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Estimation and Control of Systems with Multiplicative Noise via
Linear Matrix Inequalities

Weiwei Li, Emanuel Todorov and Robert E. Skelton

Abstract— This paper deals with the estimation and control This paper focuses on the study of estimation problem
problem constrained to multiplicative noise for linear discrete-  for multiplicative noise system using LMIs. Reference [3]
time systems. First, the design of the_ state feedback controller_, devised an LMI approach to the robust control of stochastic
such that the closed loop system is mean square stable, is . S .
presented. Second, the sufficient conditions for the existence Systems_WIth mul_tlpllgatlve noise. In [5]_ we study the
of the state estimator are also provided; these conditions are State estimation with signal-dependent noise model for the
expressed in terms of linear matrix inequalities (LMIs), and continuous time systems. The contribution of this paper is
the parametrization of all admissible solutions is addressed. to propose an LMI method to cope with the estimation
E;\;I‘ﬂ'yagg tﬁzt';)"e‘ﬁcg:m‘;enség“Ofat‘;]'gossiihmz':to‘;oirsmggg?ngj'Eg problem for the discrete time systems with multiplicative
means of the numerical examples. noise. Wg shall show that a mild additional constraint for

scaling will make the problem convex.

The paper is organized as follows. In section Il the filter-
ing and control problem for discrete time system subject to
multiplicative noise is formulated. The design of the state

The filtering and control problem for the systems withfeedback controller is developed in section lIl. In section
multiplicative noise has recently received a great deal af/, the sufficient conditions for the existence of the state
attentions, and has found applications in many fields adstimator are given, and an algorithm for the filtering desig
sciences and engineering. Different from the traditiongk derived which guarantees the performance requirement.
additive noise, multiplicative noise is more practicahcg it  Section V presents two numerical examples, and some
allows the statistical description of the multiplicativeise Conc|uding remarks are drawn in section VI.
be not knowna prior but depend on the control and state Throughout the paper, the notation used is fairly standard.
solution. Such models are found in many physical system$he transpose of a real matrit is denoted byA”; for
such as signal processing systems [2], biological movemegymmetric matrix, the standard notation0 (> 0) is used
systems [4], [13], [14], [15], [16] and aerospace enginepri to denote positive definite matrix (positive semi-definite
systems. matrix), and the notation< 0 (< 0) is used to denote

One important benefit of the muItipIicative noise in a |in-negative definite matrix (negative semi-definite matrix);
ear control problem is that the controllers for multiplieat is used to denotédim,_...c(-), where ¢(-) denotes the

systems appear robust. This is in contrast to LQG theorg¥xpectation. We also denote By any matric such that
where the minimum variance occurs at infinite control gaingL g — (.
which renders the solution of problem unstable. Therefore,
the multiplicative noise system has a significant effect on
the robustness of the overall control system [3], [6], [7], Il. SYSTEM MODEL AND PROBLEM FORMULATION
[12]. i _Consider the following discrete time system with state
So far, many researchers have been working on Var'ogﬁace representation
kinds of analysis of filtering and control in systems with
multiplicative noise, and there have been several appesach zy+1 = (Ax + As ki) Tk + (Bi + Bs k€k)ur + Dywy,
for dealing with this problem, including the linear matrix . — (H, + H, ,.¢x)2k + v, 1)
inequality approach [2], [3], the Riccati difference eqoat '
method [9], [14], [16], and the game theoretic approach Yr
[8]. Since this model reflects more realistic properties ifwhere z;, € R™= is the state variablez;, € R™: is the
engineering, a complete theory which includes control angheasurement output, € R™ is the output of interest
estimation should be developed. for performance evaluationy, € R™ andv, € R™ are
_ , _ _ the process and measurement noiggsg; and(; are the
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I. INTRODUCTION

= Cyxy,



will determine if there exists a control gain K such that Proof: With the change of variablé := K X, (8) can
coo{yLyr} < p is satisfied for the givem. be written as

Second, we consider (1) whet®,, and B;; are zero. 1 T T
The objective is to design a linear filter with the state space (ApX + Brl) X ™ (A + Brl)” — X+ Aqp XA,

representation + By LX'L"B, <.
Zrir = Apip + F(zi — Hidp), @) Utilizing the Schur complement formula, the above in-
N N equality can be immediately written as (9). [ |
Uk = Ci2x, (3)

Theorem 2:For a given scalayp > 0, if there exist a

\t’mefr"et;k ';nthti Egbéaestggmie:g(;nzechoir;:f Et?ﬁq'; E symmetric positive definite matriX and a matrixL such
9 k k that (9) is satisfied and

asymptotically stable, and the estimation error has cevari

ance less than a specified matrix. The estimation error is trace[Cy XCY] < u, (10)
Tk = g — &y, @nd the estimation error system is given bythen there exists a state feedback controller gain K such
Trp1 = (Ap — FHy)Tp + @y, (4) that the closed loop system (7) is mean square stable and

ik = Crin 5) coo{yfyr} < p. And the corresponding feedback control
’ Y gain is given byK = LX .

where
Proof: The result follows from Theorem 1 and

W = Dywi + As pmery — FHg .Gy, — Fog, (6
k KWk ENETE KCRTH & (6) eo{yT ) = trace|Cen {anaT }CT)

and Uk denotes theT estimation error of particula_r'interests. < trace[CLXCT] < p,
In this paper we will explore the existence condition of the
state estimator. We will be able to provide the sufficienwhich concludes the proof. u

conditions for the existence of the state estimator based

on Linear Matrix Inequalities (LMIs). The key idea of this IV. FILTER DESIGN

filtering problem is to find the estimate, of x; such that . .

the performance criterion.. {77} <  is satisfied for A. Existence Condition

the given(. To solve the filter design, we will consider the augmented
adjoint system. Combining the filter (2) and the estimation
error dynamics (4), it yields

I11. STATE-FEEDBACK CONTROLLERDESIGN
, _ Xpp1 = Axp +F Nopxy + HGexp + Dwy,  (11)
Consider the system (1) whetg is excluded, the state-

feedback control law is the form, = Kz}, now the closed Where

loop system is the following o — < ik ) ’ Wi — ( j};k > ’ (12)
Tpy1 = (Ap + B Kz + (As ki + Bs ik Ker)xr, + Dywi, Ak " FH. 0 i
yr = Crrg. (1) A= ( kFHk g A, > = Ao + Bo F'Co, (13)
We first find the state feedback control gain K such that the N Asr Ask 14
closed loop system is mean square stable. Assuming that 0 0 ’ (14)
the upper bound of state covariance matrix associated with —FH,, —FH,,
system (7) exists, which is described &s> e {zz] }, H= ( FH., FH.. ) = By F'Go, (15)
it should satisfy the following Lyapunov inequality D > I °
— ko —
(A + BrK)X (Ap + BeK)" — X + A, . X AT, b= ( 0 F ) = Do+ BoF'Eo, (16)
T nRT _
+ By KXK' B!} <0. (8) I O T B A 17)
0 A I
Theorem 1:There exists a state feedback controller gain Co=( Hp 0) Do — D, 0 (18)
K such that the closed loop system (7) is mean square stable ~° — k ’ 0= 0o 0 )’
if, and only if, there exist a symmetric positive definite G, — ( Her Hex ), Eo=(0 I). (19)
matrix X and a matrixZ such that We start b 7d i ’ " bound of the stat _
e start by defining the upper bound of the state covari-
xAT fLTB,{ AkX)‘(" BiL Asé“X BS(’)’fL . ance matrix of system (11) as
XAT, 0 X 0 =Y X > eofxaxi}, (20)
L"BT, 0 0 X

) if it exists, it should satisfy the following Lyapunov inegju
And the corresponding feedback control gain is given b{}y:

K= LX-\. 0> AXAT — X + NYNT + HXHT + DWDT, (21)



where W = w o ) is symmetric and positive defi- AT AT = 0. The following statements are equivalent:

nite. Substitutior? of ‘(/1 ), (15)-(19) into the above indgua (i) 270z <0, VI'Tex =0,Az =0z #0. 27)
ity, yields (i) Ttert’ <o, (28)
0 > (Ao+BoFCo)X(Ag+ BoFCo)" — X AT @ATLT < 0. (29)
FNENT + (BoFGo)X (BoFGo)" (i) 31,z € RO — T <0, (30)

+(Do + BoFEo)W(Dy + BoFEp).  (22) O — usATA < 0. (31)

(iv) IFe R™* . TFA+ (TFAT +©<0. (32
Lemma 1:The inequality (22) can be rewritten in a form
Note that Finsler's Lemma can be applied to obtain LMI

I'FA+ (TFANT +0 <0, (23) formulations in control and estimation theory. By applying
the Finsler's lemma, we obtain the following theorem.

where
—X+NXNT 0 AgX DWW Theorem 3:The condition (28) and (29) are equivalent
o— 0 -X 0 0 (24) to the following statement: there exist symmetric positive
- xAL 0 -X 0 ’ definite matricest, P € R2"=*2"= that satisfy
WDT 0 0 -W
0 XP=1, (33)
Bo .
r— 8 7 (25) B (Ao X AT — X + NXNT + DoWDI)By < 0, (34)
0 0 \* [/ -P+PNXNTP 0 PAy PD,
B GT 0 -P 0 0
A=(0 GoX CoX EW ). (26) o ATP A S
Proof: We start by using the Schur complement, the\ Eq DP 0 0o -w
inequality (22) can be written as |7
0
— X+ NXNT (BoFGo)X AX DW | ar “0 (35)
X (ByFGo)T —X o0 | _, Co '
XAT 0 X 0 ’ ET
wDT 0 0o -w

Proof: According to Lemma 1 and Finsler's Lemma,

. ) . . _ . iy we substitute the following matrix
where A is defined in (13)D is defined in (16). Utilizing

the structure of the above matrix and substituting (24) into By + By 0 0 0
the above inequality, it obtains rL_ 0 _ 0 I 0 0
o 0 o 0 0 I O
lf)o 0 0 00 I
O+ 5 |F(0 GoX CX EW) and (24) into (28), it yields
0 BE(-X + NXNT)BE" 0 BE(AwX) BiDow
By T 0 -X 0 0
(] Y [ Feo Gx cx Ew)) <o CATBS o0 0 N
0 0 0 0 ) WDS“BOLT 0 0 —-W
0

A Schur complement of this matrix is

With the use ofl* and A given in (25)-(26), the above (

L T T Ty LT
condition can be equivalently written as (23). [ By (AcXAg — X + NXNT +DoWDo ) B 0 ) <0,

0 -X
It is important to notice that the filtering design problemwhich is equivalent to (34) an& > 0. Furthermore, noting
has been converted into looking for the solution of F in thenat
inequality (23). In order to find the existence conditions N .
of the state estimator and the parametrization of all the 0 A 0_ 0

solutions, the following lemma will be introduced from A7+ _ [ G4 0 X' 0
[11]. cr 0 0 x! 0 ’
EF 0 0 0o w-!

Lemma 2 (Finsler's Lemma)tet z € R", © = ©7 €  defining X¥~! = P, and substituting (24) and the above
R™™, T'e R™™ andA € RfX”. Let I't be any matrix matrix into (29), (35) can be verified which completes the
such thatl'*T" = 0. Let AT be any matrix such that proof. [



The previous theorem provides the existence conditioB. Filter Design
for the state estimator, and the characterization given in | the previous section, a sufficient LMI condition for

Theorem 3 is necessary and sufficient. However, we intrghecking the existence of state estimator has been given.

duce a nonconvex constraidf P = I, which makes the Here it is dedicated to provide the conditions that guagante

problem more difficult to solve. The next theorem showsgne additional closed loop system performance. We will

how to rewrite these conditions into convex constraints byetermine a state estimator F such that the performance

using Finsler's Lemma again. criterion, e, {757} < Q, is satisfied. The fundamental
algorithm that enables us to solve the filtering problem is

Theorem 4:There exists a state estimator gain F to solveerived from the following theorem.
(21) if there exist a symmetric matriR € R?"=>2"= and

p1 < 0,p2 <0 € R that satisfy Theorem 5:There exists a state estimator gain F such
that sm{gkg,{} < Q if there exist a positive definite

P >0, (36) symmetric matrixP € R?"=*2%= andpu; < 0,42 <0 € R
P PA, PN PD, PB, that satisfy (37), (38) and
AP —-P 0 0 0 Q  Cy
NP0 —-P 0 0 | <0, (37 ( gl p ) >0, (39)
DIP 0 0 -wl' 0 where
BI'P 0 0 0 1 _
0 i Co=Cy[T 0]. (40)
-P 0 PAy PD 0T PN All the solutions F are given by
0 —-P 0 0 G 0
ATP 0 —P 0 CO% 0 F=—R'TTOAT(AGAT) ! + S12L(ADAT)~1/2,
pip 0 o —wt' Bl o |[<% (41)
0 GO Co Eo [LQI 0 Where
NTP 0 0 0 0o -P S=R1'—R'TT[® - dAT(AGAT)'ADITR™'. (42)

(38)
L is an arbitrary matrix such thgfL|| < 1 and R is an
Proof: The result follows from Theorem 3 and thearbitrary positive definite matrix such that

Finslers Lemma. We note that the inequality (34) holds if,

and only if, o= TR 'TT-0)"' >0, (43)
and
XAL — X + NXNT + DoWDE — 1uBoBE < 0
Ag X Ay + NXN* +DoWDy — uBoBy < Pl NPINT 0 AP DoW
holds for someu; < 0 by Finsler's Lemma. Applying the ¢ _ 0 -pPt 0 0
congruence transformation p=taAl 0 e 0 ’
wDE 0 0 -W
X N A XA =X+ NXNT+DoWD] — 111 BoBS )X~ < 0, By
with P := X~! > 0 and the Schur complement, (37) cany — 0 ,
be verified. 0
If the inequality (35) holds, it is equivalent to the exis- 0
tence of au, < 0 such that A=(0 GoP™' CP™' EW).
—~P+PNXNTP 0 PAy PD, Proof: We know that
0 -P 0 0 o o -
AgP 0 _p 0 £Oc{yky,{} =Ck aw{xkxg} Cg =CrXC, <Q,
DI'P 0 0o -—-w-! where the state covariance matikis defined in (20) and
Cy is given in (40). With the definition? := xX~! > 0,
0 the inequality (39) can be manipulated by using the Schur
GT complement. And the proof for solving F follows a similar

Bl e (0 Go G By )<0. approach in [11]. [
We observe that the optimization approach proposed in

Applying Schur complements twice, it obtains (38) whichthis theorem is a convex programming problem stated as
is the desired conclusion. m LMis, which can be solved by efficient methods.

Since the inequality (37) and (38) are LMls, the existence
of a feasible solution for the state estimator is a convex V. NUMERICAL EXAMPLE
problem which can be solved with the use of many available In order to determine the applicability of the method, two
algorithms. examples to solve for the system design are presented next.
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A. Four Mass Mechanical System )
Consider the four mass mechanical system with springs
and dampers depicted in Fig. 1. The discrete-time systen 1'0 2'0 3'0 4'0 50
dynamics is described in the following state space form Time
T AT 0 Fig. 2. Estimation error (from state 1 to 4)
= CAMTIK T-AMT'G }‘””{ AM™'D }‘”k’
(44)
with the measurement 5
2p = (H 4+ HyCp)xp + vk, (45) =
o
and the desired output E
i)
= 46 c /\
yr = Cay, (46) E O \ /\ // N {}/,\A/%/ O
where i
_ g
my 0 0 0 bp 0 0 O g8
0 me 0 0 o 00 o0 @
M= 0 0 ms O &= 0O 0 0 0 [’
0 0 0 my 0 0 0 b5 -5 : - - :
- 0 10 20_. 30 40 50
ki+ky  —ko 0 0 Time
. —ko ko + k3 —ks 0 ) L
K= 0 ks ks + iy “ky , Fig. 3. Estimation error (from state 5 to 8)
i 0 0 —ky ka + ks
100 0]
D= 010 0 } , C=0H, B. Biomechanical Hand Movement System
r Consider the hand modelled as a point mass (m = 1kg)
1 0 0 0 000 O . . i ! :
H= 0 0 ki _katks o o g _bs | whose one-dimensional position at time t is p(t), and the
L ma ma ma velocity at time t is v(t). The combined action of all
go— |02 0000000 } ’ muscles is represented with the force f(t) acting on the
L 00000000 hand. The control signal u(t) is transformed into force by
d adding control-dependent noise and applying a second order
an muscle-like low-pass filter
mi=my=myg=1 mz=2, b =5 b;=2, o f () + (71 4+ 712) £ () + F() = u(®),

ky=ks=ki=1 k=2, ks =4 wherer; = 7 = 0.04sec. We know that the above filter

Note thatwy, v, and ¢, are uncorrelated zero mean can be written as a pair of coupled first-order filters

Gaussian white noise sequences with unity covariance. And ng+g=u, Tf+f=g
A is the time step (0.01sec). The performance criterion for ) ) ) .
the filter design iszo (gl }is < @ whereQ = 0.01. The sensory feedback carries the information about positio

Fig. 2 and 3 demonstrate the performance of the ﬁlte\felocity and force. The discrete-time system dynamics is

introduced in this paper, where the error of each state Varq_escribed as following

able i_s plotte?. ;]I'he si_mula_ltion resul;{sho{vvs thjg’;]the output Tpt1 = Az + B(1 + oce)ur + wi,
covariance of the estimation error afec{yxyr" }|1,1 = C(H+H 47
0.001, [oo {%k ¥k }2.2 = 0.0005, which satisfy the design ar = (H + HCp)ay + vr, (“7)
requirement, since both @001 and0.0005 < 0.01 yr = Huy.



are found in many physical systems, such as signal process-
ing systems, biological movement systems, and aerospace
engineering systems.

An LMI based approach is examined in this paper for
the design of the state estimator with multiplicative noise
systems. The proposed approach provides the sufficient
conditions for the existence of state estimators and a
parametrization of all admissible solutions. By adding a
mild constrain, the original filtering problem is solved as
a convex problem. The simulation results demonstrate the
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0
_5 L L L
0 10 20 _. 40 50
Time [1]
Fig. 4. Estimation error for hand movement system 2]
where 3]
T T
ze=(pr v fo gr) , ve=(px v fr) ., [
(1 A 0 0 0 (5]
A 0 1 A/m 0 B 0
- 0 0 17A/7'2 A/TQ ’ B 0 ’ 6
00 0 1-A/n A g
1 0 0 0 00 0 0 .
H=|0100/|, Ho=|0 0 0 0|, Y
10 0 1 0 0 0 0125 0

and wg, vk, €k, (. are independent zero-mean Gaussians]
white noise sequences with covariance

QE — I, [9]

0 =1.

Q¥ = (diag[0.01,0.001,0.01,0.01])?,
Q0 = (diag[0.01,0.1,0.5])?,

Note thato. = 0.5 is a unitless quantity that defines the[m]

noise magnitude relative to the control signal magnitude.
And the time stepA = 0.01sec. (11]
Given a controller

[12]
up = [ —1.6032 —3.0297 —0.3361 —2.7793 |y

such that the system (47) is mean square stable, the objec-
tive is to find a state estimator that bounds the estimatidh’
error below a specified error covarianées, {4 v’ }is <  [14]
Q whereQ2 =0.1.

Fig. 4 illustrates the performance of the filter introduceq, 5
in this paper, where the error of each state variable is
plotted. The simulation result shows that the output co-
variance of the estimation error afe..{yx¥i’ }]1.1 [16]
0.0198, [coo{tk¥k’ Hao = 0.0037, [Eoc{tkti’ }3.3
0.0018 < 0.1 which satisfy the design requirement.

VI. CONCLUSIONS

Multiplicative noise models are more practical than nor-
mal additive noise models, since they allow the statistical
description of the multiplicative noise be not knoaprior
but depend on the control and state solution. Such models

convergence of the system design.
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