to account for the mass of strings and
the practical limit of self-similar iterations as discussed later.

Because of the buckling constraint design, the total mass of strings in the j-th iteration, mt j , can be related
to m0 as

mt j =
E0π2 sin2 α j

16σt j ξ2
0 ∏ j

r=1 cos2 αr

(ρt j

ρ0

)

m0. (18)
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As the iteration number i increases, the mass of strings increases. A decrease in the angle αr (r ≤ j) will
decrease the string mass.

The length-to-diameter ratio of the bars, ξi, and strings in the j-th iteration, ξt j , in the C4T 1i structure are

ξi =
Li

2Ri
=

(

Ei

E0

) 1
4
(

1

∏i
j=1 2cosα j

) 1
4

ξ0, (19)

ξt j =
Lt j

2Rt j

=
4
π

√

√

√

√

(σt j

E0

)

(

2sinα j

∏ j
r=1 2cosαr

)

ξ2
0. (20)

The aspect ratio of both members are always increasing with increasing αr < αmax, but decrease with an
increasing of j. Hence, “fatter” bars and strings are required in the next iteration.

Practical Limit of Self-Similar Iteration
In the calculations of the C4T 1i structure, it is assumed that all the compressive members are Euler

columns. From (19), the length-to-diameter ratio of bars decreases with the iteration number and the Euler
column assumption is no longer valid after a certain number of iterations. For a bar to be an Euler column,
its buckling stress has to be less than or equal to its yield stress σ. i.e. Eπ2R2

4L2 < σ, which gives the minimum
length-to-diameter ratio

ξmin =
π
4

√

E
σ

. (21)

Using (19), we have the following theorem about the practical limit of self-similar iterations.

Theorem 2 For an original Euler bar, with length-to-diameter ratio ξ0, Young’s Modulus E and yield stress
σ, to be replaced by a C4T 1i structure subject to the minimal mass design and buckling constraint, the
iteration number is bounded by bilimitc, where

ilimit = 4
ln(ξ0/ξmin)

ln(2cosα)
. (22)

The ξmin is given by (21). The materials of the bars in the C4T 1i structure is assumed to be the same as the
original bar and α j = α for j = 1,2, . . . , i.

Proof: Solve for i from the inequality ξmin ≤ ξi using (19) and (21) with E0 = Ei, α j = α for j = 1,2, . . . , i.
2

Total Mass of C4T 1i Structure
The total mass mi of the C4T 1i structure, from (17) and (18), will be

mi =





(

E0

Ei

) 1
2
(

ρi

ρ0

)

(

1

∏i
j=1 2cos5 α j

) 1
2

+
i

∑
j=1

E0π2 sin2 α j

16σt j ξ2
0 ∏ j

r=1 cos2 αr

(ρt j

ρ0

)



m0. (23)

If the materials of the bars and strings are the same as the original bar and α j = α for j = 1,2, . . . , i, then, the
total mass can be simplified to

mi =

[

(

1
2cos5 α

) i
2
+

E0π2

16σtξ2
0

(

1
cos2i α

−1
)

]

m0. (24)
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Figures 4 shows a plot of mass ratio mi/m0 versus the iteration number i for different α and ξ0 = 100. As
α increases, the mass contribution of strings to the structure is greater and leads to a heavier structure for
fixed i. In particular, for α≥ 29.24◦, the mass reduction of bars cannot compensate for the increase in string
mass with increasing i and hence, no mass reduction. For α < 29.24◦, the mass of the bars decreases as the
iterations number increases but this is offset by the increase of string mass as seen in (17) and (18). This
implies that the string mass will lower the upper bound value of α for mass reduction. Maximum mass
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Number of iteration i

m
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i
/m

0
 = 0.473  

FIG. 4. Mass Ratio mi/m0 versus Iteration Number i for ξ0 = 100

reduction can be achieved in some finite iteration number, we call it the optimal iteration, which depends on
the angle α and ξ0. For example, the optimal iteration number is 12 and the mass reduction is 52.7% for
α = 25◦ and ξ0 = 100. In fact, from (24), the mass reduction will be maximum when the iteration number i
is given by the following theorem:

Theorem 3 For a C4T 1i structure subject to a buckling constraint, if the materials of bar and strings are the
same in the C4T 1i structure and α j = α for j = 1,2, . . . , i, minimum mass is achieved at a finite number of
iterations and this number is given by either diopte or bioptc, where

iopt =
2

ln
( 1

2cosα
) ln

(

E0π2

4σtξ2
0

lncosα
ln 1

2cos5 α

)

. (25)

One must check the mass at both diopte and bioptc to choose the smallest mass.

Proof: Take the derivative of mi/m0 in (24) with respect to i and set it equal to zero. Solving the resulting
equation for i yields (25). 2

Figure 5 shows a plot of the practical limit ilimit (dash curves) and the optimal iopt (solid curves) iteration
versus angle α given by equations (22) and (25). At about α < 24◦, we cannot obtain a minimal mass structure
due to practical limit of Euler’s assumption. On the other hand, a minimal mass structure is achievable for
about α > 24◦, since the iteration number required is less than the practical limit of iteration. For these
reasons, the shaded region is the practical region of the C4T 1i structural design for ξ0 = 60 for example.
For these step curves, there exists a range of α which gives the same iteration number. We know from the
previous calculation that the total mass of the C4T 1i structure is decreased with the decrease of α, therefore,
for a fixed iteration number, smallest angle should be chosen for smallest mass.
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FIG. 5. Optimal (Solid Curves) and Practical Limit (Dash Curves) Iteration Number versus α

Load Deflection Curve of C4T 1i Structure
In this paper, it is assumed that the stiffness of bars, kbi , and strings, kt j , where 1 ≤ j ≤ i, are constant

under deformation and measured at buckling for bars and yield for strings. i.e,

kbi =
EiAi

Li
=

EiπR2
i

Li
, kt j =

Et j At j

Lt j

=
Et j πR2

t j

Lt j

. (26)

Hence,
fi = kbi (li,0− li) , t j = kt j

(

lt j − lt j ,0
)

. (27)

The following theorem is needed to compute the load deflection curve,

Theorem 4 For a C4T 1i structure with the applied external force 0 ≤ f0 ≤ F0, the force to length ratio of
any member bar and string are equal to that of the structure. i.e.

f0

l0
=

fi

li
=

t j

lt j

j = 1,2, . . . , i, (28)

where all the length, tension and compressive load quantities are measured under the external load f0.

The proof is given in Appendix I. Note that t j = 0 iff f0 = 0, so the C4T 1i structure cannot be pre-stressed
and hence is not tensegrity.

From (27) and (28), the load deflection relation is

f0 = kt1

(

1− lt1,0

lt1

)

l0. (29)

A relationship between lt1 and l0 is required to make the load deflection plot. Applying (27) and (28) in the
geometry equation

l2
0 = 4il2

i −
i

∑
j=1

4 j−1l2
t j
, (30)
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we obtain

l2
0 = 4i





li,0

1+
kt1
kbi

(

1− lt1 ,0
lt1

)





2

−
i

∑
j=1

4 j−1







lt j ,0

1− kt1
kt j

(

1− lt1 ,0
lt1

)







2

, (31)

where kt1/kt j , kt j/kbi , li,0 and lt j ,0 are given in Appendix III. Clearly, the inequality

lt1,0 ≤ lt1 ≤ Lt1 , (32)

must be hold. For this range of values of lt1 , one can find the corresponding values of l0 and f0 by (29) and
(31), respectively. Hence, an indirect relation between f0 and l0 can be obtained.

Figure 6 shows the load deflection curves of the C4T 1i structure with ξ0 = 100 and α = 25◦ for different
iteration number i. It is easier to deploy the structure with larger i. In the buckling design, the length of strings

1 1.001 1.002 1.003 1.004 1.005 1.006 1.007
0

100

200

300

400

500

600

700

800

900

1000

l
0
 (m)

f 0  (
N

)

i = 1 i = 2 i = 3 i = 4 i =  5

L
0
 

F
0
 

FIG. 6. Load Deflection Curves of C4T 1i Structure with ξ0 = 100 and α = 25◦

are only allowed to change in a very small range due to the small ratio σt/Et in our choice of materials. Hence,
the curves are quite linear and the structural stiffness is quite constant over the range of l0.

Stiffness of the C4T 1i Structure

Stiffness Definition
With the external force3, the C4T 1i structure changes its length (measured from 2 nodal points where

external applied) in the same direction as the applied force. Therefore, the stiffness calculation is one-
dimensional problem. For an external load f0 applied to the structure of length l0, the stiffness k of the
structure is defined as

k =−d f0

dl0
, (33)

where the negative sign means the length of the structure decreases as the applied load increases.

3Only axial force is considered since C4T 1i structure is used to replace compressive member
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The Stiffness Equation of a C4T 1i Structure
The stiffness of C4T 1i, kC4T 1i , (see Appendix II for proof) is given by

kC4T 1i = kt1







(

lt1,0

lt1
−1
)

+

[

4i kt1
kbi

li
li,0

(

li
l0

)2

+
i

∑
j=1

4 j−1 kt1
kt j

lt j

lt j ,0

(

lt j

l0

)2
]−1






. (34)

If α j = α and the materials of the bars and strings are the same as the original bar, the stiffness equation at
buckling, KC4T 1i , can be simplified to

KC4T 1i = kt1







−σt

Et
+

[

4i kt1
kbi

Li

li,0

(

Li

L0

)2

+

(

1− σt

Et

)−1( 1
cos2i α

−1
)

]−1






, (35)

where the physical quantities are given by Appendix III with Ei = E0, Et j = Et , σt j = σt and α j = α.

The Rigid Bar Case
If the bars are infinitely rigid (large compared to the stiffness of strings), the ratio kt1/kbi → 0. This is

quite true if ξ0 or α is large. We can also choose the materials such that the ratio σt/Et is large. The stiffness
equation (35) then becomes

KC4T 1i = kt1

(

cos2i α− σt
Et

1− cos2i α

)

. (36)

The stiffness decreases with the increase in α and the iteration number, since longer strings (large α) or
more strings (large i) makes the structure softer. Note that the ratio KC4T 1i/kt1 is independent of ξ0, which
is not true in the case of elastic bars, as discussed next. Since the stiffness reduces with each iteration i, it is
of interest to know how many iterations may be taken before the stiffness violates a desired lower stiffness
bound K.

Theorem 5 Given α and a desired lower stiffness bound K of a C4T 1i structure subject to minimal mass
design with buckling constraint, if the materials of bar and strings are the same as the original bar and
α j = α, the iteration number which achieves the stiffness requirement K ≤ KC4T 1i with rigid bar assumption
is bounded by bic where

i≤ 1
2lncosα

ln
K
kt1

+ σt
Et

1+ K
kt1

. (37)

Proof: From (36), solving the inequality K ≤ KC4T 1i for i gives (37). 2

The Elastic Bar Case
If ξ0 or σt/Et is small, or the number of iteration is large in building the structure, the rigidity of

bars in the C4T 1i structure must be considered in the stiffness calculations, i.e. kt1/kbi 6= 0, and hence (35)
should be used for stiffness calculations. Figure 7 shows a plot of stiffness at buckling, KC4T 1i , versus α with
ξ0 = 100 for both elastic (solid curves) and rigid (dash curves) bars cases. The finite rigidity of bars results
in lower stiffness compared with rigid bars case, especially in low value of α. The effect is smaller for large
values of α because the ratio kt1/kbi is small in this range. Stiffness is less sensitive to geometry (choice of
α) when bars are elastic.

11
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FIG. 7. Stiffness KC4T 1i versus α for ξ0 = 100, Elastic Bars Case (Solid Curves) and Rigid Bars
Case (Dash Curves)

Stiffness Ratio and Stiffness-to-Mass Ratio
The stiffness of the C4T 10 structure, at buckling, is

KC4T 10 =
E0πR2

0
L0

=
E0πL0

4ξ2
0

. (38)

With (35), the stiffness ratio KC4T 1i/KC4T 10 is always less than or equal to 1 and hence, no improvement
is found in the stiffness of C4T 1i structure. We can obtain the stiffness-to-mass ratio from (24) and (35).
Calculations show that the best one can achieve, is the same ratio at α = 0◦ compared with the original bar.
The ratio is getting smaller with the increase in α or iteration number. In conclusion, the C4T 1i structure is
less mass and is less stiff compared to the original bar.

C4T 2i STRUCTURE

The C4T 1i structure can be designed to have the same strength but less mass than the original bar. How-
ever, we still cannot improve the stiffness or stiffness-to-mass ratio of the structure. One way to solve this
problem is to use pre-tension. In order to do this, consider a C4T 11 structure with a horizontal string con-
nected to both ends of the structure. This new structure is defined as C4T 21. If we replace every compressive
member by another smaller C4T 21 structure and keep doing this in every iteration, we will obtain a C4T 2i

structure after i-th iteration. Compare with C4T 1i structure, C4T 2i structure can be pre-stressed. We shall
call this new set of horizontal string(s) the h-string.

Buckling Design

One purpose of a C4T 2i structure is to minimize the mass of the structure. Since the introduction of h-
string(s) makes the structure heavier, h-strings are chosen such that all these strings will be slack if f0 = F0 is

12



applied and will yield if f0 = 0, so

th j =

{

Th j = σh j πR2
h j

for f0 = 0 j = 1,2, . . . , i
0 for f0 = F0.

(39)

Therefore, the pre-stress of an h-string is equal to its yield stress. Equation (39) implies that the rest lengths
of h-strings are

lh j ,0 = L j−1 =
L0

∏ j−1
r=1 2cosαr

j = 1,2, . . . , i. (40)

Because of the design, all the structural members will be the same as that in the minimal mass design of the
C4T 1i structure with buckling constraints, except for the h-strings. Therefore, we only need to compute the
geometry and intrinsic properties of the h-strings in order to satisfy the design.

Pre-Stress of h-Strings

The following analogy version of Theorem 3 is required for further calculations:

Theorem 6 For C4T 2i structure with the applied external force 0≤ f0 ≤ F0, the force to length ratio of the
structure is

f0

l0
=

fi

li
−

i

∑
s=1

ths

lhs

=
t j

lt j

−
j

∑
r=1

thr

lhr

j = 1,2, . . . , i, (41)

see Appendix IV for proof.
When f0 = 0, there exists a set of ( fi, th j , thr) 6= 0 such that (41) is satisfied and hence the structure can be

pre-stressed. There are many choices of pre-tension for the h-strings. In this paper, we choose the pre-tension
in terms of buckling load F0. For every h-string in j-th iteration, the pre-tension (yield strength) is chosen as

Th j = a jFj−1 = a j
F0

∏ j−1
r=1 2cosαr

, (42)

where 0 ≤ a j < 1 are some constants called pre-tension parameters. If a j = 0 for all j, we will recover the
C4T 1i structure as h-strings are always slack and hence redundant.

Stiffness of h-Strings

Without external load, the C4T 2i structure may under pre-tension. From (41),

fi,a

li,a
=

i

∑
j=1

Th j

Lh j

,
t j,a

lt j ,a
=

j

∑
r=1

Thr

Lhr

, (43)

where the extra subscript ‘a’ represents the physical quantities measured under pre-tension state, which gives
(see Appendix V for proof)

li,a =
li,0

1+
kti
ki

(

1− lti,0
lti,a

) , (44)

lt j ,a =
lt j ,0

1+
a j+1Fj

kt j Lh j+1
− kt j+1

kt j

(

1−
lt j+1,0

lt j+1,a

) j = 1,2, . . . , i−1. (45)

13



Including the geometrical constraint

L2
h j

= 4L2
h j+1

− l2
t j ,a, Lhi+1 = li,a j = 1,2, . . . , i, (46)

we can express Lh j for j = 1,2, . . . , i and ltr ,a for r = 1,2, . . . , i−1 in terms of pre-tension parameters, a j, and
the length of strings in the i-th iteration at unloaded state lti,a. Solving for lti,a from the equation

a1F0 = kh1 (Lh1 −L0) = Lh1 kt1

(

1− lt1,0

lt1,a

)

, (47)

which depends on a j, by using Newton’s method with (44)-(46), we can then obtain the length of h-strings at
pre-stressed state Lh j and the stiffness of the h-strings is given by

kh j =
Eh j πR2

h j

Lh j

=
Eh j a jFj−1

σh j Lh j

=
Eh j a j

σh j Lh j

F0

∏ j−1
r=1 2cosαr

j = 1,2, . . . , i. (48)

Mass of C4T 2i Structure

After specifying a j and obtaining the length of h-strings Lh j numerically, the mass of all h-strings in the
j-th iteration will be

mh j = 4 j−1ρh j πR2
h j

Lh j = 4 j−1 E0π2a j

16σh j ξ2
0 ∏ j−1

r=1 2cosαr

(ρh j

ρ0

)(

Lh j

L0

)

m0, (49)

which is linearly increasing with the pre-stress parameters a j. Form the buckling design of C4T 2i structure,
except h-strings, all the bars and strings have the same design as that in the C4T 1i structure. Therefore, with
(23), the total mass of the C4T 2i is

mi =





(

E0

Ei

) 1
2
(

ρi

ρ0

)

(

1

∏i
j=1 2cos5 α j

) 1
2

+
i

∑
j=1

E0π2 sin2 α j

16σt j ξ2
0 ∏ j

r=1 cos2 αr

(ρt j

ρ0

)

+
i

∑
j=1

4 j−1 E0π2a j

16σh j ξ2
0 ∏ j−1

r=1 2cosαr

(ρh j

ρ0

)(

Lh j

L0

)

]

m0. (50)

Load Deflection Curves of C4T 2i Structure

The load deflection curves of the C4T 2i structure can be obtained, from (41) for j = 1, as

f0 = kt1

(

1− lt1,0

lt1

)

lh1 − kh1 (lh1 −L0) . (51)

The lengths of the central vertical and horizontal strings must be in the range

lt1,0 ≤ lt1,a ≤ lt1 ≤ Lt1 ,

L0 ≤ lh1 ≤ Lh1 . (52)

Compared to the C4T 1i structure in Figure 6, the load deflection curves for the C4T 2i are also quite linear,
but the flexibility of the structure is less than that of the C4T 1i due to the presence of h-strings.
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Stiffness of C4T 2i Structure

From (51), the stiffness of the C4T 2i structure is

kC4T 2i =−d f0

dl0
=− d f0

dlh1

= kt1

(

lt1,0

lt1
−1− lh1 lt1,0

l2
t1

dlt1
dlh1

)

+ kh1 , (53)

where the proof and the expression of dlt1/dlh1 are provided in Appendix VI. Figure 8 shows the plot of
stiffness-to-mass, at buckling, ratio versus α for ξ0 = 100 and a j = 0.1 where j = 1,2, . . . , i. Even though the
stiffness of the C4T 2i structure is always less than the original bar, the stiffness-to-mass ratio can be better
for some range of α and depending on the iteration i and a j. Therefore, if we fix the mass of materials, the
C4T 2i structure would be a better choice of design of compressive members compared to a single bar.
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FIG. 8. Stiffness-to-Mass Ratio of a C4T 2i Structure KC4T 2i/mi versus α for ξ0 = 100 and a j = 0.1
where j = 1,2, . . . , i

CONCLUSIONS

For given structural materials like structural steel, long compressive members are usually not as mass
efficient as tensile members. We attempt to design a tensegrity structure that replaces the compressive mem-
bers with less mass while preserving strength. A self-similar structure called C4T 1i, which can distribute
the external compressive load into both compression and tension of its structural members, is first proposed.
Theoretical calculations show that less material is required to preserve strength. However, no improvement
can be found in the stiffness or in the stiffness-to-mass ratio. Adding a set of horizontal strings in the C4T 1i

to make a new structure that can be pre-stressed, called C4T 2i, numerical calculations show that the C4T 2i

structure can be made stiffer by increasing the pre-tension. With a suitable pre-stressing condition, C4T 2i not
only inherits the advantages of the C4T 1i structure, but also improves the stiffness-to-mass ratio compared to
the original bar. This paper also gives an important motivation for tensegrity structures of class greater than
class 1.

APPENDIX I. PROOF OF THEOREM 3
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For a C4T 1i structure under an external load 0≤ f0 ≤ F0, the compressive load fi of bars is

fi =
f0

∏i
j=1 2cosθ j

. (54)

where θ j is the angle of the self-similar unit at j-stage due to the load f0. If f0 = F0, θ j = α j. Similarly, the
tension of strings in the i-th iteration is

t j =
2 f0 sinθ j

∏ j
s=1 2cosθs

, j = 1,2,3, ..., i−1, i. (55)

So, the load f0 can be written in terms of any one of the compressive load of bar or tension of string

f0 = fi

i

∏
s=1

2cosθs =
t j

2sinθ j

j

∏
p=1

2cosθp for j = 1,2,3, ..., i−1, i. (56)

From the geometry of the structure,

sinθ j =
lt j

2l j
,

cosθ j =
l j−1

2l j
. (57)

where
l j =

l0
∏ j

r=1 2cosθr
. (58)

Then, (56) can be simplified to

f0 = fi
l0
li

= t j
l0
lt j

. (59)

which is (28) as required.

APPENDIX II. DERIVATION OF STIFFNESS EQUATION FOR C4T 1i STRUCTURE
From (27) and (28),

kbi

(

li,0
li
−1
)

= kt j

(

1−
lt j ,0

lt j

)

= kt1

(

1− lt1,0

lt1

)

, (60)

take the variation of all the length quantities gives

−kbi

li,0
l2
i

δli = kt j

lt j ,0

l2
t j

δlt j = kt1
lt1,0

l2
t1

δlt1 ,

δli = −kt1 lt1,0

kbi li,0

l2
i

l2
t1

δlt1 ,

δlt j =
kt1 lt1,0

kt j lt j ,0

l2
t j

l2
t1

δlt1 . (61)
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Taking the variation of the length of the structure form (30) and note that li is length of rods yields

δl0 = 4i li
l0

δli−
1
l0

i

∑
j=1

4 j−1lt j δlt j . (62)

Combining (62) with (61) gives

dl0
dlt1

=−kt1 lt1,0

l0l2
t1

(

4i l3
i

kbi li,0
+

i

∑
j=1

4 j−1
l3
t j

kt j lt j ,0

)

. (63)

Computing the derivative of f0 in (29) w.r.t. l0 yields

d f0

dl0
= kt1

(

1− lt1,0

lt1

)

+ kt1 l0
lt1,0

l2
t1

dlt1
dl0

, (64)

and with (63), the stiffness of C4T 1i is

kC4T 1i =−d f0

dl0
= kt1

(

lt1,0

lt1
−1
)

+ l2
0

(

4i l3
i

kbi li,0
+

i

∑
j=1

4 j−1
l3
t j

kt j lt j ,0

)−1

= kt1







(

lt1,0

lt1
−1
)

+

[

4i kt1
kbi

li
li,0

(

li
l0

)2

+
i

∑
j=1

4 j−1 kt1
kt j

lt j

lt j ,0

(

lt j

l0

)2
]−1






.

(65)

APPENDIX III. SOME MATHEMATICAL RELATIONS IN BUCKLING DESIGN OF C4T 1i

STRUCTURE
The C4T 1i system is designed to buckle at the same load as the original bar C4T 10. The angles α j where

j = 1,2, ..., i−1, i are free variables to be specified to fix the geometry. Therefore, it is important to compute
all the lengths and ratio quantities in terms of these angles.

Length of Structure and Strings

At buckling, he length of the structure and strings are

L0 = Li

i

∏
s=1

2cosαs,

Lt j =
2L0 sinα j

∏ j
r=1 2cosαr

= 2Li sinα j

i

∏
s= j+1

2cosαs. (66)

Computing the Stiffness Ratio of Strings, kts
kt j

where s, j = 1,2,3, ..., i−1, i

Consider the ratio
kt j+1

kt j

=
Et j+1At j+1

Lt j+1

Lt j

Et j At j

=
Et j+1

Et j

(

πR2
t j+1

πR2
t j

)(

Lt j

Lt j+1

)

. (67)

With (66), the ratio can be simplified to

kt j+1

kt j

=
Et j+1

Et j

(

σt j

σt j+1

)

.
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Therefore, it is obvious that
kts
kt j

=
Ets σt j

Et j σts
. (68)

In particular, for the same materials of bars and strings,

kts
kt j

= 1. (69)

this implies that the stiffness of all the members strings in a C4T 1i structure are the same.

Computing the Stiffness Ratio of String to bar,
kt j
kbi

where j = 1,2, ..., i−1, i

From (68),
kt j

kbi

=
Et j πR2

t j

Lt j

Li

EiπR2
i

=
Et j

Ei

(

ξi

ξt j

)2
Lt j

Li
. (70)

From (19), (20) and (66),

kt j

kbi

=
Et j π2

16σt j ξ2
0

√

E0

Ei

(

i

∏
s=1

2cosαs

) 1
2

. (71)

For α j = α and the same materials of bars and strings, (71) is reduced to

kt j

kbi

=
Etπ2

16σtξ2
0
(2cosα)

i
2 . (72)

Computing the Rest Length to Length Ratio of Strings,
lt j ,0

Lt j

At buckling, the tension in the strings is given by

Tj = kt j

(

Lt j − lt j ,0
)

=
Et j πR2

t j

Lt j

(

Lt j − lt j ,0
)

=
Et j Tj

Lt j σt j

(

Lt j − lt j ,0
)

, (73)

so
lt j ,0

Lt j

= 1−
σt j

Et j

. (74)

For the same materials of bars and strings,

lt j ,0

Lt j

= 1− σt

Et
. (75)

Computing the Rest Length to Length Ratio of Bars li,0
Li

From (28), at buckling,
Fi

Li
=

T1

Lt1
.

Hence, with (27)

kbi

(

li,0
Li
−1
)

= kt1

(

1− lt1,0

Lt1

)

. (76)
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Using (74), (76) is reduced to

li,0
Li

= 1+
kt1
kbi

σt1
Et1

= 1+
π2

16ξ2
0

√

E0

Ei

(

i

∏
s=1

2cosαs

) 1
2

. (77)

For α j = α the same materials of bars and strings, with (72)

li,0
Li

= 1+
π2

16ξ2
0
(2cosα)

i
2 . (78)

Computing the Stiffness of Central String, kt1

Recall that the stiffness of central string kt1 is given by

kt1 =
Et1 πR2

t1
Lt1

.

Using (3) and (66) the string stiffness becomes

kt1 =
Et1
Lt1

T1

σt1
=

Et1
σt1

F0 tanα1

L0 tanα1
=

E0Et1 π3L0

64σt1 ξ4
0

. (79)

For the same materials of bars and strings, (79) is reduced to

kt1 =
E2

0 π3L0

64σtξ4
0

=
E2

t π3L0

64σtξ4
0
. (80)

APPENDIX IV. PROOF OF THEOREM 5
Consider the force equilibrium of the C4T 2i structure, for bars, we have the following set of equations:

2 fi cosθi = fi−1 + thi

2 fi−1 cosθi−1 = fi−2 + thi−1

... =
...

2 f j cosθ j = f j−1 + th j

... =
...

2 f1 cosθ1 = f0 + th1 , (81)

where θ j are the angles of the C4T 2 unit in j-stage when the external load f0 is applied.
So, the compressive load of every bar in the C4T 2i structure is

fi =
f0 +∑i

j=1 th j ∏ j−1
s=1 2cosθs

∏i
r=1 2cosθr

. (82)

For strings in j-th stage, equilibrium conditions yield

t j = 2 f j sinθ j j = 1,2, . . . , i. (83)
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With (81), we have

t j = 2sinθ j
f0 +∑ j

r=1 thr ∏r−1
s=1 2cosθs

∏ j
p=1 2cosθp

. (84)

From (82) and (84), we can express f0 in terms of other quantities as

f0 = fi

i

∏
r=1

2cosθr−
i

∑
j=1

th j

j−1

∏
s=1

2cosθs

= t j
∏ j

p=1 2cosθp

2sinθ j
−

j

∑
r=1

thr

r−1

∏
s=1

2cosθs. (85)

From the geometry,

cosθ j =
lh j

2lh j+1

,

sinθ j =
lt j

2lh j+1

j = 1,2, . . . , i−1, (86)

where lh j+1 = li.
Substitute (86) into (85), we will have force to length ratio of the structure f0/l0 which is

f0

l0
=

fi

li
−

i

∑
j=1

th j

lh j

=
t j

lt j

−
j

∑
r=1

thr

lhr

j = 1,2, . . . , i.

APPENDIX V. GEOMETRICAL RELATIONS IN C4T 2i STRUCTURE
Under the assumptions of constant stiffness of bars and strings, (43) becomes

ki

(

li,0
li,a
−1
)

=
i

∑
j=1

kh j

(

1−
lh j ,0

Lh j

)

=
i

∑
j=1

kh j

(

1− L j−1

Lh j

)

, (87)

kt j

(

1−
lt j ,0

lt j ,a

)

=
j

∑
r=1

khr

(

1− lhr ,0

lhr

)

=
j

∑
r=1

khr

(

1− Lr−1

Lhr

)

. (88)

From these equations, we have

ki

(

li,0
li,a
−1
)

= kt j

(

1−
lt j ,0

lt j ,a

)

,

li,a =
li,0

1+
kti
ki

(

1− lti,0
lti,a

) . (89)

Form (42) and (88), we have for r-th stage, where r = 2,3, . . . , i,

khr

(

1− lr−1

lhr

)

= ktr

(

1− ltr ,0
ltr ,a

)

− ktr−1

(

1− ltr−1,0

ltr−1,a

)

,

arFr−1

Lhr

= ktr

(

1− ltr ,0
ltr ,a

)

− ktr−1

(

1− ltr−1,0

ltr−1,a

)

,

ltr−1,a =
ltr−1,0

1+
arFr−1

ktr−1 Lhr
− ktr

ktr−1

(

1− ltr ,0
ltr ,a

) . (90)

20



APPENDIX VI. STIFFNESS EQUATION OF C4T 2i STRUCTURE

From (53), we only need to compute
dlt1
dlh1

in order to calculate the stiffness of C4T 2i structure. With the
assumptions of constant stiffness of bars and strings, (41) becomes

ki

(

li,0
li
−1
)

−
i

∑
s=1

khs

(

1− lhs,0

lhs

)

= kt j

(

1−
lt j ,0

lt j

)

−
j

∑
r=1

khr

(

1− lhr ,0

lhr

)

.

Taking the variation of all the length quantities yields

−kili,0
l2
i

δli−
i

∑
s=1

khs lhs,0

l2
hs

δlhs =
kt j lt j ,0

l2
t j

δlt j −
j

∑
r=1

khr lhr ,0

l2
hr

δlhr . (91)

If we define

Pj =
kh j lh j ,0

l2
h j

j = 1,2, . . . , i,

Qi =
kili,0

l2
i

,

S j =
kt j lt j ,0

l2
t j

j = 1,2, . . . , i,

and (91) becomes

−Qiδli−
i

∑
s=1

Psδlhs = S jδlt j −
j

∑
r=1

Prδlhr . (92)

For j = i in (92), we get the differential relationship between li and lti as

−Qiδli = Siδlti . (93)

For j = i−1 in (92), we have
−Qiδli−Piδlhi = Si−1δlti−1 , (94)

but from the geometry
l2
hi

= 4l2
i − l2

ti ,

and take the variation of length quantities gives

lhiδlhi = 4liδli− ltiδlti ,

δlhi =
4li
lhi

δli−
lti
lhi

δlti ,

and with (93),

δli =

[

4li
lhi

+
ltiQi

lhiSi

]−1

δlhi . (95)

So, (94) becomes

−
{

[

4li
lhi

+
ltiQi

lhiSi

]−1

Qi +Pi

}

δlhi = Si−1δlti−1 ,

−Qi−1δlhi = Si−1δlti−1 ,

(96)
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where we defined

Qi−1 =

[

4li
lhi

+
ltiQi

lhiSi

]−1

Qi +Pi.

Generalize the above steps for j = 1,2, . . . , i−2 and we will obtain

−Q jδlhi+1 = S jδlt j ,

Q j =

(

4
lh j+2

lh j+1

+
lt j+1Q j+1

lh j+1S j+1

)−1

Q j+1 +Pj+1.

In summary, we have

dlt1
dlh1

= −
(

4
lh2S1

lh1Q1
+

lt1
lh1

)−1

,

Q j =

(

4
lh j+2

lh j+1

+
lt j+1Q j+1

lh j+1S j+1

)−1

Q j+1 +Pj+1 j = 1,2, . . . , i−1,

Qi =
kili,0

l2
i

,

S j =
kt j lt j ,0

l2
t j

j = 1,2, . . . , i,

Pj =
kh j lh j ,0

l2
h j

j = 1,2, . . . , i,

lhi+1 = li. (97)
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