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Si Nano/Micro-Shaping for Reduced Cost Photovoltaic Solar Cells

 

1. Low cost Si slicing for photovoltaic cells [Drastically reduced kerf loss]
2. Thermoelectric materials [Easy scale-up manufacturing of nano-grained TE 

materials.] 
3. Wear-resistant, self-cleaning, superhydrophobic coatings [Ceramic based, 

teflon-free, inexpensive and durable super-omniphobic coatings on glass, 
plastic and other surfaces]

4. Concentrating solar power (CSP) system, solar-thermal generator [Spectrally 
selective, sunlight-absorbing coatings]

5. Dye sensitized solar cells (DSSC) and perovskite sensitized solar cells (PSSC) 
[FTO glass free, transparent and high-electrical-conductivity electrodes]

6. Compliant thermal interface material (TIM) [To provide mechanical stress 
accommmodation and high thermal conductivity simultaneously]

7. 7. Ultra-high-density vertical solar cell array [DUV processed or nano-
imprinted Si]

8. Sunlight reflective coatings [To keep buildings and automobiles cooler in the 
summer and warmer in the winter]

9. Universal solders [For easy integration of solar cells involving difficult-to-
bond surfaces like Ag-free metallic electrode surface]

Solar Energy Related Technologies R&D (2010 – now)
--- Innovative approaches to solve some major problems

  
       

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermoelectric Materials   
--- The thermoelectric figure of merit (ZT) can be expressed as ZT = (S2σ/k)T  (where S is the 
Seebeck Coefficient, σ is the electrical conductivity, and k is the thermal conductivity. For higher 
ZT, these materials parameters need to be optimized. 
--- Thermoelectric (TE) alloys such as Bi-Sb-Te and skutterudites are promising energy materials 
for waste heat recovery and solar energy generation. For enhanced TE properties such as the 
energy conversion efficiency, it is essential to increase the phonon scattering and reduce the 
thermal conductivity. Various nanoparticle synthesis techniques based on physical, chemical or 
mechanical approaches are utilized to produce variety of nanoparticles of thermoelectric alloys 
and sintered nanograined alloys having excellent thermoelectric properties. Further nanostructure 
controls are being investigated to increase the phonon scattering, Seebeck Coefficient, and 
electrical conductivity of various thermoelectric materials. 
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 to obtain thin microsheets of sliced Si.

Thin sliced Si ribbons, pillars, bent nanowires by catalytic shaping

~20 μm thick 
x 200 μm tall 
Si sheets on 
Si base

5~10 μm dia. x ~200 
μm tall Si micro pillar 
array on Si base
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(a) SEM Image of Bi-
Sb-Te thermoelectric 
allot nanoparticles
with ~30nm dia., (b) 
TEM of spark plasma 
sintered (SPS) Bi-Sb-
Te thermoelectric 
alloy with desirable 
nanograin structure 
for enhanced phonon 
scattering.  
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--- Wear resistant, superhydrophobic glass surface made of 
transparent ceramic nanostructure, rather than easily smearable
polymer coatings. Such coatings are needed for many industrial 
and consumer market applications. 
--- For anti-fingerprint surface (on cell phones or touch-sensitive 
screens), both superhydrophobic + superoleophobic properties 
are needed.
--- Also, for “maintenance-free, antir-eflective PV cell array and clean  
high-rise-building window glasses.
--- Such transparent ceramic coatings have been developed (past 
5 yrs R&D effort), and scale-up manufacturability is being considered 
in the nanostructure design and processing.
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(a) Seebeck coefficient, (b) Lattice thermal conductivity and (c) ZT, vs measurement temp of 
Bi-Sb-Te thermoelectric alloy after spark plasma sintering.   
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Self-Cleaning Surface --- water nonwetting & oil nonwetting are 

θc

necessary conditions.

--- Schematic illustration of contact angles for hydrophilic,hydrophobic, and 
superhydrophobic surfaces. A similar definition of oleophilic, oleophobic and 
superoleophobic, also applies for oil wetting instead of water wetting. 
--- Super-omniphobic ceramic surface (having both superhydrophobic and 
superoleophobic) has been demonstrated.

Self-cleaning glass surface
--- Nanostructured glass or silica surfaces having superhydrophobic and 
omniphobic properties have been developed for maintenance-free solar 
panel surface (with minimal needs for washing/cleaning during solar cell 
use lifetime).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Composite of nanopillars/nanowires (providing super-omniphobic
nonwetting properties) and flat but transparent shoulder grid array 
(providing non-scratch wear resistance).  
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JIS K 5600 Standard 
Hardness Tester using 
45o Tilted Pencil for 
scratch testing for 
evaluation of wear-
resistance

Pencil 
geometry

5-6 mm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wear resistance tested on 

Obvious 
fingerprint 
mark

(a) SiO2 w/o 
anti-fingerprint 
patterns

Less obvious fingerprint mark

(b) SiO2 with anti-
fingerprint patterns

Grid Width/Spacing=10 µm/200 µm)

Grid Width/Spacing=10 µm/1,000 µm)

50μm (c)

50μm (d)

Permanent 
scratch 
damage for 
far apart 
grids

No permanent 
scratch damage 
(only carbon 
debris caught)
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Anti-fingerprint 
micropillar version surface

tested (promising 
results)

hardness (strong enough 
with H=9) with some graphite, 
now switching to nanopillar

version to prevent pencil 
debri trapping, for AR)  

SEM of easily manufacturable
nano pillar version surface 
with improved ~98% light 
transmission and already 
having only ~2% reflectivity 
(Self-cleaning + AR coating)  



 
Concentrating Solar Power --- High Performance Nanostructured 

Spectrally Selective Coating 
 

• Concentrating solar power (CSP) --- A viable, commercialized technology 
that competes effectively with the photovoltaic solar energy. This Carnot 
cycle based energy conversion is based on focusing sunlight onto the 
Spectrally Selective Coating (SSC) on a steel pipe that contains a molten 
salt heated by the absorbed thermal energy. The molten salt is sent to the 
power plant where steam is generated to operate steam turbines and 
generate electricity. The solar thermal Carnot cycle efficiency is high, ~40% 
at the current operating temperature of ~450oC. the goal of this DOE-
funded project is to further increase the efficiency toward ~60% regime by 
developing new, more efficient, sunlight absorbing SSC layer that will 
enable a 700-750oC CSP operation. These efficiency values are much 
higher than the typical photovoltaic energy conversion efficiency (~25%). 

• Spectrally selective coating (SSC) --- A critical component that enables 
high-temperature and high-efficiency operation of concentrated solar 
power (CSP) systems. SSC has a profound impact on the performance 
and cost of CSP systems. The optical properties of the SSC, namely, 
absorption in the solar spectrum range (UV/Vis) is maximized by 
materials design as we pursue a bandgap-adjusted, nanoparticle 
semiconductor materials while  the reflectance, while the undesirable 
black body emission loss in IR (infrared) regime is minimized. 

• For higher temperature operation to achieve higher Carnot efficiency, the 
semiconductor material nanoparticles need to be p , 
e.g., with the synthesis of a variety of nano tures. 
configuration surface layer as investigated in this project.    
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Rare-Earth-Free Permanent Magnet Alloys 
--- The high price of rare earth metals, especially Dy utilized in Nd-Fe-B magnets has 
instigated active R&D toward new, rare-earth-free permanent magnet materials. 
--- We employ a spark erosion technique to easily produce nanoparticles of Mn-Bi 
magnet alloys so that the high magnetocrystalline anisotropy of the material is fully 
utilized with minimal domain wall motion.  Soft-magnet / hard-magnet exchange coupled 
spring magnets with higher coercive force are also being developed.  
 

 Spark erosion principle for nanoparticle synthesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Smell-O-Vision Devices Using X-Y Matrix Controlled Odor Release

 
 
 
 
 
 
 
 
 

50 nm

TEM of spherical, single domain 
MnBi particles (d<30 nm). 

   
--- Virtual reality can be made more realistic with a three-dimensional or other sensory 
input. Out of the five senses humans have (i.e., vision, sound, smell, taste and touching), 
we have already incorporated the first two senses in modern communications and 
entertainment systems such as TVs, mobile phones, computers, and movies.  
--- To enhance the quality of entertainment and communications, it would be nice to 
incorporate another sense, a sense of smell. Synchronization of odor release to the 
corresponding image on the screen can be accomplished conveniently by electronic 
signals using a reliable, inexpensive, and not cumbersome device.  
--- Odor releasing devices that allow easy on-off switching of odor flux could have a 
significant impact on the effectiveness of virtual reality. We have developed a fast, 
repeatable new odor/gas releasing system having a novel X–Y matrix addressable 

Hc vs Temp. for spark 
eroded MnBi
nanoparticles
--- Hc approaching 30 KOe
--- The stability of Hc well 
beyond 200oC, up to 
~300oC (573K) 
demonstrated.
--- Exchange coupled core-
shell magnets being 
designed.
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capability. The device lasts for a long time as the scent release on-off takes only milli-
second and the battery use is minimal. 
--- Odor generating system with improved kinetics and reliability, test controllability with 
a system embedded in TV, and demonstrate programmable odor release in a 
synchronized manner together with the visual images on screen are being investigated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Four-scent release demo video (for 
Computer Monitor, TV or Cell Phone)  
--- Coffee, pizza, perfume, and fresh-
cut grass, featuring Dr. Calvin Gardner

Hinged 
armature for 
scent release

Wearable headset for Virtual 
Reality (VR) or Augmented 
Reality (AR)
--- Add various selective, on-
demand scents to headset and 
other computer or 
communication devices

Laboratory demo of X-Y matrix odor release device

Odor Cells (3x3 Matrix)

Line Selector

Speaker 
System

Odor Generating System

Column Controller
Raw ControllerPower

I/O port
line 
selector

I/O port
Controller

TV 
Screen 
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ng TV (a) Jennifer Lopez TV scene with synchronized release of Jennifer Lopez perfume 
ve by Jennifer Lopez” ) smell. (b) Diagram of communication for the operation of hardware.
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Graphene Processing and Properties

Headset Prototype Demo (VR Images + 6 Scents release) video  

Communications/entertainments/VR-AR
--- Virtual Reality/Augmented Reality, Computer Monitors, Smell-o-Vision TVs 

(+ commercials, movies, perfume stores), games.
--- Odor release cell phones.
--- Advertizing products, smell-able food display, home and personal items. 
--- Cars/autonomous cars, airplanes, homes, businesses, etc.
--- On-Line-Shopping devices for many personal computers in the world.

Medical applications
--- Combinatorial synthesis /discovery of vapor-based new drugs.
--- Release of medical vapors or nano-mists in arrays or in mixtures. This 
can allow to overcome the Blood-Brain-Barrier problem to enable delivery of
Alzheimer’s Disease drug or Parkinson’s Disease drug to brain cells.

Security devices (for homeland security, military, civilian) 
(a) Remote release of neutralizing/decontaminant gas in the event of 

terrorist attack with toxic gas (e.g., in subway station)
(b) Capturing of enemy solders or intruders by releasing 

sedative/anesthesia gases or laughing gas (e.g., nitrous oxide). 
(c) Wearable gas release on soldiers uniform.
(d) Remotely controllable release of pungent foul smell like skunk smell to 

chase away intruders.

Potential Applications of Scent Release Devices
---Technology has been demonstrated and is ready for commercialization.

  
 
 
 
 
 
 
 
 
 
 

Graphene is a very exciting new material with many potential applications. 
For semiconductor use with graphene’s high carrier mobility and other 
unique properties, the band-gap has to be opened.
New Anodized Aluminum Oxide (AAO) template with smaller 40-50 nm dia

pores, 200-300nm thickness developed. 
Such AAO templates were utilized to pattern graphene layer (CVD grown 

on Cu substrate followed by removal of Cu). Honeycomb-geometry 
graphene was obtained so as to produce enhanced edge effect and band-
gap opening. Magnetic nano-island arrays are also being fabricated for 
enhanced magneto-transport properties.
Electronic and magnetic properties of nano-modified graphene layers are 

being evaluated.
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---------------- 
Carbon Nanotube Geometry Control

UV–VIS spectra of pristine and nano patterned (NP) graphene films on
quartz substrates, showing a significant increase of optical transmission
by nano-patterning.
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• Sharply pointed carbon nanotubes can have even smaller tip diameter because of elimination of 

catalyst particle radius of curvature. Such sharp tips are advantageous for enhanced field 
emission, high-resolution metrology, bio-insertion of molecules and functionalities, etc. 

• While straight carbon nanotubes are relatively easy to grow, curved or bent nanotubes are 
difficult to synthesize --- For technical applications, sharply bent or zig-zag carbon nanotubes 
are important for nano spring applications, sidewall tracing scanning probes, routing of 
nanoelectronics interconnects, and possible introduction of defects to form hetero-junction 
nanotube semiconductor devices.  

  
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bending and orienting of Carbon Nanotubes:  
Experimental Setup and Electric -Field-Direction Modeling

First Growth Stage

Molybdenum 
Si Substrate

Electric Field Direction (Arrows)
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Nanofabrication of 10-15 nm features 
 
          E-beam patterned HSQ resist island array with  
           1.6 TB/in2 density on Si  

 
 
 
 

 
 
 

Magnetic Nanostructure and Patterned Recording Media 
• There is a need to substantially increase the density of magnetic 

recording media. 
• Patterned media with periodic array of ~10-20 nm regime magnetic 

nanoislands or nanowire magnets are highly desirable. 
• 0-20 nm nanomagnet dimension is well below the available lithography 

limit. 
• New, innovative synthesis/fabrication  approaches are desirable.   

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Upper Limit Recording Density vs Bit Size
Nano-Patterned 
Perpendicular 
Recording Media

Bit Size (nm)       2      3      5      10     12.5 15     20
(Period, nm)      (4)    (6)   (10)   (20)   (25) (30)  (40)
Recording Density 
(TB/in2)              42    18    6.5    1.6    1.0 0.7    0.4

Bit Size
(Nanomagnet
Diameter)

100 nm

Successfully 
Fabricated ~20 nm 
Diameter Vertically 
aligned CoPt
Nanomagnets in 
Anodized Aluminum 
Oxide Membranes

CoPt nanomagnets
(aluminum oxide 
matrix dissolved 
away to show the 
nanowires)      
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Nanotoxicity Study --- Response of PC12 newral cells to magnetic nanoparticles 
 
                                                                          Fe3O4 conc.=15 mM (dramatic reduction of cell ability to generate  
                                                                           neurites with increased concentration of of magnetic nanoparticles  
            Fe O  conc. = 15 mM                           --- ~spherical cell shape with much decreased surface area) 

 
Immunofluorescence of typical PC-12 cells 4 days after endocytosis.  Cytoskeletal structure shown  
with tubulin (fluorescein, green) and actin (rhodamine,  TRITC labelled phassloidin, red).  
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Examples of  Synthesis and Applications of Magnetic Nanoparticles
Potential Bio Applications – Cancer treatment, gene delivery, neural 
regeneration, drug delivery, magnetic cell sorting, MRI. 
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Temperature rise induced by remote magnetic field (100 KHz)
--- In a liquid containing various volume of magnetic nanoparticles. 
--- ~10 nm diameter Fe3O4 particles. 
--- Live cell magnetic hyperthermia experiments to be carried out.
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Magnetically Guidable, Remote-Controlled Drug Delivery 
Nanocapsules   
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Existing drug therapeutic techniques --- Inefficient in deep tumor 
drug delivery and lack on-demand drug release. 
• A new technique that allows better drug penetration into cancer
cell aggregates within tumors and subsequent switchable release 
is highly desirable. 
• Developed hollow-sphere nanocapsules containing intentionally 
trapped magnetic nanoparticles and defined anticancer drugs --- To 
provide a powerful magnetic vector under moderate gradient 
magnetic fields. 
• These drug-loaded nanocapsules can penetrate into the interior of 
tumors and allow a controlled on-off switchable release of the 
anticancer drug cargo via remote RF field. 
• This imageable smart drug delivery system is compact (80~150 
nm capsules). 
• In vitro as well as in vivo results --- indicate that these 
nanocapsule-mediated, on-demand drug release is effective in 
reducing tumor cell growth. 
• This magnetic vector nanotechnology may also be utilized to 
move the nanocapsules through BBB so as to release CNS drugs at 
selected locations.  
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Confocal microscopy images of the magnetic nanocapsule penetration into 
MT2 breast cancer cell colony using magnet gradient pulling force (vertical 
scale bar=50 µm) applied for 2 hrs by a Nd-Fe-B magnet (H=~1,200 Oe near 
the cancer colony location).  The Y-Z vertical section image, and X-Y 
horizontal section image near the bottom demonstrate a successful 
penetration of cancer colony by magnetic nanocapsules.

Tissue penetration by magnetic vector
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(b)

On-off switchable release from the magnetic nanocapsules. (a) Release of 
hydrophobic camptothecin (nanomole per mg nanocapsule, NC) by RF 
magnetic field on-off cycling (switch-on period=10 seconds, switch off=5 
minutes), (b) A similar switchable release is demonstrated for hydrophilic 
doxorubicin from the nanocapsules by RF field.

Hydrophobic drug release (CPT) Hydrophilic drug release (DOX)
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