Timely completion of design cycles for complex systems ranging from consumer electronics to hypersonic vehicles relies on rapid simulation-based prototyping. The latter typically involves high-dimensional spaces of possibly correlated control variables (CVs) and quantities of interest (QoIs) with non-Gaussian and possibly multimodal distributions. We develop a model-agnostic, moment-independent global sensitivity analysis (GSA) that relies on differential mutual information to rank the effects of CVs on QoIs. The data requirements of this information-theoretic approach to GSA are met by replacing computationally intensive components of the physics-based model with a deep neural network surrogate. Subsequently, the GSA is used to explain the surrogate predictions, and the surrogate-driven GSA is deployed as an uncertainty quantification emulator to close design loops. Viewed as an uncertainty quantification method for interrogating the surrogate, this framework is compatible with a wide variety of black-box models. We demonstrate that the surrogate-driven mutual information GSA provides useful and distinguishable rankings via a validation step for applications of interest in energy storage. Consequently, our information-theoretic GSA provides an ``outer loop'' for accelerated product design by identifying the most and least sensitive input directions and performing subsequent optimization over appropriately reduced parameter subspaces.