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Abstract

Quantitative models of transport phenomena play a significant role in understanding

and optimizing many energy-, environment-, and medicine-related processes. De-

spite remarkable advances in algorithm development and computer architecture, fine-

resolution/high-fidelity simulations remain a challenging and often unfeasible task

due to the nonlinear nature of coupled transport phenomena, the complexity and

heterogeneity of ambient environments, and the concomitant lack of sufficient data

needed to parameterize the models. The computational demands can be prohibitive,

especially in optimization, control and uncertainty quantification problems, where

thousands of simulations need to be run.

Reduced-order models (ROMs) have been developed to obtain “cheap” yet accu-

rate surrogates of high-fidelity models. The goal is to alleviate the expensive compu-

tational costs, while simultaneously capturing the underlying dynamic features. This

dissertation addresses several challenges in construction of conventional ROMs for flow

and transport problems, and introduces a physics-aware dynamic mode decomposi-

tion (DMD) framework to ameliorate the shortcomings of conventional ROMs. This

framework supplements DMD, a data-driven tool that uses best linear approximations

to construct efficient ROMs for complex systems, with physics-aware ingredients.

The first part of this dissertation presents a study on prediction accuracy of DMD.

While multiple numerical experiments demonstrated the power and efficiency of DMD

in representing data (i.e., in the interpolation mode), applications of DMD as a pre-

dictive tool (i.e., in the extrapolation mode) are scarce. This is due, in part, to the

lack of rigorous error estimators for DMD-based predictions. We derive a theoretical

error estimator for DMD extrapolation of numerical solutions, which allows one to
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monitor and control the errors associated with DMD-based ROMs approximating the

physics-based models.

In the second part of this dissertation, we demonstrate the shortcoming of con-

ventional DMD methods (formulated within the Eulerian framework) for transport

problems, in which sharp fronts play a dominant role in the dynamical systems. We

propose a Lagrangian-based DMD method to overcome this so-called translational

issues. This Lagrangian framework is valid only for smooth solutions, before a shock

forms. After the shock formation, characteristic lines cross each other and the pro-

jection from the high-fidelity model (HFM) space to the low-fidelity model (LFM)

space severely distorts the moving grid, resulting in numerical instabilities.

In the third part of this dissertation, we address this grid distortion issue in ROMs

of conservation laws with shock features. Then, we propose a shock-preserving DMD

method based on a nonlinear hodograph transformation that relies on the conservation

law at hand to recover a low-rank structure and overcome the numerical instability.

Finally, we propose an extended dynamic mode decomposition (xDMD) approach

to cope with the potentially unknown sources/sinks in inhomogeneous partial differ-

ential equations (PDEs). Our xDMD incorporates two new features, residual learning

and bias identification, which are inspired by similar ideas in deep neural networks.

Our theoretical error analysis demonstrates the guaranteed higher-order accuracy of

xDMD relative to standard DMD.

Our approaches exemplify the spirit of physics-aware DMD since they account for

the evolution of characteristic lines, the information about rarefactions/shocks and

the awareness of potential model inhomogeneity. The resulting ROMs are capable of

capturing key features of the underlying dynamics with higher-order accuracy than

conventional DMD. They do so at a small fraction of the computational time of the

iteration-based methods (e.g., proper orthogonal decomposition), which explains its

rapid adoption by engineers in a plethora of applications.
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Chapter 1

Introduction

Predictive capabilities are critical for sustainable utilization of subsurface environ-

ment, improving the access to energy resources, and developing cost-effective and en-

vironmentally safe operations. Examples of such predictive modeling include oil and

gas production [3, 4], geological CO2 sequestration [5–7], geothermal reservoirs [8],

nuclear waste disposal [9, 10], and subsurface contamination and remediation [11].

A recent focus has been to incorporate multi-scale complex systems with models in-

formed by the ongoing deluge of scientific data. The developments in data-driven

modeling have been driven by the urgent needs within the scientific and engineer-

ing communities. They aim to approximate the solution of the high-fidelity model

with significant speedup in applications that include, but are not limited to, surro-

gate modeling for future prediction, digital twins for real-time visualization, and fast

uncertainty quantification for model predictions.

Model reduction techniques can significantly reduce the (prohibitively) high com-

putational cost of physics-based simulations, while capturing key features of the un-

derlying dynamics. Such techniques have been used extensively in subsurface appli-

cations [12–18] and can be grouped in two general classes. The first is physics-based

ROMs, which seek to map a high-dimensional model onto a meaningful representa-

tion of reduced dimensionality; in this context, dimensionality refers to the number of

degrees of freedom in a discretized numerical model. A prime example of this class is

proper orthogonal decomposition (POD) [19–21], which is grounded in singular value

1



2 CHAPTER 1. INTRODUCTION

decomposition (SVD). It obtains a ROM by projecting the dynamics of the full model

onto the hyperplane using the basis extracted from the SVD analysis. The computa-

tional saving stems from replacing the high-dimensional full nonlinear system with its

lower-dimensional counterpart for future prediction. Such ROMs are physics-based

in the sense that they inherit the dynamic operator from the projection.

The second class of ROMs are surrogates. Instead of reducing a model’s dimen-

sionality, these methods aim to reduce its complexity by learning the dynamics of the

state variables or quantities of interest directly from the full model’s output and/or

observational data. These data-informed and equation-free ROMs are built by us-

ing such machine learning techniques as DMD [22, 23], Gaussian process regression

(GPR) [24, 25], random forest (RF) [26, 27], and neural networks (NN) [28, 29].

In this dissertation, we contribute to this second class by introducing a physics-

aware DMD framework, which combines the popular data-driven tool DMD with

physics-aware ingredients. It addresses the following challenging questions in conven-

tional ROMs:

• How accurate is the DMD-based ROM in prediction (i.e., in extrapolation

regime)?

• How to tackle the translational issue for SVD-based methods?

• How to preserve physical characteristics and honor conservations laws in the

constructed ROM?

• How to handle the nonlinearity and inhomogeneity from the HFM and enhance

the generalizability of the LFM?

We further discuss the above issues in details and propose the corresponding so-

lutions to ameliorate the difficulties in Chapter 2-5 respectively. The physics-aware

DMD framework summarized in this dissertation originates from four published pa-

pers [2, 30–32]. It has been rapidly adopted by engineers in fast predictions for geo-

potential fields [33], real-time control for robotic systems [34] and for wind farms [35],

modeling for pulsatile blood flow [36].
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1.1 Literature Review

We review POD-based ROMs and DMD-based ROMs as representative approaches

in the two general classes of ROMs respectively. SVD is widely utilized to extract

a low-dimensional structure from the data and thus serving as a fundamental tool

to construct ROMs from data generated with HFMs. While both POD and DMD

are based on SVD, they provide two independent approaches to constructing ROMs.

POD-based ROMs are built by deploying a projection (e.g., Galerkin projection) to

map a HFM onto a much smaller subspace. The efficiency and accuracy of POD in

nonlinear setting are increased by combining it with either the empirical interpolation

method (EIM) [37] or discrete empirical interpolation method (DEIM) [38]. DMD

is used to discover a spatiotemporal coherent structure in the HMF-generated data.

DMD’s connection to the Koopman operator theory of nonlinear dynamic systems [39]

is of theoretical interest [40–43], while its equation-free spirit facilitates its use in

conjunction with machine learning techniques [44, 45].

First, we provide a problem setup. Consider a real-valued state variable u(x, t),

whose dynamics is described by a boundary-value problem





∂u

∂t
= f(u,x), (x, t) ∈ D × R+;

B(u) = b(x), (x, t) ∈ ∂D × R+;

u(x, 0) = u0(x), x ∈ D.

(1.1)

Here, t denotes time; x is the spatial coordinate; D ⊂ Rd is the simulation domain

bounded by the surface ∂D; f is a (linear or nonlinear) operator that involves spa-

tial derivatives and sources/sinks functions; B is the boundary differential operator

describing Dirichlet, Neumann, and/or Robin boundary conditions; b(x) represents

boundary functions and u0(x) is the initial state.

The simulation domain is discretized with a mesh consisting of Nx elements

(Nx ≫ 1). A suitable numerical approximation of (1.1) yields a system of (coupled,
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linear/nonlinear, high-dimensional) ODEs,





du

dt
= f(u; s), u, s ∈ RNx ,

u(0) = u0, u0 ∈ RNx ,

(1.2)

where s comes from potential sources/sinks in f(u,x) and boundary b(x). Let F∆t :

RNx → RNx denote a flow map, which relates the discretized system state u at time

t = t0 to that at time t = t0 +∆t, where ∆t is a (sufficiently small) time increment.

There exists a flow map F , depending only on the time difference t − t0, which

represents the solution to (1.2) as u(t;u0, t0, s) = Ft−t0(u
0; s). Denote un = u(n∆t),

then the discrete-time flow map F∆t gives the evolution of (1.2):

un+1 = F∆t(u
n; s). (1.3)

Our goal is to learn the dynamic system f , or, more precisely, its reduced-order

surrogate, using M temporal snapshots of the numerical solutions. Let the numerical

solution un ≈ u(tn) with n = 1, 2, · · · , where the time lag between the input and

output states, ∆t, is assumed to be independent of n for the sake of convenience. In

practice, un+1 is solved by an iterative numerical scheme

R(un+1) = un+1 − un +∆tF(un+1,un) = 0, (1.4)

where F represents appropriate discrete approximations of the derivatives and R is

the vectorized residual of the scheme. Certain CFL condition needs to be satisfied to

ensure the stability of the scheme depending on the functional forms of f in (1.1) .

Simulation results obtained with the above method constitute our HFM. The discrep-

ancy between the ROM and PDE (1.1) stems from two sources: the error between the

ROM and the HFM (1.4) (numerical solution of certain order) and the error between

the HFM (1.4) and the PDE (1.1) (or its equivalent representation via flow map (1.3)).

Since we focus on the accuracy of the ROM compared to the corresponding HFM,

we used stable numerical scheme (specified in corresponding numerical tests) as the

HFM reference. One could improve the accuracy of the HFM by using a higher-order
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numerical scheme or obtaining an analytical solution.

A reduced-order, low-fidelity model (ROM) is constructed from a data set com-

prising a sequence of solution snapshots collected from the HFM (1.4). Let X denote

the data matrix, consisting of M snapshots of u,

X =




| | |
u0 u1 · · · uM−1

| | |


 , X ∈ RNx×M . (1.5)

Two alternative strategies for building a ROM from these data, both grounded in

SVD, are described below.

1.1.1 POD-based ROMs

POD was first proposed in [46] to identify the coherent structure in dynamical

systems. It is closely related to the principle component analysis (PCA) and the

Karhuen-Loève transform. POD-based ROMs have been widely applied in linear

subsurface flow problems [47] and nonlinear reservoir simulation problems [6, 37, 48].

The conventional POD method generates a ROM by using a low-dimensional

basis extracted from the data X in (1.5) to project the dynamics u(t) onto a lower-

dimensional hyperplane. If the data matrixX ∈ RNx×M has rankNdata ≤ min{Nx,M},
then the POD modes are constructed by using a reduced SVD,

X = UΣV∗, (1.6)

where U ∈ CNx×Ndata is the matrix of Ndata orthonormal columns of length Nx;

Σ = RNdata×Ndata is the diagonal matrix with real diagonal elements σ1 ≥ σ2 ≥ · · · ≥
σNdata

> 0; V ∈ CM×Ndata is the matrix of Ndata orthonormal columns of length M ;

and the superscript ∗ denotes its conjugate transpose. A ROM is constructed by

choosing a rank r (r ≪ Ndata), which satisfies a energy criteria, e.g.,

r = min
k

{
σk∑Ndata

k=1 σk
< ε

}
, (1.7)
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where ε is a user-supplied small number that determines the accuracy of the low-

rank representation relative to the original X. The rank truncation relies on the

energy criteria to find the best low-rank representation of X (see [49] for an in-

depth analysis). The size of the snapshot matrix depends on the temporal correlation

between snapshots, the dynamic of the governing equations and many other factors.

Generally, a data matrix with enough snapshots is capable of capturing the dominant

features of the underlying physical process. In (1.7), the rank truncation is only data-

dependent, i.e., it depends only on X. Next, the matrix U ∈ CNx×Ndata is replaced

with a matrix Φ ∈ CNx×r comprising r orthogonal columns of length Nx,

Φ =




| | |
ϕ1 ϕ2 · · · ϕr

| | |


 . (1.8)

The orthonormal vectors {ϕ1, · · · ,ϕr} form a POD basis. Finally, a ROM (low-

fidelity solution) is constructed by the Galerkin projection of u onto the low-dimensional

space spanned by the POD basis (also known as trial basis),

un
POD =

r∑

i=1

ûni ϕi = Φûn, ûn = [ûn1 , · · · , ûnr ]⊤. (1.9)

Substituting (1.9) into (1.4) and projecting onto the low-dimensional space, yields an

equations for the vector of coefficients ûn:

Φ⊤R(Φûn) = 0. (1.10)

Alternatively, one can use Petrov-Galerkin projection [50] and least-squares Petrov-

Galerkin projection [51] by enforcing the residual to be orthogonal to a different

low-dimensional test basis Φ̃, i.e.,

Φ̃
⊤
R(Φûn) = 0. (1.11)

Time evolution still needs to be computed but only in a small subspace of the
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original high-dimensional space. For linear problems, (1.10) or (1.11) can be solved

efficiently in a subspace of dimension r. However, solving (1.10) or (1.11) in a non-

linear form scales with the dimension Nx of the HFM. There are two general classes

of nonlinear function approximations to eliminate the computational bottleneck for

nonlinear model reduction. The first is to linearize the nonlinear function at multi-

ple locations in the state space. A prime example of such linearization approaches

is trajectory piecewise linear (TPWL) method. Applications of POD-TPWL-based

ROMs in subsurface simulations include [3–5, 52, 53]. The second class is hyper-

reduction approaches, such as empirical interpolation method (EIM) [38], discrete

empirical interpolation method (DEIM) [37] and Gauss-Newton with approximated

tensor (GNAT) [54]. The hyper-reduction approaches evaluate only a small sub-

set of the entries in the nonlinear function f and reconstruct all other entries by

interpolation strategies. POD-DEIM and POD-GNAT have been applied for model

reduction in many reservoir simulation settings [55–57]. Although the aforementioned

two classes of nonlinear model reduction techniques can achieve significant speedup

relative to the full-order simulation, the accuracy of the resulting ROMs cannot be

determined a priori. To the best of our knowledge, error estimates of POD-based

nonlinear model reduction approaches are lacking unless the fully resolved solution is

available or special assumptions are satisfied on the nonlinear terms.

1.1.2 DMD-based ROMs

DMD [58] has recently become a popular tool of data-driven regression. It belongs

to the family of SVD and has its origins in representation of complex fluid flows

in terms of their spatial modes and temporal frequencies [22]. This strategy for

representation of spatiotemporal coherent structures has since been used for data

diagnostics and related applications including video processing [23], interpretation of

neural activity measurements [59], financial trading [60], and forecast of infectious

decease spreading [61]. DMD with control has been developed to extract the input-

output characteristics of dynamic systems with external control [62]. It has also been

deployed to learn models of high-dimensional complex systems from data [63–65], in
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the spirit of equation-free simulations [66].

DMD is connected to interpretation of nonlinear dynamical systems via the Koop-

man operator theory [41, 43]. The latter provides a bridge between finite-dimensional

nonlinear dynamics and infinite-dimensional linear systems by observable functions

[39]. Theoretical studies of the DMD approximation to eigenvalues and eigenfunc-

tions of the infinite-dimensional Koopman operator show that the performance of this

finite eigen-approximation depends crucially on the choice of observable functions, re-

quiring expert prior knowledge of the underlying dynamics [43, 65]. Machine learning

techniques have been used to select the observable by identifying relevant terms in

the dynamics from data [44, 45, 67]. [65] employs regression from a dictionary of

observables that spans a subspace of the space of scalar observables.

Numerical implementations of DMD are also undergoing modifications and en-

hancements. Under various assumptions on the data, many variants of the standard

DMD algorithm were introduced to compute the eigenvalues and DMD modes in

more accurate and efficient ways [68, 69]. Sparsity-promoting DMD and compressed

DMD combine DMD with sparsity techniques and modern theory of compressed sens-

ing [70, 71]. Inspired by the applications of DMD in video processing, multi-resolution

DMD or mrDMD provides a means for recursive computation of DMD of separate

spatiotemporal features at different scales in the data [72]. The mrDMD approach

preserves the translational and rotational invariances, which remains the Achilles heel

of many SVD-based methods [73].

In solving large linear systems, the DMD method aims to approximate the eigen-

values and eigenfunctions of f in (1.2) and provides an alternative to POD. A major

advantage of DMD over POD is its equation-free nature, which allows future-state pre-

dictions without any computation of further time evolution. For a nonlinear dynamic

f in (1.2), DMD seeks a finite-dimensional approximation of the infinite-dimensional

Koopman operator of the nonlinear dynamics. With carefully chosen observables,

a ROM can be constructed in the observable space with sufficient accuracy. We

briefly review the standard DMD algorithm on state space and the related Koopman

operator theory as follows.

Given the data matrix X in (1.5), the DMD procedure constructs the proxy,
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approximate locally linear dynamical system





du

dt
= Ku,

u(0) = u0.

(1.12)

The analytical solution to (1.12) is well-known [74]:

u(t) =
Nx∑

i=1

ϕi exp(ωit)û
0
i = Φ exp(Ωt)û0,

Φ =




| | |
ϕ1 ϕ2 · · · ϕr

| | |


 , Ω = diag(ωi),

û0 = [û01, · · · , û0Nx
]⊤ = Φ†u0,

(1.13)

where ϕi and ωi are the eigenvectors and eigenvalues of the matrix K, and the co-

efficients û0i are the coordinates of u(0) in the eigenvector basis, † represents the

Moore-Penrose pseudo-inverse.

Given continuous dynamics in (1.12), the analogous discrete-time system sampled

every ∆t in time can be described as follows:

un+1 = Kun, (1.14)

where K = exp(K∆t). The solution to this system (1.14) may be expressed in terms

of the eigenvalues λi and eigenvectors ϕi of the discrete-time map K:

un =
Nx∑

i=1

ϕi(λi)
nû0i = Φ(Λ)nû0, Λ = diag(λi). (1.15)

The DMD algorithm produces a low-rank eigen-decomposition (1.15) of the matrix K

that optimally fits the measured trajectory uk for k = 0, 1, · · · ,M−1 in a least-square
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sense, i.e.,

K = argmin
K̂∈RNx×Nx

1

M − 1

M−2∑

k=0

∥uk+1 − K̂uk∥22, (1.16)

where ∥ · ∥2 is the L2 norm defined as

∥u∥2 =

√√√√
Nx∑

i=1

u2i , u = [u1, · · · , uNx ]
⊤. (1.17)

The optimality of the approximation holds only over the sampling window where K

is constructed, and the approximation solution can be used to not only make future

state predictions but also decompose the dynamics into various time scales, since the

λi are prescribed.

The most modern definition of the DMD method was provided in [75]:

Definition 1.1 (Dynamic mode decomposition). Suppose we have a dynamical sys-

tem (1.2) and two sets of data created from the M snapshots data matrix X in (1.5):

X1 =




| | |
u0 u1 · · · uM−2

| | |


 and X2 =




| | |
u1 u2 · · · uM−1

| | |


 , (1.18)

where each uk, k = 0, 1, · · · ,M − 1 is driven by (1.3). DMD computes the leading

eigendecomposition of the best-fit linear operator K relating the data X2 ≈ KX1:

K = X2X
†
1, (1.19)

where † is the Moore-Penrose pseudo-inverse. The DMD modes, also called dynamic

modes, are the eigenvectors of K, and each DMD mode corresponds to a particular

eigenvalue of K.

Remark 1.1. The obtained K is a solution to (1.16) and euqvalently a minimizer to
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∥X2 −KX1∥F , where ∥ · ∥F is the Frobenius norm, given by

∥X∥F =

√∑

i

∑

j

X2
i,j. (1.20)

In practice, when the state dimension Nx is large, the matrixKmay be intractable

to analyze directly. Instead, DMD circumvents the eigen-decomposition of K by

considering a rank-reduced representation in terms of a POD-projected matrix Kr.

The algorithm proceeds as follows [58]:

Algorithm 1: Standard DMD algorithm

1. Apply SVD X1 ≈ UΣV∗, where U ∈ CNx×r is a unitary matrix, Σ ∈ Cr×r

is a diagonal matrix with components σi ≥ 0 that are called singular values
of X1, V

∗ is the conjugate transpose of unitary matrix V ∈ Cr×(M−1), and r
is the truncated rank chosen by certain criteria (e.g., (1.7)).
2. Compute Kr = U∗X2VΣ−1 as a low-rank (r × r) approximation of K.
3. Compute eigendecomposition of Kr: KrW = WΛ, where Λ = diag(λi)
are eigenvalues and columns of W are the corresponding eigenvectors.
4. Eigenvalues of K can be approximated by Λ with corresponding
eigenvectors in the columns of Φ = UW.

Remark 1.2. The modes Φ = UW are referred to as projected DMD modes [22].

Alternative formula is given by Φ = X2VΣ−1W in [75], which is called exact DMD

modes. These two will tend to converge if X1 and X2 have the same column spaces.

The projected DMD formulation Φ = UW should be used unless a zero eigenvalue is

associated with K [75].

The low-rank matrix Kr defines a low-dimensional linear ROM of the dynamical

system on POD coordinates: 


ûn+1 = Krû

n,

û0 = Φ†u0.
(1.21)

The high-dimensional state un can be reconstructed by

un = Φûn. (1.22)
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With the low-rank approximations of both the eigenvalues and the eigenvectors in

hand, the projected future solution can be constructed for all time in the future. By

first rewriting for convenience ωi = ln(λi)/∆t, the approximate solution at all future

times is given by

uDMD(t) ≈
r∑

i=1

ϕi exp(ωit)û
0
i = Φ exp(Ωt)û0, Ω = diag(ωi), (1.23)

or in discrete-form for n-th time step (n ≥M)

un
DMD = ΦΛnû0, n ≥M, (1.24)

Notice that no more iteration is needed in the prediction. The solution at any future

time is approximated in (1.23) or (1.24) using only information encapsulated in the

first M snapshots.

If the underlying dynamics f in (1.2) is linear, then the DMD method recovers

the leading eigenvalues and eigenvectors normally computed using standard solution

methods for liner differential equations. For nonlinear problems, the DMD method

approximates the modes of the so-called Koopman operator [41, 43, 58] defined as

follows:

Definition 1.2 (Koopman operator). Consider a nonlinear dynamic system (1.2),

where u ∈ M is a state on a smooth Nx-dimensional manifold M. The Koopman

operator K is an infinite-dimensional linear operator that acts on all observable func-

tions g : M → C so that

Kg(u) = g(f(u)). (1.25)

For discrete dynamic system (1.3), the discrete-time Koopman operator K∆t is

K∆tg(u
n) = g(F∆t(u

n)) = g(un+1). (1.26)

The Koopman operator transforms the finite-dimensional nonlinear problem (1.3)

in the state space into the infinite-dimensional linear problem (1.26) in the observ-

able space. The observable function g provides a bridge between the two equivelent
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representations of the same fundamental behavior. Figure 1.1 shows the schematic

illustration of the Koopman operator. Since K is an infinite-dimensional linear oper-

ator, it is equipped with infinite eigenvalues {λi}∞i=1 and eigenfunctions {ϕi}∞i=1. In

practice, one has to make a finite approximation of the eigenvalues and eigenfunctions.

The following assumption is essential to both a finite-dimensional approximation and

the choice of observables.

u0

u1 u2
un

ℳ
ℱΔt

y0

y1 y2
yn𝒦Δt

g

u0

y0

u1 u2 ⋯ un

y1 y2 ⋯ yn
𝒦Δt

ℱΔt ℱΔt ℱΔt ℱΔt

g g g g g
ℱΔt : uk → uk+1

g : uk → yk

: yk → yk+1

ℝp

𝒦Δt 𝒦Δt 𝒦Δt

𝒦Δt

Figure 1.1: Schematic illustrating the Koopman operator [1].

Assumption 1.1. Let y denote a p× 1 vector of observables,

yk = g(uk) = [g1(u
k), · · · , gp(uk)]⊤, (1.27)

where gj : M → C is an observable function, with j = 1, · · · , p. If the chosen

observable g is restricted to an invariant subspace spanned by eigenfunctions of the

Koopman operator K∆t, then it induces a linear operator K that is finite-dimensional

and advances these eigenobservable functions on this subspace [1].

Based on Assumption 1.1, the DMD algorithm in observable space is implemented

in the following Algorithm 2 :
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Algorithm 2: DMD algorithm on observable space [58]

0. Create the data matrices of observables

Y1 =




| | |
y0 y1 · · · yM−2

| | |


 and Y2 =




| | |
y1 y2 · · · yM−1

| | |


 (1.28)

where each column is given by yk = g(uk).
1. Apply SVD Y1 ≈ UΣV∗ with U ∈ Cp×r,Σ ∈ Cr×r,V ∈ Cr×(M−1), where
r is the truncated rank chosen by certain criteria (e.g., (1.7)).
2. Compute Kr = U∗Y2VΣ−1 as a r × r low-rank approximation for K.
3. Compute eigendecomposition of Kr: KrW = WΛ, Λ = diag(λi).
4. Reconstruct eigendecomposition of K. Eigenvalues are Λ and eigenvectors
are Φ = UW.

The future state in the space of observables in then given by

yDMD(t) = Φ exp(Ωt)ŷ0, Ω = diag(ln(λi)/∆t), ŷ0 = Φ†y0. (1.29)

or in discrete form

yn
DMD = ΦΛnŷ0 for n ≥M. (1.30)

The future prediction in the state space can be obtained by the inverse transform

g−1:

uDMD = g−1(yDMD). (1.31)

It is important to note that the Koopman operator does not rely on linearization

of the dynamics but instead represents the flow map of the dynamical system on

observable functions as an infinite-dimensional operator. The approximation of the

Koopman operator is at the heart of the DMD methodology. However, the quality of

any finite-dimensional approximation to the Koopman operator depends on the ob-

servable function y = g(u). Connections between the DMD theory and the Koopman

spectral analysis under specific conditions on the observables and collected data are

established by a theorem in [75]. This theorem indicates that judicious selection of

the observables is critical to the success of the Koopman method. In general, there
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is no principled way to select observables without expert knowledge of a dynamical

system. Machine learning techniques can be deployed to identify relevant terms in

the dynamics from data, which guide selection of the observables [44, 45, 67]. The

key contribution of this dissertation in this field includes constructing a physics-aware

DMD framework, where the observable functions are carefully designed by knowledge

of the underlying physics so that accurate low-dimensional approximations to the

Koopman operator can be obtained.

1.2 Challenges in Transport Phenomena

Transport phenomena is used to describe processes in which mass, momentum, an-

gular momentum and energy move about in matter. Thus it includes diffusional

phenomena, fluid dynamics and heat transfer. The multi-scale and multi-physics na-

ture is the key to understanding and managing the behavior of transport phenomena

in natural and artificial heterogeneous porous materials. This behavior dominates

multiple phenomena of practical significance in the planet, such as subsurface stor-

age of radioactive waste or carbon dioxide, sustainable exploitation of groundwater

resources, and design of novel materials for electrical storage or desalination mem-

branes. Most, if not all, of these applications rely on highly nonlinear models that

strive to capture processes that occur on multiplicity of scales both in space and time.

These multi-scale models are not only computationally expensive, but also have to

cope with unknown physics and unknown parameters. The increasing accessibility

of data collected from environmental monitoring, with developments of data-driven

modeling, allows us to discover details about these unknowns, establish causal rela-

tions and bridge the scales.

There have been arising research interests in replacing the expensive PDE-based

models with data-driven surrogate models. In particular, the following challenges are

critical for model reduction in transport phenomena:

• One major concern is the lack of universal prediction accuracy analysis and
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quantitative error estimators for data-driven modeling. Existing accuracy stud-

ies of ROMs are confined to projection-based POD methods for linear prob-

lems [76]. The nonlinear nature of most transport phenomena calls for the

needs of efficient model reduction techniques as well as associated rigorous er-

ror analysis in a broader context of ROMs. With a quantitative error bound,

a ROM can provide a means for accelerating computationally expensive Monte

Carlo and multi-scale simulations in uncertainty quantification, real-time con-

trol and optimal designs.

• A well-reported issue with conventional linear-subspace ROMs (including stan-

dard POD and DMD) is that they fail to model advection-dominated prob-

lems [77–79], e.g., wave-like phenomena, advection-dominated flows, moving in-

terfaces and shock propagation. This so called translational problems typically

exhibits a slow decay of the singular values [73, 80, 81] (i.e., the Kolmogorov n-

width is high [82]) and results in high-dimensional features, which means that no

low-dimensional space exists in which the HFM solutions can be approximated

well. High-dimensional ROMs not only render inefficient from a computational

perspective but also lead to numerical instabilities. Literature on addressing

this issue can be roughly distinguished into three categories. The first primar-

ily focused on developing special reduced basis [78] that are better suited for

advection-dominated problems to obtain stable approximations [83–87]. The

second category recovers the low-rank structure of advection-dominated prob-

lems by transforms of the HFMs, e.g., transport maps [88, 89]. A typical nu-

merical algorithm of this category is shifted POD [81, 90], which recovers the

shift due to the advection and applies POD after having reversed the shift. The

third category exploits the locally (in temporal space) low-dimensional structure

of advection-dominated problems and constructs dynamic low-rank approxima-

tion [91–97] that adapts low-rank basis updates over time. The aforementioned

literature is mostly projection-based and relies on substantial additional knowl-

edge about the problem, such as the particular advection phenomena governing
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basis shifting. More recently, data-driven nonintrusive methods use various ma-

chine learning techniques in attempts to resolve the translational challenge for

model reduction on linear subspaces [98–101] or nonlinear manifolds [102–109]

of smaller dimension. However, computationally efficient hyper-reduction for

highly-nonlinear transport and shock-preserving model reduction for hyperbolic

conservation laws in general remain challenging problems.

• In many practical problems, the inhomogeneity arising from source terms and

boundary conditions plays a key role in the underlying transport dynamics.

Conventional data-driven methods, such as standard DMD, lump together the

differential operators and the inhomogeneous sources/boundary conditions in

the underlying dynamics. This issue was addressed by [110] in the context

of neural networks and also discussed by [62] in the context of DMD-control

problems. Without the awareness of the potential inhomogeneity, the resulting

ROM may provide inaccurate predictions and ambiguous interpretations of the

complex systems.

1.3 Dissertation Outline

The above challenges will be further addressed in the following chapters of this disser-

tation. In Chapter 2, we provide a theoretical error estimator for DMD extrapolation

of numerical solutions to linear and nonlinear flow problems. This error analysis

allows one to monitor and control the errors associated with DMD-based temporal

extrapolation of numerical solutions to parabolic differential equations. We use sev-

eral computational experiments to verify the robustness of our error estimators and to

compare the predictive ability of DMD with that of POD. Our analysis demonstrates

the importance of a proper selection of observables, as predicted by the Koopman

operator theory. In all the tests considered, DMD outperformed POD in terms of

efficiency due to its iteration-free feature. In some of these experiments, POD proved

to be more accurate than DMD. This suggests that DMD is preferable for obtaining a

fast prediction with slightly lower accuracy, while POD should be used if the accuracy
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is paramount. The work in Chapter 2 was published in SIAM Journal on Scientific

Computing [2] in 2020.

In Chapter 3, the shortcoming of conventional POD and DMDmethods formulated

within the Eulerian framework for advection-dominated problems is investigated. Mo-

tivated by the recent work on Lagrangian POD [111], we propose a physics-aware

DMD method to construct a ROM within the Lagrangian framework. We choose

the temporally evolving characteristic lines, a crucial physical quantity in advection-

dominated systems, as a key observable of the underlying Koopman operator. Then,

the DMD algorithm is used to identify, from sufficient data, a low-dimensional struc-

ture in the Lagrangian framework and thus to construct a physics-aware ROM by

approximating the underlying Koopman operator. The Lagrangian DMD can be ap-

plied to general advection-diffusion nonlinear flows. Furthermore, DMD outperforms

POD in terms of computational costs because it is iteration free. Using our error

analysis in [2], one can also estimate the accuracy of the ROM. The work in Chapter

3 was published in Journal of Computational Physics [30] in 2020.

In Chapter 4, we address the numerical instability issue caused by grid distortion

in the presence of strong shocks and/or sharp gradients in Lagrangian POD and

Lagrangian DMD methods. We resolve this outstanding issue in construction of

ROMs for PDEs with discontinuous solutions and shocks by developing a physics-

aware DMD method based on hodograph transformation. The latter provides a map

between the original nonlinear system and its linear counterpart, which coincides with

the Koopman operator. This strategy is consistent with the spirit of physics-aware

DMDs in that it retains information about shock dynamics. The work in Chapter 4

was published in Journal of Machine Learning for Modeling and Computing [31] in

2021.

In Chapter 5, an extended dynamic mode decomposition (xDMD) approach is

proposed to cope with the potential unknown inhomogeneity in PDEs. Motivated by

similar ideas in deep neural networks, we equip our xDMD with two new features.

First, it has a bias term, which accounts for inhomogeneity of PDEs and/or bound-

ary conditions. Second, instead of learning a flow map, xDMD learns the residual

increment by subtracting the identity operator. We also provide a theoretical error
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analysis to illustrate the improved accuracy of xDMD compared to standard DMD.

The work in Chapter 5 was published in Journal of Computational Physics [32] in

2021.

In Chapter 6, we conclude this dissertation with a summary, an overview of ongo-

ing work and suggestions for future research directions. Level-set DMD for hyperbolic

conservation laws is presented in Appendix A. A detailed construction of Hodograph

transform for scalar conservation laws with convex fluxes is reviewed in Appendix B.

Additional simulation results with xDMD are presented in Appendix C.



Chapter 2

Prediction Accuracy of DMD

DMD and POD are two complementary SVD techniques that are widely used to

construct ROMs in a variety of fields of science and engineering. They are widely

used as surrogates to predict future states of a system. DMD relies on the linear

dynamical model learned entirely from data. Eigen-decomposition of the learned

linear operator allows one to make predictions of DMD-based ROMs in an iteration-

free fashion. For POD, time integration is still needed to compute future states, but

only in a low-dimensional surrogate model. Thus, the computational cost is reduced

and future states are predicted using the ROM derived from projecting the dynamics

of the full system onto the hyperplane that the POD extracts from data. While

both POD and DMD are based on SVD, they provide two independent approaches to

constructing ROMs. It is therefore worthwhile to compare their relative performance

in terms of accuracy and efficiency. Advantages of hybridizing the two methods have

been demonstrated in several numerical tests [112, 113].

The convergence of DMD predictions are reported in [114] from the numerical

perspective and in [42, 115, 116] from the theoretic perspective. A goal of our anal-

ysis is to provide a theoretical error estimator for DMD extrapolation of numerical

solutions to linear and nonlinear parabolic equations. We are aware of no other quan-

titative analysis of the accuracy of DMD predictions. This error analysis allows one

to monitor and control the errors associated with DMD-based temporal extrapolation

of numerical solutions to parabolic differential equations.

20
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We consider the following group of parabolic PDEs belonging to the general

boundary-value problem (1.1):





∂u

∂t
= fd(u) + fs(u), (x, t) ∈ D × R+;

B(u) = 0, (x, t) ∈ ∂D × R+;

u(x, 0) = u0(x), x ∈ D.

(2.1)

where fd is a linear or nonlinear differential operator representing the internal dy-

namics in d-dimensional space, and the linear or nonlinear source term fs represents

the external source/sink into the system. Discretization of the simulation domain D
into Nx elements or nodes (Nx ≫ 1) transforms the PDE (2.1) into either a high-

dimensional linear dynamical system

du

dt
= Au+ fs, (2.2)

or a high-dimensional nonlinear dynamical system

du

dt
= fd(u) + fs(u), (2.3)

where u = [u(x1, t), · · · , u(xNx , t)]
⊤ is the spatial discretization of u(x, t); A and fd

are linear and nonlinear differential operators on RNx , respectively; and fs represents

the correspondingly discretized reaction term fs.

Low-dimensional ROMs are often used to reduce the computational costs of solving

the high-dimensional systems (2.2) and (2.3). For example, POD has been deployed

to construct accurate and efficient ROMs for (2.2) [19, 20]. Time evolution of u(x, t)

needs to be computed but only in a small subspace of the original high-dimensional

space. For nonlinear systems (2.3), construction of a right ROM using POD becomes

more challenging and requires some modifications, such as empirical interpolation

method (EIM) [38] and discrete empirical interpolation method (DEIM) [37], whose

accuracy cannot be determined a priori. To the best of our knowledge, error estimates

of POD-EIM/DEIM are lacking unless the fully resolved solution is available.
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The DMD method aims to approximate the eigenvalues and eigenfunctions of A
in (2.2) and provides an alternative to POD in solving large linear systems. A major

advantage of DMD over POD is its equation-free nature, which allows future-state pre-

dictions without any computation of further time evolution. For the nonlinear prob-

lems (2.3), DMD seeks a finite-dimensional approximation of the infinite-dimensional

Koopman operator of the nonlinear dynamics. With carefully chosen observables, a

ROM can be constructed in the observable space with sufficient accuracy. We have

briefly reviewed DMD and the related Koopman operator theory in section 1.1.2 as

a set up for the accuracy analysis in the following section 2.1.

2.1 Analysis of Predictive Accuracy

We start with linear parabolic equations. Temporal discretization of (2.2) with time

step ∆t yields

un+1 = Aun +∆tfn+1/2
s , n ≥ 0, (2.4)

where A is an Nx × Nx matrix and f
n+1/2
s is, e.g., a linear interpolation of fns and

fn+1
s . The fully resolved model (2.4) is advanced by M time steps and the resulting

temporal snapshots of u(t) is recorded in the data matrix (1.5). We use a resolved

accurate solution of (2.4) under a certain CFL condition as a reference or yardstick

against which to test the accuracy of the DMD prediction (1.24).

2.1.1 Preliminaries

We start with a brief summary of the key results relevant to our subsequent analysis.

Lemma 2.1. For parabolic PDEs, denote the spectral radius of A in (2.4) by ρ(A)

and assume ρ(A) < 1. Then a stable numerical method of (2.4) satisfies the maximum
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principle in the discrete setting, i.e.,

∥un+1∥22 < ∥un∥22 +∆tmax{∥fns ∥22, ∥fn+1
s ∥22}

< · · ·

< ∥u0∥22 +∆t
n∑

k=0

max{∥fks ∥22, ∥fk+1
s ∥22}.

(2.5)

Proof.

∥un+1∥22 ≤ ∥Aun∥22 +∆t∥fn+1/2
s ∥22

≤ ∥A∥22∥un∥22 +∆t∥fn+1/2
s ∥22

≤ ρ(A)2∥un∥22 +∆tmax{∥fns ∥22, ∥fn+1
s ∥22}

(2.6)

According to the assumption ρ(A) < 1,

∥un+1∥22 < ∥un∥22 +∆tmax{∥fns ∥22, ∥fn+1
s ∥22}, (2.7)

and Lemma 2.1 holds.

Lemma 2.2. DMD on M temporal snapshots is designed such that ∥uM−1−uM−1
DMD∥2

is minimized.

Proof. See [22, 69].

2.1.2 Main Results

We rewrite the DMD prediction (1.24) as

un+1
DMD = ΦΛn+1û0

= ΦΛΦ−1ΦΛnû0

= ΦΛΦ−1un
DMD

= un
DMD + (ΦΛΦ−1 − INx×Nx)u

n
DMD

= un
DMD +Bun

DMD.

(2.8)
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Here B = ΦΛΦ−1−INx×Nx , where I represents identity matrix, Φ is an Nx×r matrix

and Φ−1 is an r ×Nx matrix defined as Φ−1Φ = Ir×r.

Theorem 2.1. Define the local truncation error

τ n = un − un
DMD(u

n−1). (2.9)

Then, for any n ≥M − 1,

∥τ n∥2 ≤ εM , (2.10)

where the constant εM depends only on the number of snapshots M .

Proof.

∥τ n∥22 =∥un − un
DMD(u

n−1)∥22
=∥Aun−1 −ΦΛΦ−1un−1∥22
=∥(A−ΦΛΦ−1)un−1∥22
≤∥A−ΦΛΦ−1∥22∥un−1∥22.

(2.11)

Note that
A−ΦΛΦ−1 = A− (UW)Λ (UW)−1

= A−U
(
WΛW−1

)
U∗

= A−UKrU
∗

= (A−X2X
†
1) + (X2X

†
1 −UKrU

∗).

(2.12)

The term X2X
†
1−UKrU

∗ introduces an error depending only on the rank truncation

in the SVD step of the DMD algorithm. The error is assumed to be subordinate, i.e.,

∥X2X
†
1 −UKrU

∗∥22 ≤ δ∥A−X2X
†
1∥22 (2.13)

for constant δ s.t. 0 < δ ≪ 1. Subsequently,

∥A−ΦΛΦ−1∥22 ≤ (1 + δ)∥A−X2X
†
1∥22. (2.14)
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Since X2X
†
1 is the best-fit linear operator to approximate A obtained from available

M snapshots,

X2X
†
1 = argmin

K̂∈RNx×Nx

M−2∑

k=0

∥uk+1 − K̂uk∥22. (2.15)

On the other hand,

A = argmin
K̂∈RNx×Nx

∞∑

k=0

∥uk+1 − K̂uk∥22 (2.16)

is the linear operator that fits all data. Thus,

∥A−ΦΛΦ−1∥22
≤(1 + δ)∥A−X2X

†
1∥22

=(1 + δ)

∥∥∥∥∥∥
argmin

K̂∈RNx×Nx

∞∑

k=0

∥uk+1 − K̂uk∥22 − argmin
K̂∈RNx×Nx

M−2∑

k=0

∥uk+1 − K̂uk∥22

∥∥∥∥∥∥

2

2

≤∥cM∥22

(2.17)

where cM is a term depending on the number of snapshots M , Theorem 2.1 holds

with

εM =


∥cM∥22(∥u0∥22 +∆t

n−1∑

k=0

max{∥fks ∥22, ∥fk+1
s ∥22})




1/2

. (2.18)

Remark 2.1. The value of cM decreases to 0 as M increases and so does εM . In

the limit of large number of snapshots, Λ and Φ become the exact eigenvalues and

eigenvectors of A. Then

∥A−ΦΛΦ−1∥2 = sup
z∈RNx\{0}

∥Az −ΦΛΦ−1z∥2
∥z∥2

= sup
w∈RNx\{0}

∥AΦw −ΦΛw∥2
∥Φw∥2

= sup
w∈RNx\{0}

∥ΛΦw −ΦΛw∥2
∥Φw∥2

= 0.

(2.19)
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In other words, the more snapshots are obtained, the more accurate the approximation

of A becomes. Thus, the local truncation error caused by replacing A with B can be

minimized. A convergence proof of the eigenvalue and eigenfunction approximation

of A by DMD and convergence from A → K∆t can be found in [115].

Remark 2.2. For fixed M , the local truncation error can be improved by refining the

Ritz pairs in the DMD algorithm. See [69].

Theorem 2.2. Define the global truncation error

en = un − un
DMD. (2.20)

Then, for n ≥M − 1,

∥en∥2 < ∥Φ∥2∥Φ−1∥2[∥eM−1∥2 + (n−M + 1)εM ]. (2.21)

Proof. Subtracting

un
DMD = un−1

DMD +Bun−1
DMD (2.22)

from

un = un−1 + τ n +Bun−1, (2.23)

one gets

en =un − un
DMD

=en−1 + τ n +Ben−1

=τ n +ΦΛΦ−1en−1

=τ n +ΦΛΦ−1(τ n−1 +ΦΛΦ−1en−2)

=τ n +ΦΛΦ−1τ n−1 +ΦΛ2Φ−1en−2

= · · ·

=ΦΛn−M+1Φ−1eM−1 +
n−M∑

k=0

ΦΛkΦ−1τ n−k.

(2.24)
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Then

∥ΦΛn−M+1Φ−1eM−1 +
n−M∑

k=0

ΦΛkΦ−1τ n−k∥2

≤∥ΦΛn−M+1Φ−1∥2∥eM−1∥2 + (n−M + 1)εM max
0≤k≤n−M

∥ΦΛkΦ−1∥2

≤∥ΦΛn−M+1∥2∥Φ−1∥2∥eM−1∥2 + (n−M + 1)εM max
0≤k≤n−M

∥ΦΛk∥2∥Φ−1∥2

≤∥Φ−1∥2
(
∥Λn−M+1∥2∥Φ∥2∥eM−1∥2 + (n−M + 1)εM max

0≤k≤n−M
∥Λk∥2∥Φ∥2

)

=∥Φ∥2∥Φ−1∥2
(
ρ(Λn−M+1)∥eM−1∥2 + (n−M + 1)εM max

0≤k≤n−M
ρ(Λk)

)

≤∥Φ∥2∥Φ−1∥2
[
ρ(Λ)∥eM−1∥2 + (n−M + 1)εMρ(Λ)

]

<∥Φ∥2∥Φ−1∥2[∥eM−1∥2 + (n−M + 1)εM ].

(2.25)

According to Lemma 2.2, ∥eM−1∥ is fixed and minimal. Hence, if accuracy of the local

truncation error is of O((∆t)q), then the global truncation error is of O((∆t)q−1).

Theorem 2.2 provides quantitative error bounds of the DMD method with explicit

error dependence. In practice, one can determine cM by ∥A−ΦΛΦ−1∥2 and determine

εM from (2.18) subsequently. In complex simulations, one would not expect the DMD

prediction from a local data set to capture the global dynamics accurately. Instead,

one can use the error bounds to set up a threshold for DMD prediction limits and

combine a resolved algorithm with fast DMD prediction. This would considerably

speed up the simulations.

2.1.3 Application to Nonlinear Parabolic Problems

Consider a general nonlinear reaction-diffusion equation in d spatial dimensions




∂tu = ∇ · [kψ(u)∇u] + fs(u), x ∈ D ⊂ Rd, t > 0

u(x, 0) = u0(x), x ∈ D,
(2.26)
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with non-negative functions k = k(x) and ψ = ψ(u) whose product is diffusion coeffi-

cient D(x, u) = k(x)ψ(u). Spatial discretization of (2.26) leads to the corresponding

high-dimensional nonlinear ODE (2.3). Its DMD treatment relies on the one’s ability

to identify informative observables and requires the prior knowledge of the structure

of governing equations such as (2.26). Examples in section 2.2.2 to section 2.2.4

illustrate the critical role of observable selection in the DMD method.

For (2.26), expert knowledge suggests the existence of a function η(u) such that

η′(u) = ψ(u), which can be constructed via the Kirchhoff transform (e.g., [117, 118]).

Then, by chain rule, (2.26) is rewritten as




∂tu−∇ · [k∇η(u)] = fs(u)

u(x, 0) = u0(x),
(2.27)

so that the nonlinear diffusion in u becomes linear in η. Spatial discretization of (2.27)

leads to
du

dt
= Aη(u) + fs(u) (2.28)

where A is the same linear operator in (2.2). Motivated by the nonlinear observable

choice for the nonlinear Schrödinger equation in [58], and by the accurate and robust

performance of DMD on linear diffusion reported below, we choose the observable

g = [g1(u), · · · , gp(u)], s.t. u,η(u), fs(u) ∈ span{g1(u), · · · , gp(u)}. (2.29)

The reference solution of (2.26) is obtained by discretizing (2.28) in time,

un+1 = un +∆tη∗ +∆tf∗s , (2.30)

where the superscript ∗ denotes linear interpolation between time tn+1 and tn. For

the observables in (2.29), we have

un+1,ηn+1, fn+1
s ∈ span{g1(un+1), · · · , gp(un+1)},

un,ηn, fns ∈ span{g1(un), · · · , gp(un)}.
(2.31)
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Thus, Algorithm 2 induces a linear operator denoted by K such that

yn+1 = Kyn, (2.32)

where yn = g(un) defined in (1.27). Treating (2.32) as reference solution, against

which we compare the DMD prediction (1.30), one gets exactly the same formulae

as (2.4) and (1.24) but in observable space:

yn+1 = Kyn,

yn+1
DMD = ΦΛn+1ŷ0.

(2.33)

So the error analysis in section 2.1 carries on in terms of y.

2.2 Numerical Tests of Predictive Accuracy

We test the robustness of our error estimates and the DMD performance in the

extrapolation regime on several test problems arranged in order of difficulty.

In our resolved simulations, we use finite difference in space and forward Euler

in time with CFL condition ∆t ∼ O((∆x)2). Although there are many relatively

efficient implicit/semi-implicit solvers, the computational difficulty of solving high-

dimensional systems iteratively remains essentially the same. We would regard them

the same order of computational time and simply take the fully explicit discretization

as the resolved solutions. In the following tests, Nx = 500 spatial mesh is created in

x and Nt = 500 solutions are uniformly selected from a specified time interval. Thus,

the reference solution is built on this 500× 500 mesh. We also compare the relative

performance of DMD and POD(-DEIM) in terms of both their computational time

and error with respect to the reference solution.
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2.2.1 Linear Diffusion (Test 1)

We start with a linear diffusion equation,

∂u

∂t
=
∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, T ] (2.34a)

subject to several sets of initial and boundary conditions

u(x, 0) = u0, u(0, t) = uL, u(1, t) = 1. (2.34b)

Discretization of the spatial domain [0, 1] with a fine mesh of size ∆x≪ 1 gives rise to

the equivalent high-dimensional ODE (2.2), where u = [u(x1, t), · · · , u(xNx , t)]
⊤ is the

spatial discretization of u(x, t) with Nx ≫ 1 and A is a linear operator representing

the diffusion.

2.2.1.1 Relaxation to Equilibrium (Test 1a)

Consider (2.34) with T = 0.2, u0 = 0, and uL = 0. Figure 2.1 demonstrates visual

agreement between the true solution u(x, t) and its counterpart predicted by DMD

withM = 200 temporal snapshots, the two solutions converge to the same stationary

state.
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Figure 2.1: Test 1a. Reference solution (left) and its DMD approximation with
M = 200 snapshots (right).
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Figure 2.2: Test 1a. Top: Local truncation error for DMD with M = 100, 200
and 300 snapshots; Middle: global error for DMD and our error bound estimator
with M = 100; Bottom: global error for DMD and our error bound estimator with
M = 200 snapshots. The global error is negligible for M = 300 (not shown). The
rank threshold is set to ε = 10−8.
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Figure 2.2 exhibits the local truncation error τ (2.9) and the global truncation

error e (2.20) of the DMD with M = 100, 200 and 300 snapshots of the reference

solution. The rank in step 1 of Algorithm 1 is truncated by the criteria of

r = max{i : σi > ϵσ1}, (2.35)

where σi are the diagonal elements of Σ in SVD. The figure shows that the local

truncation error decreases with the number of snapshots, resulting in a more accurate

prediction. This is consistent with the intuition that DMD can better capture the

dynamics by learning from richer/larger data sets.
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Figure 2.3: Test 1a. Top: Local truncation error for DMD with M = 100, 200 and
300 snapshots; Bottom: global error for DMD and our error bound estimator with
M = 100 snapshots. The global error is negligible for M = 200 and 300 (not shown).
The rank threshold is set to ε = 10−12.
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If a more stringent condition on the rank truncation is imposed, i.e., a relatively

higher-order surrogate model is established, further reduction in both local and global

errors is observed (Figure 2.3). The good performance of DMD in Test 1a is not

surprising: the monotonic (exponential) decay of the solution to the linear diffusion

equation is captured by a relatively few temporal snapshots. The next example

provides a more challenging test by introducing temporal fluctuations at the boundary

x = 0.

2.2.1.2 Periodic Boundary Fluctuations (Test 1b)

Consider (2.34) with T = π/2, u0 = 1, and uL = 1.01 + 0.01 sin(−π/2 + 10t). Fig-

ure 2.4 demonstrates that M = 200 snapshots is sufficient for DMD to match the

reference solution. The corresponding local and global truncation errors are plotted

in Figure 2.5. Since the solution u(x, t) to (2.34) with the parameter values used in

Test 1b has a period of π/5, M = 100 snapshots are not enough to cover the whole

period. Consequently, DMD fails to capture the system dynamic and to predict the

future states accurately. However, once the full period of the solution is covered by

snapshots data, i.e., whenM = 200 or 300 snapshots are used, DMD is accurate even

for long-time prediction. The error bound in Theorem 2.2 does a good job bounding

the computed error.
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Figure 2.4: Test 1b. Reference solution (left) and its DMD approximation with
M = 200 snapshots (right).
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Figure 2.5: Test 1b. Top: Local truncation error for DMD with M = 100, 200
and 300 snapshots; Middle: global error for DMD and our error bound estimator
with M = 100; Bottom: global error for DMD and our error bound estimator with
M = 200 snapshots. The global error is negligible for M = 300 (not shown). The
rank threshold is set to ε = 10−8.



2.2. NUMERICAL TESTS OF PREDICTIVE ACCURACY 35

Although not shown here, the reliance on a more restricted rank truncation, i.e.,

setting the rank threshold to ε = 10−12, improves DMD’s accuracy by at least an

order of magnitude for the parameter values considered.

2.2.2 Reaction-Diffusion Equation (Test 2)

Consider a reaction-diffusion equation

∂u

∂t
= θ

∂2u

∂x2
− µ(u− u3), x ∈ [0, 1], t ∈ [0, 2] (2.36a)

with constant coefficients θ, µ ∈ R+. It is subject to initial and boundary conditions

u(x, 0) = 0.5 + 0.5 sin(πx), u(0, t) = 0, u(1, t) = 0. (2.36b)

2.2.2.1 Diffusion-Dominated Regime (Test 2a)

To achieve this regime (θ ≫ µ), we set θ = 0.1 and µ = 0.01. Figure 2.6 exhibits

the fully resolved solution with its approximations provided by DMD with different

observables, g1(u) = u and g2(u) = [u;u3], and by POD-DEIM. In Figure 2.6,

the choice of observables does not appreciably affect DMD’s performance due to the

dominating linear diffusion, though one can still observe higher order accuracy of g2

than g1 in the logarithm solution error plot Figure 2.7.

The corresponding prediction errors are also reported in Figure 2.7. With the

same rank truncation criteria, POD is more accurate than DMD, especially in the

absence of “right” observables. However, DMD is much faster than POD. We report

the computational costs comparison in section 2.2.2.3.

2.2.2.2 Reaction-Dominated Regime (Test 2b)

To explore this regime (µ ≫ θ), we set θ = 0.1 and µ = 1. Now the choice of

observables has significant (visual) impact on the predictive accuracy (Figure 2.8).

The Koopman operator theory helps explain this observation. Since the nonlinear

source term dominates the dynamics, only the consistent observables can capture the
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Figure 2.6: Test 2a. Fully resolved solution u(x, t) of the reaction-diffusion prob-
lem (2.36) in the diffusion-dominated regime, and its approximations obtained from
M = 200 snapshots with DMD (with two sets of observables g) and POD-DEIM.
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Figure 2.7: Test 2a. Local truncation error; Comparison of POD and DMD errors
of the solution; Global error (errors of the observables) for DMD prediction with
observables g1 and g2. All ROMs are constructed using M = 200 snapshots.
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Figure 2.8: Test 2b. Fully resolved solution u(x, t) of the reaction-diffusion prob-
lem (2.36) in the reaction-dominated regime, and its approximations obtained from
M = 200 snapshots with DMD (with two sets of observables g) and POD-DEIM.

eigenvalues and eigenfunctions of the Koopman operator.

Errors of DMD prediction relying on the observables g1(u) = u and g2(u) = [u;u3]

are shown in Figure 2.9. Our error estimation Theorem 2.2 indicates the failure of the

DMD prediction based on the observable g1(u) = u and provides robust error bound

for the DMD prediction based on the observable g2(u) = [u;u3]. For the same rank

truncation criteria, the errors of POD and DMD with using g2(u) are comparable,

while that of DMD with g1(u) is orders of magnitude higher.
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Figure 2.9: Test 2b. Local truncation error; Comparison of POD and DMD errors
of the solution; Global error (errors of the observables) for DMD prediction with
observables g1 and g2 using M = 200 snapshots.
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2.2.2.3 Comparison of POD and DMD

Comparison of the computation time and accuracy of DMD and POD-DEIM is pre-

sented in Figure 2.10 for Test 2b. The computational time comparison is made for

the same rank truncation criteria. Note that the rank of the reduced-order model

is different for DMD and POD because of the different dimension of the input data

matrix. The ROM derived by DMD is in observable space and the ROM derived by

POD is in state space.
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Fig. 8: Test 2b. Fully resolved solution u(x, t) of the reaction-di↵usion problem (4.3)
in the reaction-dominated regime, and its approximations obtained from m = 200
snapshots with DMD (with two sets of observables g) and POD-DEIM.

Table1

computational time
(in seconds)

resolved solution 0.014622
DMD with g2 0.006274

POD 0.020766 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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Test 2b. Computational times of the fully resolved solution, POD-DEIM, and DMD
with the observables g2(u) (left table); Comparison of POD and DMD in terms of
computational time and accuracy (right figure).

4.3. Test 4: Nonlinear reaction-di↵usion equation. Consider a nonlinear366

reaction-di↵usion equation367

(4.4)

(
ut � @x(u@xu) + (u � u3) = 0,

u(x, 0) = 0.5 + 0.5 sin(⇡x)
368

This manuscript is for review purposes only.

Figure 2.10: Test 2b. Computational times of the fully resolved solution, POD-DEIM,
and DMD with the observables g2(u) (left table); Comparison of POD and DMD in
terms of computational time and accuracy (right figure).

Figure 2.10 demonstrates that DMD prediction is computationally efficient due to

its iteration-free feature. POD, on the other hand, is computationally more expensive

than the fully resolved solver because the computational cost saved by ROM in the

prediction process does not compensate for the cost of establishing the ROM by SVD

and DEIM. This would not be the case for higher dimensional problems and longer

prediction times. However, being non-iterative, DMD would outperform POD on

such problems as well.

Both the accuracy and computational time depend on the rank of the ROM.

The table in Figure 2.10 reveals that POD has advantage in accuracy and DMD

has advantage in efficiency. Thus, if one wants a fast prediction with slightly lower

accuracy, then DMD is a better choice and vice versa.
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2.2.3 Nonlinear Reaction-Diffusion Equation (Test 3)

Consider a reaction-diffusion equation with the state-dependent diffusion coefficient,

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
− (u− u3), 0 < x < 1, t > 0. (2.37a)

It is subject to the initial and boundary conditions

u(x, 0) = 0.5 + 0.5 sin(πx), u(0, t) = 0, u(1, t) = 0. (2.37b)

As discussed earlier, the Koopman operator theory suggests that only the physical-

informed observables can capture the dynamical systems. To identify the relevant

observables, we use the Kirchhoff transformation to recast (2.37a) as

∂u

∂t
=
∂2ϕ

∂x2
− (u− u3), ϕ = u2/2. (2.38)

This form suggests a set of observables g2 = [u;u2;u3].

Figure 2.11 and Figure 2.12 provide the visual and quantitative comparison be-

tween the fully resolved solution u(x, t) and its POD and DMD approximations. The

performance of these approximators on this highly nonlinear problem is qualitatively

similar to its weakly nonlinear counterpart analyzed in section 2.2.2. For the inad-

equate choice of observables, g1 = u, our error bound diverges from the true error

because of the fast decay of both the reference and wrong solutions. Nevertheless, the

error bound still serves as a good discriminator between the accurate or inaccurate

predictions. For the proper choice of observables, g2 = [u;u2;u3], our error bound

remains accurate.



42 CHAPTER 2. PREDICTION ACCURACY OF DMD

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

1

Figure 2.11: Test 3. Fully resolved solution u(x, t) of the nonlinear reaction-diffusion
problem (2.37) and its approximations obtained from M = 200 snapshots with DMD
(with two sets of observables g) and POD-DEIM.
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Figure 2.12: Test 3. Comparison of POD and DMD errors; Local truncation error
and global error for DMD prediction with g1 and g2 using M = 200 snapshots.
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2.2.4 Nonlinear Schrödinger Equation (Test 4)

Finally, we consider the nonlinear Schrödinger equation,




i
∂u

∂t
+

1

2

∂2u

∂x2
+ |u|2u = 0,

u(x, 0) = 2sech(x).

(2.39)

It belongs to the the general class of nonlinear parabolic PDEs (2.1) and satisfies all

of the assumptions underlying our error estimator. The reference solution is obtained

by using Fast Fourier Transform in space and Runge-Kutta in time evolution.
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Figure 2.13: Test 4. Resolved solution, DMD solutions and POD solution using
M = 20 snapshots; Comparison of POD and DMD errors.
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Figure 2.14: Test 4. Comparison of POD and DMD errors; Local truncation error
and global error for DMD prediction with g1 and g2 using M = 20 snapshots.
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We reproduce the results reported in [58] and use them to verify our error bound

in Figure 2.13 and Figure 2.14. In this case, DMD with the right observable has better

performance, in terms of both accuracy and efficiency, than POD. The advantage of

taking physical information into account is tremendous.

2.3 Summary

We derived error bounds of DMD predictions for linear and nonlinear parabolic PDEs

and verified their accuracy on four computational examples of increasing degree of

complexity. Our analysis leads to the following major conclusions.

1. When combined with an adequate choice observables, the Koopman operator

maps the nonlinear underlying dynamics with the linear observable space, where

DMD algorithm can be implemented with good accuracy and efficiency.

2. In the extrapolation (predictive) mode, DMD outperforms other ROM-based

method (e.g., POD) in terms of computational efficiency, because it requires no

iteration. At the same time, POD has higher predictive accuracy than DMD.

3. Our error estimator is consistent with previous theoretic understanding of DMD

algorithm and the Koopman operator theory. More importantly, it provides a

quantitative measure of the accuracy of DMD predictions.

In the follow-up studies we will used our error estimators of DMD predictions to

address several challenges in scientific computing:

1. For PDEs with random coefficients, e.g., for PDE-based models of flow and

transport in (randomly) heterogeneous porous media, DMD predictions with

quantitative error bounds might provide a means for accelerating computational

expensive Monte Carlo and multiscale simulations.

2. Our error estimators can be used to guide the design of hybrid algorithms that

combine DMD predictions with fully resolved solutions of multi-dimensional

complex problems.
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3. It might be possible to generalize our results to a broader context of advection-

diffusion equations. Multi-resolution DMD (mrDMD), instead of DMD, can be

used to overcome the translational invariant issues in advection.



Chapter 3

Lagrangian DMD for

Advection-Dominated Phenomena

Advection-diffusion equations are routinely used as a high-fidelity representation of

mass conservation at a variety of spatiotemporal scales in a plethora of applica-

tions [119]. These equations become highly nonlinear when advection velocity and/or

diffusion coefficient depend(s) on a system state, e.g., in the case of multiphase flows

in porous media [119]. High-dimensional complex dynamics described by such nonlin-

ear advection-diffusion equations often posses low-dimensional structures, suggesting

the possibility of their replacement with ROMs [21, 120, 121].

SVD can be utilized to extract a low-dimensional structure from the data gener-

ated with a HFM, i.e., to construct a conventional ROM. Examples of such ROMs

are built by POD and DMD. While the robustness of DMD for parabolic problems

has been established with analysis of its accuracy from Chapter 2, both DMD and

POD are known to fail in translational problems, such as wave-like phenomena, mov-

ing interfaces and moving shocks [23]. It can be explained by the intuition that

the dominating advection behavior is traveling through the whole high-dimensional

domain, making it impossible to determine a global spatiotemporal basis confined

in a low-dimensional subspace. We facilitate this intuitive explanation with a con-

crete example in section 3.1. In terms of the Koopman operator theory, important

physical observables (e.g., advection speed, shock speed, shock formation time) are

48
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unaccounted for in the standard DMD algorithm. Remedies for POD include the

deployment of local basis [122], domain decomposition [123], or basis splitting [124].

A similar extension of DMD consists of multi-resolution DMD [72], which separates

frequencies of different scales by filtering windows. Unfortunately, these remedies

often compromise the ROM’s efficiency by increasing its computational complexity.

Alternative generalizations of DMD and POD explore symmetry and self-similarity

properties to eliminate the translational issue using analytical tools [73, 125–129].

However, such tools are usually problem-dependent and mostly applicable to single-

wave dominated problems.

Motivated by the recent work on Lagrangian POD [111], we propose a Lagrangian-

based DMD method to construct an efficient ROM. This approach is consistent with

the spirit of physics-aware DMD since it accounts for the evolution of characteristic

lines. Several computational experiments are used to validate the efficiency of the

proposed approach to ROM construction, with comparison with Lagrangian POD in

terms of accuracy and computational costs.

For demonstration purposes, we consider a group of PDEs belonging to (1.1) with

a scalar state variable u(x, t) : [a, b] × [0, T ] → R, whose dynamics is described by a

one-dimensional nonlinear advection-diffusion equation

∂u

∂t
+ c(u)

∂u

∂x
=

∂

∂x

(
D(x, t, u)

∂u

∂x

)
, c(u) =

∂C(u)

∂u
, (3.1a)

subject to the initial condition

u(x, t = 0) = u0(x) (3.1b)

and appropriate (arbitrary) boundary conditions at x = a and x = b. Among other

phenomena, (3.1) describes multiphase flow in porous media, and mass or heat trans-

fer due to convection and diffusion/dispersion. In the former context, the state vari-

able u(x, t) denotes the saturation of a porous medium with one of the fluids (e.g.,

water, oil, or CO2), the nonlinear flux term C accounts for the viscous and gravity

effects on fluid flow, and the nonlinear diffusion term on the right-hand-side provides
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a macroscopic (Darcy-scale) representation of the capillary forces (e.g., [130] and the

references therein). In the latter context, u(x, t) represents solute concentration in, or

temperature of, a fluid whose advection/convection velocity and diffusion/dispersion

flux vary with u (e.g., [131] and the references therein).

Within the Eulerian framework, the space is fixed and the interval [a, b] is dis-

cretized with a uniform grid x = [x1 = a, x2 · · · , xNx−1, xNx = b]⊤ of mesh size

∆x ≡ xj+1 − xj = (b − a)/Nx and Nx nodes. Likewise, the time interval [0, T ] is

discretized uniformly with time step ∆t ≡ tn+1 − tn = T/Nt and Nt + 1 nodes so

that t0 = 0 < t1 < · · · < tNt = T . At the nth time node, the state variable u(x, t) is

represented by a vector un = [un1 , · · · , unNx
]⊤ for n = 0, · · · , Nt. For simplicity, (3.1)

is solved with a conservative first-order finite-difference upwind scheme with forward

Euler for the advection part and finite center difference with backward Euler for the

diffusion part,

un+1
j =unj −

∆t

∆x
(Cn

j+1/2 − Cn
j−1/2)

+
∆t

(∆x)2

[
Dn+1

j+1/2(u
n+1
j+1 − un+1

j )−Dn+1
j−1/2(u

n+1
j − un+1

j−1 )
]
,

(3.2)

where

Cn
j+1/2 =

C(unj+1) + C(unj )

2
− |αn

j+1/2|
unj+1 − unj

2
,

αn
j+1/2 =





Cn
j+1 − Cn

j

unj+1 − unj
if unj+1 ̸= unj ,

c(uj) if unj+1 = unj ,

Dn+1
j+1/2 =

1

2
(Dn+1

j +Dn+1
j+1 ).

In vector form as (1.4), the above scheme reads

R(un+1) = un+1 − un +∆t(Du
1C

n)−∆t(D2u
n+1) = 0, (3.3)

where Du
1 ∈ RNx×Nx and D2 ∈ RNx×Nx are discrete approximations of the first deriva-

tive (using upwind) and second derivative (using center difference), respectively. Here

Cn = [Cn
1/2, · · · , Cn

Nx−1/2]
⊤ and R is the vectorized residual of the scheme. Certain
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CFL condition needs to be satisfied to ensure the stability of the scheme depending on

the functional forms of c and D. Simulation results obtained with the above method

constitute our HFM.

3.1 Challenge Posed by Translational Problems

Both POD and DMD have been used to construct LFMs for a wide range of problems

with high accuracy. However, ROMs constructed with such SVD-based methods are

known to have poor performance for translational problems, such as an advection-

dominated version of (3.1). To illustrate this phenomenon, we consider a linear

advection-diffusion equation, i.e., (3.1) with constant c and D, defined on (x, t) =

[0, 2]× [0, 1]. This equation is subject to the initial condition u(x, 0) = 0.5 exp[−(x−
0.3)2/0.052] and the boundary conditions u(0, t) = u(2, t) = 0. The space domain

[0, 2] is discretized into Nx = 2000 intervals and time domain [0, 1] is discretized into

Nt = 1000 steps. Both DMD and POD algorithms use the same dataset consisting

of M = 250 snapshots.

To achieve a diffusion-dominated regime, we set c = 10−4 and D = 10−2 in some

consistent units. Figure 3.1 provides a visual comparison of the reference solution

with its counterparts obtained with DMD and POD, both with r = 20 SVD rank

truncation. Although not shown here, and consistent with the earlier findings reported

in Chapter 2 and [2], the DMD- and POD-based LFMs are of spectral accuracy in a

relatively small subspace of time (t < 0.3), with the relative error increasing with time.

POD has slightly better accuracy than DMD due to the iterations in the subspace,

but DMD is considerably faster because of its iteration-free nature.

An advection-dominated regime is achieved by setting c = 1.0 and D = 10−3.

Figure 3.2 reveals that both DMD and POD fail to capture the system dynamics,

yielding unphysical (oscillatory and negative) predictions. Note that even accurate

DMD- or POD-based ROMs are not guaranteed to be positivity-preserving in general

because of the rank truncation. But unphysical negative predictions, such as those

presented in Figure 3.2, indicate the unambiguous failure of a ROM. This failure

cannot be remedied by increasing the SVD rank truncation r: increasing r from 20
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Figure 3.1: Solution profiles u(x, ·), for several times t, in the diffusion-dominated
regime. These profiles are computed with DMD (left) and POD (right), and compared
with the reference solution.

to 30 does not improve the prediction’s accuracy, either quantitatively or qualita-

tively. These results highlight the main challenge translational problems pose for the

SVD-based methods. Given the first 250 snapshots of the high-fidelity solution, SVD

extracts dominant DMD/ POD modes ϕi from the region the wave has encountered;

in our example, the subdomain [0, 1]. As time increases, the wave solution encounters

other parts of the computational domain; in our example, at later times the domi-

nant signal lies mostly in the subdomain [1, 2]. Specifictly, one can observe that the

dominant DMD/POD modes have fluctuations only in the subdomain [0, 1] and stay

flat 0 in the subdomain [1, 2] in Figure 3.3. It is therefore not surprising that a ROM

constructed from dominant modes in [0, 1] does not serve as an accurate surrogate

for the rest of the computational domain.
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Figure 3.2: Solution profiles u(x, ·), for several times t, in the advection-dominated
regime. These profiles are computed with DMD (left column) and POD (right col-
umn) using the SVD rank of r = 20 (top row) and r = 30 (bottom row), and compared
with the reference solution.
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Figure 3.3: Three of the dominant DMD modes (left column) and POD modes (right
column) extracted from the first 250 snapshots.

3.2 Lagrangian Reduced-Order Models

Motivated by construction of a POD-based ROM for the advection-diffusion equa-

tion (3.1) within the Lagrangian framework [111], we propose a Lagrangian DMD. In

the semi-Lagrangian frame, (3.1) is written as





dX(t)

dt
= c(u(X(t), t)),

du(x, t)

dt

∣∣∣∣
x=X(t)

=

[
∂

∂x

(
D(x, t, u)

∂u(x, t)

∂x

)] ∣∣∣∣
x=X(t)

.
(3.4)
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Applying a first-order discretization to this system gives





ũnj = P0(u
n
j ),

ũn+1
j = ũnj +∆t

Dn+1
j+1/2(ũ

n+1
j+1 − ũn+1

j )−Dn+1
j−1/2(ũ

n+1
j − ũn+1

j−1 )

(∆x)2
,

un+1
j = Pn(ũ

n+1
j ),

xn+1
j = xnj +

∆t

2
(c(unj ) + c(un+1

j )),

(3.5)

where Pn stands for the interpolation in the grid x⃗n = [xn1 , · · · , xnNx
]⊤ and x⃗0 is the

starting uniform grid.

Or, in vector form,




Rx(x⃗

n+1) ≡ x⃗n+1 − x⃗n − ∆t

2
(c(un) + c(un+1)) = 0,

Ru(ũ
n+1) ≡ ũn+1 − ũn −∆tD2ũ

n+1 = 0.

(3.6)

Here x⃗n = [xn1 , · · · , xnNx
]⊤ denotes the locations of the Lagrangian computational grid

at the nth time step, ũn is the solution on the Lagrangian grid x⃗n, un is the linear

interpolation from the Lagrangian grid to the Eulerian grid, and D2 represents the

discrete approximation of the second derivative on the uniform Eulerian grid at the

nth time step.

3.2.1 Lagrangian POD

We arrangeM snapshots of the HFM in the Lagrangian framework into a data matrix

of size 2Nx ×M ,

X =




| | |
x⃗0 x⃗2 · · · x⃗M−1

| | |
ũ0 ũ2 · · · ũM−1

| | |




. (3.7)
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Applying the conventional POD of section 1.1.1 to the data matrix in (3.7), one

obtains a POD basis Φ analogous to (1.8) for the space-solution vector [x⃗; ũ]⊤. Then

the Lagrangian solution is approximated by




|
x⃗n+1
POD

|
ũn+1
POD

|




= Φ




|
x̂n+1

|
ûn+1

|




. (3.8)

Inserting (3.8) into (3.6) and projecting onto the subspace spanned by Φ, one obtains

the solution vector [x⃗n+1; ũn+1]⊤ by solving the following equation:

ΦTR




Φ




|
x̂n+1

|
ûn+1

|







= 0. (3.9)

Several complications can arise when applying Lagrangian POD in practice. If

only Eulerian HFM data are available, i.e., in the absence of the grid deformation x⃗n

computed with an Eulerian HFM, one can construct an optimal Lagrangian basis by

following the strategy proposed in [111, Sec. 3.3]. Another potential complication is

a Lagrangian grid entanglement. There is no guarantee that an approximation of the

Lagrangian moving grid in the low-dimensional subpspace preserves the topological

properties of the original HFM simulation. In many cases, e.g., when characteristic

lines intersect each other, the Lagrangian grids in the projected space are severely

distorted, inducing numerical instabilities. One strategy for ameliorating this problem

is to solve the diffusion step back to stationary Eulerian grid by interpolation between

the Eulerian and Lagrangian grids [111, Sec. 3.4]. This procedure can reduce the

method’s efficiency and accuracy.
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3.2.2 Lagrangian DMD

The fundamental concept behind the Koopman operator theory is to transform the

finite-dimensional nonlinear problem (1.3) in the state space into the infinite-dimensional

linear problem (1.26) in the observable space. Compared to Eulerian framework, La-

grangian framework contains more informative physical quantanties as candidates

of the observables, making Lagrangian DMD to fit intuitively and naturally into the

Koopman operator theory. Since K∆t in Definition 1.2 is an infinite-dimensional linear

operator, it is equipped with infinitely many eigenvalues {λi}∞i=1 and eigenfunctions

{ϕi}∞i=1. In practice, one deals with a finite number of the eigenvalues and eigen-

functions. Assumption 1.1 underpins the finite approximation and is essential to the

choice of observables.

In data-driven modeling, judicious selection of the observables is crucial to the ac-

curacy and efficiency of a Koopman operator’s approximation. Identification of gen-

eral rules for choosing the observables continues to be a subject of ongoing research.

For example, the use of measurements of the state variable u(x, t) as an observable

led to the poor DMD performance in the advection-dominated regime (Figure 3.2). A

Lagrangian formulation of the problem provides a means of identification of optimal

observables. Indeed, the physics of advection-dominated systems suggests that the

location of a moving particle is a key quantity, which is as important as the value of

the state variable at that location. It is therefore natural to introduce an observable

function that keeps track of both. Thus we choose our observable to be

yk = g(uk) =
[
x⃗k; ũk

]
. (3.10)

Then, we follow Algorithm 2.

3.3 Numerical Tests of Lagrangian DMD

To ascertain the accuracy and robustness of the Lagrangian DMD, we use it to con-

struct ROMs for a series of linear and nonlinear advection-dominated problems. In

all tests, the reference solutions are computed in the Eulerian framework using (3.2).
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The space domain [0, 2] is discretized into Nx = 2000 intervals and the time domain

[0, 1] is discretized into Nt = 1000 steps. Both Lagrangian DMD and Lagrangian

POD algorithms use M = 250 snapshots (up to t = 0.25) as a training dataset. The

rank truncation criteria (1.7) with ε = 10−8 is used. Define

en = yn − yn
DMD. (3.11)

The error bound derived in Theorem 2.2 of Chapter 2 is plotted in each example as

an estimate of the observable.

3.3.1 Linear Advection Equation

We start by considering (3.1) with c ≡ 1 and D ≡ 0. The resulting linear advection

equation is defined on (x, t) ∈ (0, 2)× (0, 1], and is subject to the initial condition

u(x, t = 0) = u0(x) ≡
1

2
exp

[
−
(
x− 0.3

0.05

)2]
(3.12a)

and boundary conditions

u(0, t) = u(2, t) = 0. (3.12b)

Figure 3.4 provides a visual comparison between the reference solution, obtained

with the numerical scheme (3.2), and solutions of the ROMs constructed with either

Lagrangian DMD or Lagrangian POD. Unlike their conventional (Eulerian) coun-

terparts (see Figure 3.2), both Lagrangian DMD and Lagrangian POD capture the

solution dynamics in the extrapolating mode, i.e., for t > 0.25.

A more quantitative comparison of the relative performance of the two SVD-

based strategies is presented in Figure 3.5 in terms of the global truncation error

defined in (3.11). Both Lagrangian DMD and Lagrangian POD capture the advection

with high accuracy. Due to the linearity and conservation property of this problem,

the ROMs constructed by the two methods are of machine error. Thus, the error

bound developed in [2] is not tight but sufficient to serve as an indicator of successful

approximation.
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Figure 3.4: Solutions of the linear advection equation, u(x, t), alternatively obtained
with the numerical method (3.2) and the ROMs constructed via Lagrangian DMD
(left) and Lagrangian POD (right).
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Figure 3.5: Errors of the Lagrangian DMD- and POD-based ROMs for the linear
advection equation: error in reconstructing the state variable u(x, t) (left) and its
observables g(u) (right). The error bound for g(u) is derived in [2].
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3.3.2 One-Dimensional Advection-Diffusion Equation

We consider (3.1) with c ≡ 1 and D ≡ 0.01. The resulting linear advection-diffusion

equation is defined on (x, t) ∈ (0, 2)×(0, 1], and is subject to the initial and boundary

conditions (3.12). The choice of the parameter values c and D ensures that the system

is in the advection-dominated regime, for which the conventional POD and DMD fail.
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Figure 3.6: Solutions of the linear advection-diffusion equation, u(x, t), alternatively
obtained with the numerical method (3.2) and the ROMs constructed via Lagrangian
DMD (left) and Lagrangian POD (right).

Figure 3.6 provides a visual comparison between the reference solution u(x, t) and

those obtained with the ROMs. The latter capture the system’s dynamics, although

their estimates of the solution tails become less accurate with time. This suggests

that Lagrangian DMD and POD are capable of identifying the low-rank structure of

the advection-diffusion dynamics in the advection-dominated regime.

Figure 3.7 indicates that the Lagrangian DMD and POD have a near identical

accuracy, which deteriorates with extrapolation time t > 0.25. The error bound for



3.3. NUMERICAL TESTS OF LAGRANGIAN DMD 61

0 0.2 0.4 0.6 0.8 1
10-10

10-5

100

0.2 0.4 0.6 0.8 1
10-10

10-5

100

105

Figure 3.7: Errors of the Lagrangian DMD- and POD-based ROMs for the linear
advection equation: error in reconstructing the state variable u(x, t) (left) and its
observables g(u) (right). The error bound for g(u) is derived in [2].

the DMD estimate of the observable g(u) is appreciably tighter than in the case of

advection (Figure 3.5). With the error bounds, one can design an algorithm combining

short-term computation of HFM with long-term computation of LFM.

3.3.3 Two-Dimensional Advection-Diffusion Equation

Consider a two-dimensional linear advection-diffusion problem on (x, y, t) ∈ [0, 4] ×
[0, 4]× [0, 0.5],





∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
,

u(x, y, t = 0) = u0(x, y) = exp[−((x− 1)2 + (y − 1)2)/0.1],

cx = 0.1, cy = 0.2, D = 0.001.

(3.13)

The spatial domain is discretized into Nx = Ny = 40 points in the x and y directions,

yielding the total of Nx = 1600 grid points. The time interval is discretized into Nt =

1000 steps. Both Lagrangian DMD and Lagrangian POD use M = 250 snapshots as

a training dataset. The observable yk is constructed in two steps:

• Step 1: Transform one snapshot of the Nx by Ny solution matrix uki,j into a
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vector of length Nx ·Ny; transform one snapshot of the Nx by Ny moving grid

Xk
i,j into a vector of length Nx ·Ny.

• Step 2: Concatenate these two (Nx ·Ny)-long vectors into a vector yk of length

2 ·Nx ·Ny.
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Figure 3.8: Solutions of the two-dimensional linear advection-diffusion equation,
u(x, y, t), obtained alternatively with the numerical method (3.2) and the ROMs con-
structed via Lagrangian DMD (left bottom) and Lagrangian POD (right bottom).

Figure 3.8 provides a visual comparison between the reference solution and those

obtained with the Lagrangian DMD and the Lagrangian POD. Both ROMs capture

the advection-dominated phenomena. Figure 3.9 indicates that, in the extrapolating

regime, the Lagrangian POD is more accurate than the Lagrangian DMD. However,

its computational cost is higher than that of the iteration-free DMD, which becomes

increasingly important in two- and higher-dimensional problems. This is because the

projection step (3.9) requires memory of formulating a large forward matrix; in our
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Figure 3.9: Errors of the Lagrangian DMD- and POD-based ROMs for the two-
dimensional advection-diffusion equation: error in reconstructing the state variable
u(x, y, t) (left) and its observables g(u) (right). The error bound for g(u) is derived
in [2].

example, its size is Nx ·Ny by Nx ·Ny. Our error bounds enable one to monitor and

control the error in a reasonable range.

3.3.4 Inviscid Burgers’ Equation

The inviscid Burgers’ equation is recovered from (3.1) by setting c ≡ u and D ≡ 0,

∂u

∂t
+ u

∂u

∂x
= 0. (3.14)

We define this equation on (x, t) ∈ (0, 2π)× (0, 1], subject to the initial conditions

u(x, t = 0) = u0(x) ≡ 1 + sin(x) (3.15a)

and the periodic boundary conditions

u(0, t) = u(2π, t). (3.15b)

This formulation ensures a smooth, shock-free solution of the Burgers’ equation. The

current Lagrangian ROM formulation fails in the presence of shocks and will be
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extended to such cases in Chapter 4.
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Figure 3.10: Solutions of the inviscid Burgers’ equation, u(x, t), alternatively obtained
with the numerical method (3.2) and the ROMs constructed via Lagrangian DMD
(top) and Lagrangian POD (bottom).

Figure 3.10 provides a graphical illustration of the Lagrangian ROMs’ ability to

capture the system state dynamics in this nonlinear hyperbolic problem. Since the

Lagrangian description treats first-order hyperbolic conservation laws, such as the

inviscid Burgers’ equation, exactly via the method of characteristics, the addition of

the particle trajectories x(t) to the set of observables ensures that the Lagrangian

POD and DMD are both of machine error accuracy (Figure 3.11). Again the error

bound serves as an indicator of accurate ROMs.

The level-set method provides an alternative way to interpret the first-order hy-

perbolic conservation laws. In the Appendix A, we report our experiments with the
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Figure 3.11: Errors of the Lagrangian DMD- and POD-based ROMs for the inviscid
Burgers’ equation: error in reconstructing the state variable u(x, t) (left) and its
observables g(u) (right). The error bound for g(u) is derived in [2].

level-set DMD, which is essentially a Lagrangian DMD for two-dimensional linear

advection equation.

3.3.5 Viscous Burgers’ Equation

The viscous Burgers’ equation is obtained from (3.1) be setting c ≡ u and D ≡ 0.1.

Again, this equation is defined on (x, t) ∈ (0, 2π)× (0, 1] and is subject to the initial

and boundary conditions (3.15).

For this nonlinear problem, Lagrangian DMD is visually more accurate than La-

grangian POD (Figure 3.12), especially at later times. This is confirmed by plotting

the error in Figure 3.13. As mentioned in [132], the Lagrangian grid might become

distorted (especially in the presence of large gradients ∂xu) during the compressing

process of ROM in the POD algorithm. The error estimate of the observable does a

good job in evaluating the bound.

3.3.6 Computational Costs

Table 3.1 collates the rank of the ROMs and the computational times of the HFM

and the Lagrangian DMD- and POD-based ROMs. (The simulations were carried
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Figure 3.12: Solutions of the viscous Burgers’ equation, u(x, t), alternatively obtained
with the numerical method (3.2) and the ROMs constructed via Lagrangian DMD
(top) and Lagrangian POD (bottom).

out on a machine with Intel(R) Core(TM) i7− 6700 at 3.40 GHz processor.) Test 1

refers to advection problem (in section 3.3.1); Test 2 to advection-diffusion problem

(in section 3.3.2); and Tests 3 and 4 to inviscid and viscous Burgers’ equations (in

section 3.3.4 and section 3.3.5) , respectively. In some cases, the SVD dominates the

computational time of the ROM. Once the basis is constructed, the computation in

the low rank subspace is much faster. This explains why the POD-based ROM of

Test 3 takes more time to compute than the HFM. In other cases, the ROMs are

much more efficient than the HFM computations. DMD is the most efficient methods

because of its iteration-free nature.
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Figure 3.13: Errors of the Lagrangian DMD- and POD-based ROMs for the viscous
Burgers’ equation: error in reconstructing the state variable u(x, t) (left) and its
observables g(u) (right). The error bound for g(u) is derived in [2].

Test 1 Test 2 Test 3 Test 4
Rank truncation r 3 10 3 14

DMD 0.114718 0.046531 0.048450 0.055641
POD 0.153869 0.320905 0.435342 0.795566

Eulerian HFM 1.390459 29.782079 0.034519 55.713132
Lagrangian HFM 0.023568 27.020414 0.039063 55.246262

Table 3.1: Computational time (sec) of the HFMs and the corresponding Lagrangian
DMD- and POD-based ROMs.

3.4 Summary

In this paper, we investigate the issue of translational problem for conventional POD

and DMD in the Eulerian framework. A new physic-aware DMD, based on the La-

grangian framework, is proposed to overcome the shortcomings of ROMs of advection-

dominated nonlinear phenomena. Characteristic lines, an important physical quantity

in such systems, are taken into account in order to learn the Koopman operator of

the underlying dynamics. The Lagrangian framework provides an optimal choice of

observable functions for learning the Koopman operator. It allows one to construct

a ROM in a relatively small subspace by using the DMD algorithm with satisfactory

accuracy. Compared to the Lagrangian POD method, physics-aware DMD is more
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efficient computationally thanks to its iteration-free nature.

One possible direction for future work is to investigate the advection-diffusion

system in Lagrangian coordinates [133]. Interpolation between Eulerian grid and La-

grangian grid will not be needed anymore but careful discretization of the diffusion

operator will need to be handled. Existing numerical studies in Lagrangian coor-

dinates and related methods [134, 135] could be explored as guidelines of choosing

physical observables in reduced order modeling.

All the numerical tests presented in this paper are shock-free. Once shock is

formed, the Lagrangian formulation (3.4) becomes invalid. Although one can still

make the scheme (3.5) work by numerical remedies, instability or unphysical solutions

could appear when sharp gradients or shocks occur. The instability could become

more severe in the compressed low-dimensional space [132]. The modifications in

[132] bypass this issue by compensating computational costs in projecting back to the

Eulerian grid. From the perspective of physic-aware data-driven modeling, we realize

that significant information like shock formation time, shock location and shock speed

is not interpreted well enough from data. In another word, other quantities should be

chosen as essential observables in order to learn the underlying Koopman operator.

This line of research is pursued in [31] and presented in the next Chapter 4.



Chapter 4

Hodograph DMD for Hyperbolic

Problems with Shocks

Since introduction of Euler equations, hyperbolic conservation laws play a significant

role in gas dynamics, astrophysics, plasma, traffic flow, multiphase flow in porous

media [136–140] and other fields of science and engineering. Wave-like solutions of

hyperbolic equations can exhibit various rarefaction and shock behaviors, whose oc-

currence strongly depends on a functional form of the flux function. Discontinuity

and uniqueness of such solutions pose challenges in theoretical treatment of hyperbolic

conservation laws [141, 142]. Theoretical advances, such as entropy conditions and

the concept of a weak solution [143, 144], ameliorate this difficulty by providing phys-

ical interpretation to these solutions. Likewise, numerical high-resolution methods

have been designed to resolve nonlinearities and accurately capture shocks [145–147].

Although continued developments in scientific computing have improved the perfor-

mance of high-resolution simulations, their computational cost is often too high to

model complex systems at spatiotemporal resolutions and scales of interest. The cost

can become prohibitive when used in the context of uncertainty quantification or data

assimilation, both of which require a large number of repeated forward model runs.

ROMs provide an efficient alternative to their high-fidelity, physics-based counter-

parts that can be deployed in large-scale multiphysics simulations. Robust tools for

construction of ROMs for problems described by ODEs or PDEs include POD [19–21]

69
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and DMD [1, 22, 112, 113]. The challenge of extending these techniques to hyper-

bolic or advection-dominated parabolic PDEs with smooth solutions was met by [30]

through development of the physics-aware DMD and POD approaches within a La-

grangian framework. However, in the presence of strong shocks and/or sharp gradi-

ents, Lagrangian POD methods can generate numerical instability caused by grid dis-

tortion [111]. Once characteristics of a nonlinear hyperbolic PDE intersect each other,

the projection from a high-dimensional manifold of the HFM onto a low-dimensional

subspace of the LFM, e.g., ROM, is not guaranteed and typically fails to preserve

topological properties of the original HFM. We elaborate on this point in section 4.1,

in terms relevant to DMD.

We use hodograph transformation [148] to resolve this outstanding issue in con-

struction of ROMs for PDEs with discontinuous solutions and shocks. Hodograph

diagrams have originated in meteorology to plot wind from soundings of Earth’s

atmosphere. Since then, hodograph transformation morphed into a technique de-

signed to transform nonlinear PDEs into linear ones by interchanging the dependent

and independent variables. Hodograph-type transformations have been used to find

quasilinear analogues of semi-linear equations, and to derive new analytical solutions

to special classes of PDEs [149]. Advantages of mapping nonlinear PDEs onto their

linear counterparts are self-evident: analytical tools available for linear PDEs provide

better understanding of the behavior of a solution and numerical solvers for linear

systems are both easier to implement and computationally cheaper.

The Koopman operator theory [39] shares the goal of hodograph transformation:

a Koopman operator is an infinite-dimensional linear operator that represents the

underlying finite-dimensional nonlinear dynamic system by judiciously choosing ob-

servable functions. It is also similar in its goal to integral transformations that map

certain classes of nonlinear PDEs onto their linear counterparts. For example, the

Cole-Hopf transformation and the Kirchhoff transformation map, respectively, Burg-

ers’ equation and a class of nonlinear diffusion (heat conduction) equations onto a lin-

ear diffusion equation. These integral transformations have been used in the context

of the Koopman operator theory and DMD/POD to constructed ROMs for Burgers’

equation [150] and a nonlinear diffusion equation [2]. A major goal of our study is
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to establish clear connections between hodograph transformation and the Koopman

theory. This relationship between the two is then used both to identify observables

for a Koopman operator via hodograph transformation and to construct ROMs for

hyperbolic conservation laws with shocks via DMD.

Besides the choice of the observable functions, another key ingredient of the success

of a DMD algorithm is data availability. As proved theoretically by [75] and verified

numerically by [2], data have to be sufficiently rich for the learning algorithm to

capture all essential features of the underlying dynamics. Therefore, a key condition

in our DMD framework for mixed wave problems is that the data be collected until and

after all forms of propagation occurs. A resulting ROM remains valuable as a predictor

of the continuing propagation. For example, the Buckley-Leverett’s equation (see

section 4.4.5) is widely used in oil and gas industry to describe the water injection

and oil production processes. A shock profile forms right after the injection begins.

Quantities of interest are “breakthrough time” (i.e., the time when the shock front

exits the domain) and “water-cut curve” (i.e., the cumulative rarefaction curve after

the breakthrough), which can be efficiently predicted by a successful ROM.

4.1 ROM Failure for Problems with Shocks

Consider a state variable u(x, t) : [a, b]× [0, T ] → R, where the constants a, b ∈ R and

T ∈ R+. The dynamics of u(x, t) is described by a one-dimensional scalar conservation

law

∂u

∂t
+
∂C(x, t, u)

∂x
= 0 or

∂u

∂t
+ c(x, t, u)

∂u

∂x
= 0, c(x, t, u) =

∂C(x, t, u)

∂u
. (4.1)

This hyperbolic PDE is subject to the initial condition u(x, t = 0) = u0(x) and, when

appropriate (i.e., when |a|, |b| < ∞), boundary conditions at a and/or b. This group

of PDEs belongs to (1.1) and (3.1) (with D = 0).

A numerical solution provided by (3.2) with D ≡ 0 using sufficiently small ∆t

and ∆x, satisfying corresponding CFL condition, are referred to as a reference HFM

throughout this chapter.
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Standard (Eulerian) approaches to construction of a ROM for (4.1) often fail due

to the traveling-wave nature of its solution (see section 3.1 and [30, 111]). In a shock-

free scenario, the Lagrangian framework (see section 3.2) can resolve the translational

issue in the POD or DMD approaches to ROMs by keeping track of the characteristic

lines.

One of the most studied examples of (4.1) is the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) = u0(x), (4.2)

which we define on the space-time domain (x, t) ∈ [0, 2π] × [0, 1]. Depending on the

boundary and initial conditions, this problem admits both smooth and discontinu-

ous solutions u(x, t). For example, a smooth solution is obtained for the periodic

boundary conditions, u(0, t) = u(2π, t), and the initial data u0(x) = 1 + sin(x) (see

section 3.3.4). In this setting, standard (Eulerian) ROMs fail due to the inability

of SVD to represent a low rank structure of translational problem, while the ROMs

based on either Lagrangian POD or Lagrangian DMD perform well in terms of both

accuracy and computational efficiency [30].

A solution to (4.2) develops shocks in finite time for, e.g., a Gaussian-type initial

data,

u0(x) = 0.8 + 0.5 exp

[
−(x− 0.3)2

0.001

]
. (4.3)

In the pure Lagrangian approach (3.4), the discretization has to account for shock for-

mation. Once the characteristic lines cross each other, the Lagrangian mesh becomes

sensitive to the choice of discretization of u(x(t), t). For instance, a discretization

of (3.4) with c(·, u) = u, 


un+1
j = unj ,

xn+1
j = xnj +∆tun+1

j ,
(4.4)

would lead to the so-called “overshoot” that admits multi-value solutions (Figure 4.1a),

which contradicts the entropy condition. This is a typical problem with the La-

grangian framework. It should come as no surprise that an attempt to build a ROM

with the Lagrangian DMD based on the faulty discretization (4.4) likewise results
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in failure (Figure 4.1b). The Lagrangian DMD faithfully reproduces the unphysical

solution obtained with the faulty discretization scheme (4.4). In other words, the

resulting unphysical ROM is not caused by the DMD algorithm itself; the data from

the full Lagrangian model (4.4) provide inaccurate and incomplete (without shock)

information from the very beginning.
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Figure 4.1: Solutions of the inviscid Burgers equation with a shock. (a) Top: the
full solution obtained with the Lagrangian numerical scheme (4.4) leading to the
overshoot. (b) Bottom: the Lagrangian DMD solution trained on a few snapshots of
the faulty full solution. The reference solution is obtained with (3.2).

We consider a numerical scheme that is known for its ability to handle shocks:
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the backward semi-Lagrangian method (BSLM),





un+1
j = unj ,

x∗ = xnj +
∆t

2
unj ,

xn+1
j = xnj +

∆t

2
(u(x∗, tn) + u(x∗, tn+1)),

(4.5)

and employ the (explicit) mid-point rule to avoid implicit iterations. Since u(·, tn+1) is

unchanged from u(·, tn), the evaluations at x∗ can be calculated via interpolation, e.g.,

via linear interpolation used below. Figure 4.2a reveals that this numerical scheme is

indeed capable to accurately approximate the solution of the inviscid Burgers equation

with shocks. However, the Lagrangian DMD algorithm using snapshots from the full

solution (4.5) suffers from instability once a shock is about to form (Figure 4.2b). The

grid becomes severely distorted once the characteristic lines intersect each other at the

interface where sharp gradients of u(x, t) occur. At the intersect, one arrival location

of x corresponds to two different departure values of u. However, the DMD modes

projection from the HFM to the ROM does not keep the topological information

about this multivalued mapping in the ROM process, resulting in the Lagrangian

grid distortion.

Remark 4.1. The Lagrangian POD approach suffers from similar problems [111].

Moreover, the POD projection on the accurate Lagrangian scheme (4.5) would still

require interpolation in the high-dimensional space. One might need techniques such

as DEIM [37] to keep the resulting ROM’s efficiency. Nevertheless, extensions of

POD are beyond the scope of our study; we focus on DMD-based ROMs due to their

iteration-free nature.

4.2 Hodograph Transformation

We start with a mathematical definition of hodograph transformation reproduced

from [149].
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Figure 4.2: Solutions of the inviscid Burgers equation with a shock. (a) Top: the
full solution obtained with the appropriate Lagrangian numerical scheme (4.5). (b)
Bottom: the Lagrangian DMD solution trained on a few snapshots of the accurate
full solution. The reference solution is obtained with (3.2).
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Definition 4.1. A pure hodograph transform is a transformation of the form

τ = t, ξ = u(x, t). (4.6)

For the inviscid Burgers equation (4.2), we first consider a scenario where only

one shock is developed from the initial data u0(x) in finite time. This necessitates

the following assumption.

Assumption 4.1. The function u0(x) satisfies four conditions:

• u0(x) is smooth;

• u0(x) decreases monotonically, i.e., u′0(x) < 0 for all x; and limx→+∞ u0(x) =

uR, limx→−∞ u0(x) = uL with constants uR < uL;

• u0(x) has a unique inflection point (x∗, u∗) with u∗ = u0(x
∗), meaning u′′0(x

∗) =

0;

• u′′′0 (x
∗) > 0.

This assumption ensures existence of an inverse function x(t, u) : [0, T ]×[uR, uL] →
[a, b] of the monotonic function u(t, x) : [0, T ] × [a, b] → [uR, uL]. The last two

assumptions ensure single-shock formation for illustration purposes. It follows from

Definition 4.1 that the inverse function x(t, u) = x(τ, ξ) is a pure hodograph transform

based on (4.6).

4.2.1 Solution Before Shock Formation

With u acting as the independent variable and x as the dependent variable, hodograph

transformation x = x(t, u) maps the equation for characteristics (3.4) of the inviscid

Burgers equation (4.2), before the shock formation time t∗ (defined later), onto

dx(t, u)

dt
= u, x(0, u) = x0(u); for (t, u) ∈ [0, t∗)× [uR, uL]. (4.7)

Assumption 4.1 translates into conditions on the function x0(u):
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• x′0(u) < 0;

• x0(u) has a unique inflection point at (u∗, x∗);

• x′′′0 (u
∗) < 0.

Differentiation of (4.7) with respect to u gives

∂2x

∂t∂u
(t, u) = 1, (4.8)

from which

∂x

∂u
(t, u) = x′0(u) + t, for (t, u) ∈ [0, t∗)× [uR, uL]. (4.9)

Let t∗ = minu[−x′0(u)] = −x′0(u∗) denote the time of shock formation; the shock

location is x∗ = x(u∗, t∗). Since x′0(u) < 0, the derivative ∂ux(t, u) < 0 as long as

t < t∗.

4.2.2 Solution After Shock Formation

At times t larger than t∗ = −x′0(u∗), i.e., once the shock forms, (4.7) is no longer

valid. In the (x, u) plane, one would use the entropy (Rankine-Hugoniot) condition

to construct a weak formulation of Burgers’ equation. Its analog in the (u, x) plane

gives an equation for the shock speed s:

s =
1

2

u21 − u22
u1 − u2

=
u1 + u2

2
, (4.10)

where u1(t) and u2(t) are defined as the limits of u(t) from the top and bottom of

the shock, respectively. They are computed as solutions of a system of ordinary

differential equations (see [151] for detailed derivation)





du1
dt

=
1

2

u1 − u2
ψ(u1)− t

,

du2
dt

= −1

2

u1 − u2
ψ(u2)− t

,

(4.11)
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where ψ(u) ≡ −x′0(u). These ODEs are subject to initial conditions u1(t
∗) = u∗ and

u2(t
∗) = u∗. Since s = dx∗(t)/dt, an equation for the shock trajectory x∗(t) is

dx∗(t)

dt
=
u1 + u2

2
. (4.12)

4.2.3 Summary of Hodograph Solution

Under Assumption 4.1, the hodograph-transformed Burgers’ equation (4.2) takes the

form of the following ODEs for x(t, u):





t < t∗ : Equation (4.7)

t > t∗ :




Equation (4.7) for u ∈ (uR, u2) ∪ (u1, uL)

Equation (4.12) for u ∈ (u2, u1),

(4.13)

where t∗ = −x′0(u∗), and u1 and u2 are solutions of (4.11).

Remark 4.2. One can show that u1(t) is a monotonically increasing function and

u2(t) is a monotonically decreasing function, such that

u1 ≥ u∗, u2 ≤ u∗, x′0(u1) + t ≤ 0, x′0(u2) + t ≤ 0. (4.14)

In many cases of interests, and in some our numerical experiments, either u1 and u2

are known or |u2 − uR|, |u1 − uL| ≪ ∆t (so that u2 ≈ uR and u1 ≈ uL). This allows

one to focus on shock propagation, i.e., on (4.12), without having to solve (4.11).

Remark 4.3. Functions u0(x) that do not satisfy Assumpation 4.1, such as (4.3),

require a decomposition of the initial data into monotonic parts. Each monotonic

piece of u0(x) would have a unique inverse function x0(u). The entropy condition

implies that the increasing x0(u), i.e. x′0(u) > 0, results in a rarefaction solution,

which satisfies (4.7). The union of the rarefaction pieces and shock pieces would give

the full solution.

Remark 4.4. The inviscid Burgers equation is an example of hyperbolic conservation
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laws with monotonically increasing flux functions C(·, u). Generalization to hyperbolic

conservation laws with a convex flux is presented in Appendix B.

4.3 Physics-Aware DMD for Conservation Laws

with Shocks

Previous theoretic investigations, e.g., by [2], demonstrated that the key to the success

of the DMD in capturing nonlinear dynamics is to identify the underlying Koopman

operator. Several numerical studies [43, 65, 150] confirmed this finding. The Koop-

man operator theory ensures that a DMD algorithm utilizes all relevant physical

information to learn the dynamics. We refer to this approach as physics-aware DMD

to distinguish it from the conventional DMD that learns only from (simulations-

generated) data.

The Koopman operator theory is reviewed in section 1.1.2. There is no principled

way to choose the observables without expert knowledge of a system under consid-

eration. Selection of observables remains a grand challenge and an active research

area, e.g., machine learning and deep learning techniques were recently employed to

identify the underlying Koopman operator [132]. In the context of conservation laws

with shocks, the equivalency between hodograph transformation and the Koopman

operator, established in this study, facilitates a “smart” choice of the observables. It

is implemented by the construction of observable g via (1.27) where gkj = x(k∆t,uk)

with j = 1, . . . , p − 1 is the inverse function of u(t, x), evaluated at the prescribed

mesh ū. The last observable gkp is a problem-dependent recording of shock informa-

tion. Then, we follow Algorithm 2 and (1.30) to (1.31).

Remark 4.5. Numerically, g can be obtained by interpolation from a uniform mesh

in the (x, u) plane to a uniform mesh in the (u, x) plane, and so can g−1. The

monotonicity Assumption 4.1 ensures that the observable functions are one-to-one

maps.

Remark 4.6. The challenge of incorporating the shock information into the La-

grangian DMD algorithm of [30] is the dependence of shock speed on the dependent
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variable u. Hodograph transformation facilitates the incorporation of this implicitly

nonlinear information by turning u an independent variable and by rendering the

shock speed given by the Rankine-Hugoniot condition linear.

Remark 4.7. For problems with shocks, one needs to collect snapshots until and after

a shock forms. Otherwise, the Koopman operator cannot learn the shock dynamics.

Remark 4.8. For mixed wave problems, one needs to collect snapshots until and

after all forms of propagation occurs. This requires pre-observation, pre-processing

and understanding of the data. General initial data u0(x) has to be separated into

monotonic sub-regions. Physical quantities, such as shock speed and intersection point

of shock and rarefaction propagation, must be understood from given data features.

They give an explicit form of the shock observable function gp; although problem-

dependent, all the shock information is linear with respect to u.

Remark 4.9 (Algorithm’s accuracy). The error of our physics-aware DMD algorithm

stems from two sources. The first is the error due to order reduction in the observable

space; it represents the accuracy with which (1.30) predicts the true observable yn+1.

According to the error estimator of [2], this prediction accuracy depends on the number

of snapshots M ; the rank truncation criteria, as in (1.7); and the linear operator K

induced by g. The second is the error due to forward and backward mapping g; in

the discrete setting, it presents an error in projection between the (x, u) space and

the (u, x) space. The model-order-reduction error and projection error are studied

numerically in section 4.4.6.

4.4 Numerical Tests of Hodograph DMD

We apply the physics-aware DMD to construct ROMs of scalar conservation laws

in different scenarios, including a shock, rarefaction and a mixture of both. These

hyperbolic conservation laws take the forms of the inviscid Burgers equation (sec-

tions 4.4.1–4.4.4), the Buckley-Leverett’s equation (section 4.4.5), and the Euler equa-

tions (section 4.4.6). The conservative first-order upwind scheme (3.2) is employed as



4.4. NUMERICAL TESTS OF HODOGRAPH DMD 81

a reference solution (using Nx = Nu), except when an analytical solution is available.

The rank truncation criterion (1.7) with ε = 10−4 is used in all cases.

The observable data yn in (1.27) now relies on the mesh ū = [ū1, . . . , ūNu ]
⊤ with

mesh size ∆ū = ūj+1 − ūj and the minimum and maximum values ū1 and ūNu ,

respectively. In general, there are two strategies of collecting data on mesh ū:

(a) Solving (4.13) for x(t, u) in the (u, x) plane on the mesh ū at discrete time

tn, n = 1, · · · , Nt;

(b) Solving (3.2) for u(t, x) in the (x, u) plane on the mesh for x at discrete time

tn, n = 1, · · · , Nt, then interpolating for x(t, u) in the (u, x) plane on the mesh

ū.

In the case of Burgers’ equation and the Buckley-Leverett’s equation, both strategies

are applicable. We choose strategy (a) for the examples in section 4.4.1–4.4.5 to avoid

the projection error due to the mapping between the (x, u) and (u, x) planes. In the

case of the Euler equations (section 4.4.6), only strategy (b) is feasible. Regardless of

the strategy used, the physics-aware DMD algorithm 2, applied to the M observables

y0, . . . ,yM−1 in (1.27), allows one to predict yn
DMD for n ≥ M and to obtain un

DMD

by concatenating the interpolation of yn
DMD on the mesh for x.

4.4.1 Riemann Problem for Burgers’ Equation with Shock

Consider the inviscid Burgers equation (4.2) defined for (x, t) ∈ [−0.5, 1.5]× [0, 1] and

with initial data

u0(x) =




2 for − 0.5 ≤ x < 0

0 for 0 ≤ x ≤ 1.5.
(4.15)

This problem admits an analytical solution

u(x, t) =




2 for − 0.5 ≤ x < st

0 for st < x ≤ 1.5,
(4.16)

where the shock speed s = 1 is determined from the Rankine-Hugoniot condition.
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The discontinuous initial data u0(x) in (4.15) do not satisfy Assumption 4.1. Thus,

we approximate the step function u0(x) with a smooth function, e.g., the hyperbolic

tangent

u0 ≈ 1− tanh

(
x

δ

)
, δ ≪ 1, (4.17)

which satisfies Assumption 4.1. In the (u, x) plane,

x0 ≈
δ

2
log

(
2− u0
u0

)
, δ ≪ 1. (4.18)

This approximation is valid in the neighborhood of the shock interface; away from

it, (4.15) is used. It follows from (4.18) that

• x′0(u) =
δ

(u−2)u
< 0 for u ∈ (0, 2);

• x0(u) has a unique inflection point at (u∗ = 1, x∗ = 0);

• x′′′0 (u) =
4(3u2−6u+4)
(u−2)3u3 and thus x′′′0 (u

∗) = −4 < 0.

Snapshots of x(t, u) on a uniform mesh ū = [ū1, · · · , ūNu ]
⊤, which consists of

Nu = 2000 equidistant points, are collected at M = 250 times until T = 0.25. The

ROM is used to predict the solution u(x, t) for larger times, t > T . The shock-

related information is contained in u1(t) and u2(t), first defined in (4.11). Since

both are constant in this example, no extra observable gp is needed to record the

shock information. Each column yn in the data matrix is of length p = 2000 and

elements yn
j = x(tn, ūj) for j = 1, . . . , Nu. If one were to add the constant shock

information u1 and u2 to the observables, then yn would have length p = 2002 such

that elements yn
j = x(tn, ūj) for j = 1, . . . , Nu are supplemented with two extra

elements yn
2001 = u1 = 2 and yn

2002 = u2 = 0. Doing so would lead to the same

prediction: the DMD algorithm is able to learn the pattern of the last two observables

being constant in time.

Figure 4.3 demonstrates the the physics-aware DMD algorithm with hodograph

transformation captures the behavior of the shock propagation. Only r = 2 modes are

needed to construct the ROM, which remains accurate for relatively long time in the

extrapolation mode. Hodograph transformation converts the nonlinear conservation
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Figure 4.3: Physics-aware DMD solution of the inviscid Burgers equation with a
shock. The reference solution is given by analytic solution (4.16). 1st order upwind
scheme by (3.2) is also plotted here in solid line.

law (4.2) with discontinuous initial data (4.15) into a linear shift with constant speed,

which is readily learned from data. Due to the monotonicity constraint, the solution

using hodograph transformation (and the concomitant DMD prediction) is only valid

in the neighborhood of the shock interface, which is often of interest in itself. Away

from the discontinuity, the Lagrangian DMD [30] is accurate and should be used

instead.

4.4.2 Riemann Problem for Burgers’ Equation with Rarefac-

tion Wave

Consider the inviscid Burgers equation (4.2) defined for (x, t) ∈ [−1, 1] × [0, 1] and

with initial data

u0(x) =





− 1 for − 1 ≤ x < 0

1 for 0 ≤ x ≤ 1.
(4.19)
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This problem admits an analytical solution in the form of a rarefaction wave,

u(x, t) =





− 1 for − 1 ≤ x < −t
x/t for − t < x < t

1 for t < x ≤ 1.

(4.20)

A hyperbolic-tangent approximation analogous to (4.17) is used to deal with the

discontinuity in the initial data u0(x). And the same structure of data matrix is

used in the physics-aware DMD algorithm 2 with Nu = 2000 and M = 250 until

t = 0.25. Since there is no shock in this scenario, no extra observable is needed to

record shock-related information.
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Figure 4.4: Physics-aware DMD solution of the inviscid Burgers equation with a
rarefaction wave. The reference solution is given by analytic solution (4.20). 1st
order upwind scheme by (3.2) is also plotted here in solid line.

Figure 4.4 shows the same satisfactory ROM results for this problem with a rar-

efaction wave. Only r = 2 modes are needed to obtain accurate predictions because

the hodograph transform, x = x(t, u), satisfies a linear ODE (4.7), with u acting as an

independent variable. The absence of a shock suggests that this rarefaction scenario

can also be handled with the Lagrangian DMD algorithm, with similar results.

Given an accurate approximation of the initial discontinuity, i.e., selecting δ to be

sufficiently small, the ROM trained on the data generated from the solution of (4.7)
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is even more accurate than the HFM solution. The upwind scheme (3.2) has first-

order accuracy, O(∆t), while the physics-aware DMD algorithm can have spectral

accuracy. Figures 4.3 and 4.4 show that the physics-aware DMD solution has a much

sharper interface than that estimated with the first-order upwind scheme (3.2).

4.4.3 Smooth Solution of Riemann Problem for Burgers’ Equa-

tion with Non-monotonic Initial Data

Consider Burgers’ equation (4.2) defined for (x, t) ∈ [−π/2, 3π/2] × [0, 1] and with

initial data

u0(x) = 1 + sin(x). (4.21)

Since these initial data violate Assumption 4.1, we decompose the interval [0, 2π]

into two parts: in the left part, x ∈ [−π/2, π/2], u0(x) monotonically increases; in

the right part, x ∈ [π/2, 3π/2], it monotonically decreases. Each part has a unique

inverse function of x0(t, u0); we denote xl(t, u) as the evolution of the left part and

xr(t, u) as the evolution of the right part. Since the shock formation time is t∗ = 1,

the equation of characteristics for this Riemann problem is equivalent to (4.7) on

any finite-time interval [0, T ] ⊂ [0, 1]. Although this is a shock-free scenario, the

two parts have different wave propagation behaviors. The numerical scheme (3.2)

with Nx = 2000 spatial discretization points and Nt = 1000 time steps provides the

reference solution. The data used to inform our DMD method consist of M = 250

snapshots with observables yk
j = xl(tk, ūj) for j = 1, . . . , Nu and yk

j = xr(tk, ūj−Nu)

for j = Nu + 1, . . . , 2Nu. No extra observable is needed to record shock-related

information since there is no shock formation in the considered time interval.

Figure 4.5 demonstrates the ability of the ROM based on our physics-aware DMD

algorithm to capture these nonlinear dynamics. Only r = 2 modes are needed to

obtain accurate predictions due to the linearity after hodograph transform. The

ROM was trained on the early (t ≤ 0.25) data, which exhibit smooth gradients. Yet,

it accurately captures sharp gradients at later times, e.g., t = 1. That is because,

in the (u, x) domain of the hodograph transform, higher gradients of u(·, x) translate
into flatter horizontal plots of x(·, u).
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Figure 4.5: Physics-aware DMD solution of the inviscid Burgers equation subject to
nonmonotonic initial condition. The reference solution is computed with (3.2).

4.4.4 Riemann Problem for Burgers’ Equation with Rarefac-

tion and Shock

Consider Burgers’ equation (4.2) defined for (x, t) ∈ [0, 2] × [0, 1] and with the

Gaussian-type initial data in (4.3). This is the setting we used to illustrate the failure

of the Lagrangian DMD in section 4.1 (Figure 4.2). The numerical scheme (3.2) with

Nx = 2000 spatial discretization points and Nt = 105 time steps provides the reference

solution. The finer time discretization is needed to satisfy the CFL constraints. The

data used to inform our physics-aware DMD method consist of M = 3000 snapshots

of solving (4.13). These data are sufficiently rich to identify the rarefaction and shock

behavior of the solution.

A decomposition of the initial data u0(x) in (4.3) is needed to enforce monotonicity.

The increasing branch of u0(x) is responsible for the rarefaction and its decreasing

branch gives rise to the shock. It follows from (4.13) that

xl(u, t
0) = 0.3−

√
−0.001 ln(2u− 1.6) and xr(u, t

0) = 0.3+
√
−0.001 ln(2u− 1.6).

We can verify that xr(u; t
0) has a unique inflection point (u∗, x∗) with u∗ = 0.8 +
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1/(2
√
e) and x∗ =

√
0.002e and, for u ∈ (0.8, 1.3), both x′r(u; t

0) < 0 and x′′′r (u; t
0) <

0. Consequently, the data are generated from (4.13) as follows.

1. A uniform mesh ū = [ū1, . . . , ūNu ]
⊤ is constructed with mesh size ∆ū = ūj+1 −

ūj, and ū1 = 0.8 and ūNu = 1.3.

2. For xl(u, t), no shock develops. The full discretization (4.7) gives





xl(ūj, tn+1)− xl(ūj, tn)

∆t
= ūj,

xl(ūj, t0) = 0.3−
√

−0.001 ln(2ūj − 1.6).

(4.22)

3. For xr(u, t), the shock formation time t∗ is calculated as

t∗ = min
u

{−x′r(u, t0)} ≈ 0.074. (4.23)

(a) If tn+1 ≤ t∗, then





xr(ūj, tn+1)− xr(ūj, tn)

∆t
= ūj,

xr(ūj, t0) = 0.3 +
√

−0.001 ln(2ūj − 1.6).

(4.24)

(b) If tn+1 > t∗, u2(tn) = uR = 0.8 is known and u1(tn) is approximated by the

intersection of xl(u, tn) and xr(u, tn) due to the continuity of the solution,

i.e.,





u1(tn) = argmin
ūj

|xr(ūj, tn)− xl(ūj, tn)|, u2(tn) = uR = 0.8,

xr(ūj, tn+1)− xr(ūj, tn)

∆t
=
u1(tn) + u2(tn)

2
.

(4.25)

4. The observable vector yn of length p = 2Nu + 2 comprises yk
j = xl(ūj, tk) for

j = 1, . . . , Nu; y
k
j = xr(ūj−Nu , tk) for j = Nu + 1, . . . , 2Nu; and yk

2Nu+1 = u1(tk)

and yk
2Nu+2 = u2(tk).
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Figure 4.6: Physics-aware DMD solution of the inviscid Burgers equation with a
rarefaction wave and shock. The reference solution is computed with (3.2).

Figure 4.6 shows that the physics-aware DMD based on hodograph transformation

provides an accurate ROM for this Riemann problem, which could not be treated with

the original Lagrangian DMD. The physical shock information, which is needed for

the last two observable functions, includes the shock speed and the intersection point

of the rarefaction wave and the shock trajectory. In this setting, the shock speed varies

with time but is still linear with respect to u. The physics-aware DMD algorithm can

learn this linear relationship from the data with no difficulties. Only r = 4 modes

are needed and all of the advantages of linearity are achieved with the hodograph

transform.

4.4.5 Riemann Problem for Buckley-Leverett’s Equation

Consider the hyperbolic conservation law (4.1) with a nonmonotonic flux function,

C =
u2

u2 + a(1− u)2
, a = 0.5, (4.26)
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that is defined for (x, t) ∈ [0, 2]× [0, 0.5] and is equipped with initial data

u0(x) =




1 for 0 ≤ x < 1

0 for 1 ≤ x ≤ 2.
(4.27)

The Buckley-Leverett equation, (4.1) and (4.26), with initial condition (4.27) is widely

used to describe the injection process of immiscible two-phase flow in porous media.

Similar to (4.17), the initial discontinuity is approximated with the hyperbolic

tangent function. The hodograph treatment of this more general problem is provided

in Appendix B. The numerical scheme (3.2) with Nx = 2000 spatial discretization

points and Nt = 1000 time steps provides the reference solution up to t = 0.5. The

data used to inform our physics-aware DMD method consist of M = 250 snapshots

of solving (B.10) with Nu = 2000 discretization points until t = 0.125. This set of

snapshots is sufficiently rich to reveal a self-similar structure of the solution.
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Figure 4.7: Physics-aware DMD solution of the Buckley-Leverett equation, which has
a nonmonotonic flux function. The reference solution is computed with (3.2).

Although the initial data u0 are monotonic, their decomposition is needed accord-

ing to the convex hull construction of the flux function (Appendix B). The reformu-

lation involves two branches of different linear equations with two sets of the disjoint
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initial data. Similar as the previous section, the last two observation functions com-

prises the shock speed as well as the intersection point of the rarefaction wave and

the shock trajectory. This intersection point defines the magnitude of the shock and

informs the convex hull construction of the flux function.

Figure 4.7 demonstrates that the physics-aware DMD with r = 4 modes accu-

rately captures the future states in relatively long time. Hodograph transformation

allows one to determine the underlying linear Koopman operator in the nonlinear

conservation laws. The iteration-free feature of DMD enhances its effectiveness and

efficiency.

Remark 4.10. In laboratory experiments with multiphase flows in porous media, one

often measures the flow rates of two fluids and approximates the displacement profiles.

Such observational data can be used to construct an effective ROM after interpolating

them from the (x, u) plane to the (u, x) plane. Such a construction would not require

any knowledge of the empirical flux function, such as (4.26), and its parameters, such

as a.

4.4.6 Riemann Problem for Euler Equations

Consider a one-dimensional Sod shock tube problem,

∂

∂t



ρ

ρu

E


+

∂

∂x




ρu

ρu2 + p

u(E + p)


 = 0, (x, t) ∈ [−0.5, 0.5]× [0, 0.25],

E =
p

γ − 1
+

1

2
ρu2, γ = 1.4,

(4.28)

with initial conditions

ρ(x, 0) =




1 x < 0.5

0.125 x ≥ 0.5
, p(x, 0) =




1 x < 0.5

0.1 x ≥ 0.5
, u(x, 0) = 0. (4.29)

This problem admits an analytic solution obtained, e.g., via the method of char-

acteristics. Figure 4.8 shows that the solution is a mixture of a rarefaction wave and
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Figure 4.8: The analytical solution to the Sod shock tube problem (4.28): (a) density,
(b) pressure, (c) velocity, (d) energy; all evaluated at time t = 0.25.

a shock, which undermines the performance of conventional ROM approaches. For

example, Figure 4.9(a) shows the failure of the standard (Eulerian) DMD to construct

a ROM in the (x, ρ) plane, with similarly unsatisfactory performance for p and u. In

these simulations, x is discretized using Nx = 1000 equidistant points, and M = 250

snapshots data are collected from t = 0 to t = 0.0625. The prediction at later time,

t = 0.125, already shows tremendous errors and loss of correct rarefaction/shock

features.

Our hodograph-based physics-aware DMD resolves this challenge. Figure 4.9(b)

demonstrates that it yields an accurate ROM by interpolating theM = 250 snapshots

of the analytical solution onto the (ρ, x) plane in which the ρ coordinate is discretized

with a Nρ = 1000 equidistant mesh. Here, x(ρ, t) is selected as the observable and
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Figure 4.9: ROMs constructed by (a) top: the standard DMD and (b) bottom: the
physics-aware DMD. The former uses snapshots of ρ(x, t) in the (x, ρ) plane, while
the latter relies on snapshots of x(ρ, t) in the (ρ, x) plane.



4.4. NUMERICAL TESTS OF HODOGRAPH DMD 93

the linear Koopman operator on x(ρ, t) is efficiently represented by r = 210 modes

in the physics-aware DMD algorithm. Nearly 4/5 rank reduction is obtained and

the computational time for DMD prediction is negligible due to its iteration-free

nature. Although an equation for x(ρ, t) is not available, the hodograph transform

for one-dimensional scalar hyperbolic equations motivates this proper selection of an

observable. The hodograph transform for multidimensional PDEs is more complicated

(e.g., [152, 153]) and not directly applicable to our current ROM framework. Our

results demonstrate that while the connection between the hodograph transform and

the Koopman theory is unclear in multiple dimensions, it can still guide the selection

of observables.

Finally, we investigate the model-order reduction error ex and the projection error

epr discussed in Remark 4.9. In this example, ex is the DMD prediction error in terms

of x(ρ, t),

enx = ∥yn − yn
DMD∥,

yn = [x(ρ̄1, t
n), · · · , x(ρ̄Nρ , t

n)]⊤

= g([ρ(x1, t
n), · · · , ρ(xNx , t

n)]⊤).

(4.30)

This quantity provides a measure of the discrepancy between the reference observable

values and their DMD prediction, without isolating various sources of the error. We

also consider epr, the error in creating the observable x(ρ, t) via projection from the

(x, ρ) plane onto the (ρ, x) plane during preprocessing and in estimating the solution

ρ(x, t) backwards during post-processing. Both ex and epr contribute to the total

error eρ in DMD estimation of the solution ρ(x, t),

enρ = ∥ρn − ρn
DMD∥,

ρn = [ρ(x1, t
n), · · · , ρ(xNx .t

n)]⊤,

ρn
DMD = g−1(yn

DMD).

(4.31)

Temporal evolution of the errors ex and eρ is plotted in Figure 4.10 with both er-

rors (4.30) and (4.31) reported in L2 norm and defined on the corresponding meshes

Nρ = 1000 and Nx = 1000. The model-order-reduction error ex decreases with the
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Figure 4.10: Prediction errors of the ROMs constructed by the physics-aware DMD
with different parameters. The top row shows the model-order reduction error ex
defined in (4.30); the total DMD error eρ, defined in (4.31), is shown in the bottom
row.

number of snapshots M , resulting in a more accurate prediction. This is consis-

tent with the intuition that DMD can better capture the dynamics by learning from

richer/larger data sets. For example, insufficient data (M = 125) fail to sample the

essential features in the dynamics of x(ρ, t). The rank truncation ε also plays a crucial

role in the model-order-reduction error ex: significant accuracy is sacrificed if essential

singular values are truncated in SVD, e.g., by setting ε = 10−2; but retaining too many

singular values, e.g., by setting ε = 10−4, increases the impact of noise. This issue has

been discussed in several DMD studies, e.g., by [23]. The choice of a rank-truncation

criteria is nontrivial and, thus, the optimal truncation is problem-dependent. The

total DMD error eρ is shown in the bottom row of Figure 4.10. In addition to ex,
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this error also accounts for the projection between the (x, ρ) plane and the (ρ, x)

plane, which was conducted via a shape-preserving interpolation method. For a well

controlled model-reduction error, ex ∼ O(10−2), the total error, eρ ∼ O(10−1), is

dominated by the projection error. For insufficient data (M = 125) or low rank

truncation (ε = 10−2), the large total error in the prediction regime, eρ ∼ O(1), is

dominated by the model-reduction error, ex ∼ O(1). The time evolution of the errors

is oscillatory due to the interpolation during the transformation between observables

and state-space.

4.5 Summary

The Lagrangian DMD [30] provides a robust tool to construct ROMs of hyperbolic

conservation laws, a class of problems for which standard (Eulerian) DMD methods

fail. However, this algorithm is limited to problems that admit smooth strong solu-

tions. We extended it to problems with shocks and rarefaction waves, thus addressing

a long-standing challenge in ROM construction. This challenge stems from sever grid

distortion typical of Lagrangian POD and DMD algorithms. Lacking information

about shocks and discontinuities, DMD mode projection from the HFM to a ROM

does not preserve the topological structure of the interface where characteristic lines

cross each other. We resolved this issue by combining hodograph transformation

with physics-aware DMD algorithm [30]. The relevant research codes are available at

https://github.com/DDMS-ERE-Stanford/dmd hodograph.

Hodograph transforms are consistent with the Koopman operator theory in that

both aim to identify linear structures in the underlying nonlinear dynamics. Our

physics-aware DMD algorithm enhanced by hodograph transformation is capable of

predicting the dynamics of weak solutions, which satisfies the entropy condition. We

demonstrated the accuracy and robustness of our algorithm on several numerical tests.

To the best of our knowledge, our study is the first to establish a connection

between hodograph transformation and the Koopman operators. By providing a

principled way for identifying the observables needed by the Koopman operator the-

ory, this connection opens a door to construct ROMs for a wide range of nonlinear

https://github.com/DDMS-ERE-Stanford/dmd_hodograph
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PDEs that are linearizable by hodograph transformation [149]. There is an algorith-

mic method to do the linearization via extended hodograph transforms. As a result,

one can take advantage of the linearity and design robust iteration-free physics-aware

DMD. Moreover, data-driven modeling and uncertainty quantification can be further

explored using this framework. Our numerical experiments demonstrated that many

physical quantities, such as the shock speed in Burgers’ equation and the mobility

constant in the Buckley-Leverett equation, can be learned from (simulation) data as

long as one analyzes them in a “smart” way.

We established a connection between the hodograph transforms and the Koop-

man operator theory for one-dimensional scalar hyperbolic PDEs. The similar idea

was carried over to one-dimensional hyperbolic systems. The construction of ROMs

for multi-dimensional hyperbolic systems remains an open challenge. We leave such

multidimensional interpretations of the Koopman operator theory in terms of hodo-

graph (or other) transforms for future studies. Another future work direction is to

improve the current framework in handling experimental data, which are potentially

contaminated by measurement noise. Due to the regularity at the shock front, one

would expect Eulerian DMD approaches and regular DMD approaches to have stabil-

ity problems. The current framework is expected to be more robust as the hodograph

transform improves the regularity at the shock front (i.e., shocks become flat con-

stants). For mixed wave problems, the current framework can still be sensitive to

noise at the intersection of different waves. In an attempt to deal with experimental

data, we would consider combining the proposed method with noise filters.



Chapter 5

Extended DMD for

Inhomogeneous Problems

Complexity of many, if not most, physical and biological phenomena and paucity

of measurements undermine the reliability of purely statistical descriptors. Instead,

models of such systems are inferred or “learned” from both observational and simu-

lated data and reflect the fundamental laws of nature (e.g., conservation of mass and

energy). Various sparse regression techniques [44, 45, 154, 155] use a proposed dic-

tionary to “discover” the governing equations from data. The dictionary, comprising

plausible spatial and/or temporal derivatives of a state variable, provides functional

approximations of different physical laws; DMD was used to compute the modes of

the Koopman operator approximated from a preselected dictionary basis [65]. Subse-

quent studies provided a theoretical analysis of convergence [115], practical guidelines

for efficient construction of the dictionary [63], and other aspects of this approach.

The data for sparse regression are allowed to be noisy [156], corrupted [157], and lim-

ited [158]. Various flavors of deep neural networks (DNN) provide a related dictionary-

based approach to PDE learning [159, 160]. These and other techniques of equation

discovery are as good as a dictionary on which they are based.

A conceptually different, dictionary-free, framework for data-informed predictions

is to construct a surrogate (aka reduced-order) model, instead of learning a governing

97
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PDE. This framework is often classified as “unsupervised learning” and “equation-

free”. Much of the research in this field deals with dynamical systems, for which

training data are generated by either ODEs or PDEs after spatial discretization. In

this context, DMD can be used to construct an optimal linear approximation model for

the unknown system [22] and to learn the unknown dynamics of chosen observables,

rather than of the state itself [161]. The latter is accomplished by utilizing the

Koopman theory [39] in order to construct linear models on the observable space,

instead of seeking for nonlinear models on the state space [162]. Physics-guided

selection of observables provides not only better accuracy [2, 30, 150], but also a

bridge between the understanding of data and physics. Likewise, DNN can be used

to build nonlinear surrogate models for ODEs [29, 163] and PDEs [164–166]. DNN-

based surrogates and ROMs [28, 167] are invaluable in applications that require a

large number of model solves, such as inverse modeling [168, 169] and uncertainty

quantification [170–173].

Our study contributes to this second framework by extending the range of ap-

plicability of DMD-based ROMs to dynamical systems described by inhomogeneous

PDEs with inhomogeneous boundary conditions. In various application scenarios,

many variants of the standard DMD algorithms were introduced to improve the per-

formance of model reduction. The low-rank approximators are determined from op-

timization problems that are adapted to control inputs [62], time embeddings [75],

higher-order approximations [174], optimal approximation error [175], etc. We adopt

a similar methodology by modifying the optimization problem in a way that allows

us to cope with the inhomogeneity of the problems. A major benefit of our new al-

gorithm is a theoretically guaranteed accuracy improvement relative to the standard

DMD algorithm with awareness and identification of the inhomogeneity at almost no

extra computational cost. Our extended dynamic mode decomposition (xDMD) bor-

rows ideas from the recent work on residual neural networks (ResNet) to provide an

optimal linear approximation model for such systems. Our generalization of the stan-

dard DMD includes two ingredients: an added bias term and residual learning. The

first builds upon the generalized ResNet [176] that introduces a bias term to model

the dynamics described by underlying inhomogeneous ODEs. We extend this idea
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to systems described by inhomogeneous PDEs and prove the accuracy improvement

induced by the added bias term. The second ingredient of xDMD is the learning of

effective increments (i.e., the residual of subtracting identity from a flow map) rather

than the flow map itself. Although mathematically equivalent to flow map learning,

this strategy proved to be highly advantageous in practice and gained traction in the

deep-learning community [177], including in its applications to equation recovery [29].

To the best of our knowledge, xDMD is first to fuse these two features and to provide

a theoretical estimate.

5.1 Problem Formulation and Extended DMD

We consider a group of PDEs belonging to (1.1) where

f(u,x) = fd(u) + fs(x). (5.1)

fd(u) is a (linear or nonlinear) differential operator that involves spatial deriva-

tives; fs(x) represent sources/sinks. A suitable numerical approximation of (1.1)

yields (1.2), where s comes from both fs(x) and b(x).

Our goal is to learn the dynamic system f in (1.2), or, more precisely, its reduced-

order surrogate, using M temporal snapshots of the solutions (1.4). The simulation

data consist of M − 1 pairs {(uk,uk+1)}M−2
k=0 , such that

uk+1 = F∆t(u
k; s), k = 0, . . . ,M − 2. (5.2)

Lemma 5.1. Assume f to be Lipschitz continuous with a Lipschitz constant L on a

solution manifold M ⊂ RNx. Define

M∆t = {u ∈ M : F∆t(u; s) ∈ M}. (5.3)

Then, F∆t is Lipschitz continuous on M∆t. Specifically, for any z, z̃ ∈ M∆t,

∥F∆t(z; s)−F∆t(z̃; s)∥ ≤ eLτ∥z− z̃∥, 0 ≤ τ ≤ ∆t. (5.4)
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Proof. The proof follows directly from the classical numerical analysis results in,

e.g., [178, p. 109].

Lemma 5.1 imposes requirements on the snapshots data pairs {(uk,uk+1)}M−2
k=0 :

the number of data pairs M − 1 should be sufficiently large, and the data should

be sufficiently rich for the data space to cover the solution space of interest. These

requirements are consistent with the core of the Koopman operator theory, which

underpins the DMD algorithm, e.g., [23, p. 47] and others [43, 65, 161]. The error

analysis of the DMD algorithms [2, 115] (see Chapter 2) also verifies the impact of

the selection of observables on the success of Koopman methods.

5.1.1 Standard DMD

Given a dataset of snapshots, {(uk,uk+1)}M−2
k=0 , DMD constructs a best-fit linear

operator K ∈ RNx×Nx such that

uk+1 ≈ Kxk, k = 0, . . . ,M − 2. (5.5)

Therefore, the matrix K is determined in a least square sense by (1.16). Typically,

K is computed from (1.16) as

K = X2X
†
1 (standard DMD), (5.6)

where † denotes the Moore-Penrose inverse.

Remark 5.1. The Moore-Penrose inverse is computed via SVD, which requires cer-

tain truncation criteria to maintain computational stability. In all our numerical

tests, we use the default truncation in the pinv command of Matlab.

Remark 5.2. In a typical DMD algorithm, e.g., [23, p. 7], a reduced-order model Kr

is derived by projecting K onto the POD modes. Since the major goal of our study is

to obtain a linear approximation model of inhomogeneous PDEs, for which standard

DMD algorithms fail, we omit the order-reduction procedure for simplicity.
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5.1.2 Generalized DMD

In order to cope with potential inhomogeneity of the underlying dynamics, the fol-

lowing modification is made in [176]:

uk+1 ≈ Kgu
k + b, k = 0, . . . ,M − 2. (5.7)

The matrix Kg and the vector b ∈ RNx are computed by solving the optimization

problem

(Kg,b) = argmin
K̂∈RNx×Nx ,b̂∈RNx

1

M − 1

M−2∑

k=0

∥uk+1 − K̂uk − b̂∥2. (5.8)

Let us introduce

X̃1 :=


X1

1




(Nx+1)×(M−1)

(5.9)

where 1 := [1, 1, · · · , 1] is a vector of size 1× (M − 1). Then Kg and b are obtained

by

[Kg,b] = X2X̃
†
1 (generalized DMD or gDMD). (5.10)

Remark 5.3. gDMD can be regarded as a special arrangement of DMD with con-

trol (DMDc) [62]. In the latter, the augmented data matrix (5.9) is constructed by

stacking the state variable snapshots uk and the control input snapshots, which in our

context are set to 1 since there is no control. Applications of DMD and the Koopman

theory in control are an active research area [179–182], but lie outside the scope of

our analysis that focuses on improving the performances of DMD in learning unknown

dynamical systems. Of more direct relevance is a connection of gDMD and DMD to

dictionary learning (e.g., [63, 65, 115]): the dictionary composition is treated as the

state variable itself and set to 1 in the augmented matrix. However, the computational

cost of identifying relevant terms from a proposed dictionary can be prohibitively large

for high-dimensional dynamical systems and discretized PDEs. Instead, our frame-

work includes only the bias term, which has physical interpretations in inhomogeneous

PDEs.



102 CHAPTER 5. EXTENDED DMD FOR INHOMOGENEOUS PROBLEMS

5.1.3 Residual DMD

The residual DMD or rDMD borrows a key idea behind ResNet. The latter ex-

plicitly introduces the identity operator in a neural network and forces the network

to approximate the “residual” of the input-output map. Although mathematically

equivalent, this simple transformation proved to improve network performance and

became increasingly popular in the machine learning community.

Writing K = I + B, where I is the (Nx × Nx) identity matrix and B is the

remainder, recasts (5.5) as

uk+1 ≈ uk +Buk. (5.11)

The matrix B is determined by

B = (X2 −X1)X
†
1 (residual DMD or rDMD). (5.12)

It provides an approximation of the “effective increment” [29, definition 3.1], φ∆t,

that is defined as

φ∆t(u; f , s) = ∆t f(Fτ (u; s)) (5.13)

for some 0 ≤ τ ≤ ∆t such that

u(t+∆t) = u(t) +φ∆t(u; f , s). (5.14)

5.1.4 Extended DMD

Combining the modification used in the previous two subsections, we arrive at our

extended DMD or xDMD,

uk ≈ uk +Bgu
k + b, (5.15)

where Bg and b are computed as

[Bg,b] = (X2 −X1)X̃
†
1 (extended DMD or xDMD). (5.16)
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5.2 Relative Performance of Different DMD For-

mulations

Theorem 5.1. In the least square sense, gDMD in section 5.1.2 fits the M snapshots

data X1 and X2 better than the standard DMD from section 5.1.1 does, i.e.,

1

M − 1

M−2∑

k=0

∥uk+1 −Kgu
k − b∥2 ≤ 1

M − 1

M−2∑

k=0

∥uk+1 −Kuk∥2. (5.17)

Proof. The optimization problem (5.8) gives rise to

1

M − 1

M−2∑

k=0

∥uk+1 −Kgu
k − b∥2

= min
K̂∈RNx×Nx ,b̂∈RNx

1

M − 1

M−2∑

k=0

∥uk+1 − K̂uk − b̂∥2

≤ min
K̂∈RNx×Nx ,b̂∈RNx

1

M − 1

M−2∑

k=0

(
∥uk+1 − K̂uk∥2 + ∥b̂∥2

)

= min
K̂∈RNx×Nx


 1

M − 1

M−2∑

k=0

∥uk+1 − K̂uk∥2

+ min

b̂∈RNx

∥b̂∥2

=
1

M − 1

M−2∑

k=0

∥uk+1 −Kuk∥2 + min
b̂∈RNx

∥b̂∥2.

(5.18)

The inequality is derived by triangle inequality and the last equality is achieved

by (1.16). Since the equality is achieved with b̂ = 0, gDMD is equivalent to the

standard DMD only when the bias term b = 0.

Remark 5.4. Theorem 5.1 implies that xDMD from section 5.1.4 fits theM snapshots

data X1 and X2 better than rDMD from section 5.1.3 in the least square sense, i.e.,

1

M − 1

M−2∑

k=0

∥uk+1 − uk −Bgu
k − b∥2 ≤ 1

M − 1

M−2∑

k=0

∥uk+1 − uk −Buk∥2. (5.19)
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Corollary 5.1.1. Let µM be an empirical measure defined on a given dataset {u0, · · · ,uM−2}
by

µM =
1

M − 1

M−2∑

k=0

δuk , (5.20)

where δuk denotes the Dirac measure at uk. Then, for any u ∈ M∆t,

∥F∆t(u)−Kgu− b∥2 ≤ ∥F∆t(u)−Ku∥2 a.s., (5.21)

i.e., the inequality (5.21) holds in the sense of distribution.

Proof. The integral of a test function g with respect to µM is given by

∫

M
g(u)dµM(u) =

1

M − 1

M−2∑

k=0

g(uk). (5.22)

It follows from (5.17) and the definition of uk+1 in (5.2) that

1

M − 1

M−2∑

k=0

(
∥F∆t(u

k)−Kuk∥2 − ∥F∆t(u
k)−Kgu

k − b∥2
)
≥ 0. (5.23)

Thus, by virtue of (5.22),

∫

M

(
∥F∆t(u)−Ku∥2 − ∥F∆t(u)−Kgu− b∥2

)
dµM(u) ≥ 0. (5.24)

Hence, the inequality (5.21) holds in the sense of distributions.

Remark 5.5. By the same token,

∥φ∆t(u)−Bgu− b∥2 ≤ ∥φ∆t(u)−Bu∥2, a.s. (5.25)

Theorem 5.2. Suppose that the assumptions of Lemma 5.1 hold, and further assume

that

1. ∥F∆t −Ku∥L∞(M∆t) < +∞ and ∥F∆t −Kgu− b∥L∞(M∆t) < +∞;

2. uk ∈ M∆t for k = 0, . . . ,M − 1.
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Let un
DMD and un

gDMD denote solutions, at time tn ≡ t0+n∆t, of the DMD and gDMD

models, respectively. Let un denote the true solution at time tn, induced by the flow

map F∆t. Then errors of the DMD and gDMD models at time tn,

En
DMD = ∥un − un

DMD∥2 and En
gDMD = ∥un − un

gDMD∥2, (5.26)

satisfy inequalities

En
DMD ≤ enL∆tE0

DMD + ∥F∆t −K∥L∞(M)
enL∆t − 1

eL∆t
,

En
gDMD ≤ enL∆tE0

gDMD + ∥F∆t −Kg − b∥L∞(M)
enL∆t − 1

eL∆t
,

(5.27)

Proof. The proof follows similar derivations as Theorem 4.3 in [29] using triangle

inequality:

En
DMD = ∥F∆t(u

n−1)−Kun−1
DMD∥2

≤ ∥F∆t(u
n−1)−F∆t(u

n−1
DMD)∥2 + ∥F∆t(u

n−1
DMD)−Kun−1

DMD∥2

≤ eL∆t∥un−1
DMD − un−1∥2 + ∥F∆t −K∥2L∞(M∆t)

= eL∆tEn−1
DMD + ∥F∆t −K∥2L∞(M∆t)

≤ e2L∆tEn−2
DMD + ∥F∆t −K∥2L∞(M∆t)

(1 + eL∆t)

≤ · · ·

≤ enL∆tE0
DMD + ∥F∆t −K∥2L∞(M∆t)

n−1∑

k=0

ekL∆t

= enL∆tE0
DMD + ∥F∆t −K∥L∞(M)

enL∆t − 1

eL∆t
.

(5.28)

A proof for the error bound for En
gDMD is similar.

Remark 5.6. The above error estimates indicate that gDMD has a tighter error

bound than DMD a.s. because Corollary 5.1.1 indicates ∥F∆t − Kg − b∥2L∞(M∆t)
≤

∥F∆t −K∥2L∞(M∆t)
a.s..

Remark 5.7. Similarly, xDMD has a tighter error bound than rDMD a.s.
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Remark 5.8. This error bound provides a general guideline for the error growth, in

order to compare the DMD and gDMD models. The magnitude of the errors depends

on the specific dynamics of the flow map F∆t. Many DMD studies (e.g., [2]) have

showed that the linear operator K is not guaranteed to be a good approximator of the

general flow map F∆t, especially when the latter is highly nonlinear. In another word,

∥F∆t − K∥2L∞(M∆t)
and, similarly, ∥F∆t − K − b∥2L∞(M∆t)

can be large in the error

bound estimate. A way to construct ROMs in these highly nonlinear scenarios is to

approximate the so-called “Koopman operator” via mapping the state variables onto

observables. The discussion is beyond the scope of this work; we refer the interested

reader to [23, 39].

5.3 Numerical Tests of Extended DMD

We use a series of numerical experiments to demonstrate that xDMD outperforms

other DMD variants and to validate our error estimates. Additional numerical ex-

periments are reported in Appendix C. Snapshots (training data) are obtained from

reference solutions during time [0, T ], with input-output time-lag ∆t, i.e., (1.18).

These datasets are assumed to be sufficiently large and rich to satisfy Lemma 5.1.

We construct DMD and xDMD (and the other intermediate variants) by finding the

best fit K or (Bg,b), which yields a set of linear approximation models for the ∆t

time-lag input and output. The ability of learning the unknown dynamics is tested

in terms of

• Representation: Compare the difference between uk and Kku0, or between uk

and (I+Bg)
ku0+

∑k−1
i=0 (I+Bg)

ib, for k = 1, . . . ,M−1. The error is essentially

the least square fitting error, aka “training error” in machine learning. The

training error reflects the accuracy of a trained ROM on the available M − 1

training data points in X2 of (1.18). It is usually embedded in the target “loss

function”, e.g., (1.16) for DMD, which is optimized in the process of training.

The trained model is then validated on another, different than X2, dataset

(i.e., test dataset); the resulting discrepancy is referred to as “test error”. The

test error reflects the accuracy and robustness of the trained model; small test
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errors indicate that the obtained ROMs reflect physics rather than simply fit the

data. We use this metric to investigate our ROM’s capacity for extrapolation,

interpolation and generalizability.

• Extrapolation: Draw another set of the reference solution {uk}2Mk=M from time

interval [T, 2T ] following the same ∆t time-lag trajectory for the convenience of

testing. Compare the difference between uk and Kku0 (DMD extrapolation to

[T, 2T ]), and between uk and (I+Bg)
ku0+

∑k−1
i=0 (I+Bg)

ib (xDMD extrapolation

to [T, 2T ]), for k =M, . . . , 2M .

• Interpolation: Select a random subset of the dataset, i.e.,

X1s =




| | |
us0 us1 · · · usm

| | |


 , X2s =




| | |
us0+1 us1+1 · · · usm+1

| | |


 , (5.29)

where s0 = 0, {s1, . . . , sm} ⊂ {0, · · · ,M − 1}, with m < M . Then determine K

and (Bg,b) based on the selected dataset X1s and X2s. Compare the difference

between uk and Kku0 (DMD interpolation to [0, T ]), and between uk and (I+

Bg)
ku0+

∑k−1
i=0 (I+Bg)

ib (xDMD interpolation to [0, T ]), for k = 1, . . . ,M − 1.

In our examples, the selected number of snapshots, m, is smaller than M/2.

• Generalizability : Determine K and (Bg,b) from the datasets X1 and X2, and

obtain a linear approximation model of the discretized PDE. Compute another

set of reference solutions {vk}M−1
k=0 from a different initial input v0 ̸= u0 and the

same boundary condition and source. Compare the difference between vk and

Kkv0, and between vk and (I+Bg)
kv0+

∑k−1
i=0 (I+Bg)

ib, for k = 1, . . . ,M −1.

In our examples, the input v0 has completely different features than the training

u0.

• Accuracy : The accuracy is compared in terms of the log relative errors,

εnDMD := lg

(
∥un − un

DMD∥22
∥un∥22

)
, εnxDMD := lg

(
∥un − un

xDMD∥22
∥un∥22

)
, (5.30)
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where ∥ · ∥2 denotes the L2 norm.

All comparisons between DMD and xDMD are made using the same dataset and the

same SVD truncation criteria in the pseudo-inverse part (using the default truncation

criteria in Matlab).

5.3.1 Inhomogeneous PDEs

We start by examining the performance of the aforementioned DMD variants in learn-

ing a PDE with inhomogeneous source terms. Consider a one-dimensional diffusion

equation with a source and homogeneous boundary conditions,





∂u

∂t
= 0.1

∂2u

∂x2
+ S(x), x ∈ (0, 1), t > 0.1;

u(x, 0) = exp[−20(x− 0.5)2];

ux(0, t) = 0, ux(1, t) = 0.

(5.31)

The reference solution is obtained by an implicit finite-difference scheme with ∆x =

0.01 and ∆t = 0.01. Training datasets consist of M = 80 snapshots collected from

t = 0 to t = 0.8. The extrapolation is tested from t = 0.8 to t = 1.6. The interpo-

lation training set consists of m = 20 snapshots randomly selected from the M = 80

snapshots.

The left column of Figure 5.1 provides a comparison between the reference solu-

tion and its DMD and xDMD approximations in the three modes: representation,

extrapolation and interpolation. The DMD and xDMD models have a reduced rank

of 17. As predicted by the theory, DMD fails in all three modes. For a fixed time, the

DMD error grows with x, which is to be expected since standard DMD algorithms are

not designed to handle inhomogeneous PDEs, such as (5.31) in which the source term

is S(x) = x. If a source term lies outside the span of the training data, as happens

in this test, then it cannot be represented as a linear combination of the available

snapshots. The DMD model always lies within the span of the training data, while

the true solution grows out of that subspace because of the source. On the other

hand, the xDMD model captures the true solution in all modes thanks to the bias
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Figure 5.1: Reference solution of (5.31) and its DMD (5.6) and xDMD (5.16) ap-
proximations (left column); the log relative error of the DMD (5.6), gDMD (5.10),
rDMD (5.12), and xDMD (5.16) models (right column).
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term that accounts for the solution expansion outside the training data span.

The right column of Figure 5.1 shows the accuracy of the DMD (5.6), gDMD (5.10),

rDMD (5.12), and xDMD (5.16) models. Although DMD and rDMD are mathemat-

ically equivalent, the identity subtraction in rDMD reduces the solution error in all

three modes (representation, extrapolation, and interpolation). Addition of the bias

term in xDMD contributes to further orders-of-magnitude reduction in the error, con-

sistent with the theoretical proof in section 5.2. In all modes, the proposed xDMD

outperforms the other DMD variants by several orders of magnitude, achieving almost

machine accuracy.
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Figure 5.2: Reference solution of (5.31) and its DMD (5.6) and xDMD (5.16) approx-
imations (left); the log relative error of the DMD (5.6), gDMD (5.10), rDMD (5.12),
and xDMD (5.16) models (right) for long time extrapolation.

Figure 5.2 shows the performance of different ROMs in long-time extrapolation,

up to t = 100. Exhibiting errors that grow slowly in time, the gDMD and xDMD

predictions accurately capture the underlying dynamics for very long time due to the

advantageous role of the bias term. That is in contrast to the DMD and rDMD mod-

els, which make poor unphysical predictions without awareness of the inhomogeneous

source term.

An added benefit of gDMD and xDMD is their ability to infer a source function,

S(x), in an inhomogeneous PDE from temporal snapshots of the solution (Figure 5.3).

Both methods recover S(x), regardless of whether it is linear (S = x) or nonlinear

(S = ex), and have comparable errors. While DMD lamps together the differential

operator and the source, gDMD and xDMD treat them separately. This endows
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them with the ability to learn both the operator (the system itself) and the source

(external forces acting on the system), as long as the latter does not vary with time.

This self-learning feature carries almost no extra computational cost.
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Figure 5.3: Estimation of the source term S(x) = x and ex in (5.31) by gDMD and
xDMD: the eyeball measure (left) and the log relative error (right).
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5.3.2 Inhomogeneous Boundary Conditions and Data Errors

Next, we examine the ability of DMD and xDMD to handle inhomogeneous boundary

conditions and data errors. Consider a two-dimensional diffusion equation in a multi-

connected domain D with inhomogeneous boundary conditions,





∂u

∂t
= ∇2u, (x, y) ∈ D, t ∈ (0, 10000];

u(x, y, 0) = 0;

u(0, y, t) = 3, u(800, y, t) = 1,

∂u

∂y
(x, 0, t) =

∂u

∂y
(x, 800, t) = 0, u(x, y, t) = 2 on ∂S (red).

(5.32)

The domain D is the 800 × 800 square with an S-shaped cavity (Figure 5.4). The

Dirichlet boundary conditions are imposed on the left and right sides of the square and

the cavity surface. The top and bottom of the square are impermeable. The reference

solution is obtained via Matlab PDE toolbox on the finite-element mesh with 1633

elements shown in Figure 5.4. The solution from early transient time (t = 2000) until

steady state (t = 10000) is presented in Figure 5.5.

Figure 5.4: Multi-connected simulation domain D (left) and the mesh used in the
finite-element solution of (5.32).

With the total simulation time (time sufficient to reach steady state) t = 10000, we

generate snapshots spaced by ∆t = 5 and use those to conduct four tests. First, the
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Figure 5.5: The reference solution of (5.31), u(x, y, t), at times t = 2000, t = 5000
and t = 10000.

leading M = 1200 snapshots are used to inform DMD and xDMD and to ascertain

their representation errors. Second, the DMD and xDMD models are deployed to

extrapolate until t = 10000 and compare the extrapolation error of the two models.

Third, randomly selected M = 600 snapshots from the first 1200 snapshots are used

for interpolation and to compare the interpolation error of DMD and xDMD. Finally,

we repeat these representation/extrapolation/interpolation tests on data corrupted

by addition of zero-mean white noise whose strengths at any (x, t) is 0.1% of the

nominal value of u(x, t) at that point.

Figure 5.6 reveals that, for noiseless data, the accuracy of xDMD is orders of

magnitude higher than that of DMD in the representation and interpolation modes

with the same reduced rank of 30; in the extrapolation mode, the error is dominated by

the extrapolation error, which increases with time, but xDMD is still about 9% more

accurate than DMD at later times. DMD has a good performance in this case because

the inhomogeneity from the boundary conditions happens to lie inside the span of

the training data (i.e., can be approximated by a linear combination of the available

snapshots), which is not guaranteed for all inhomogeneous boundary conditions (see

a counterexample of Figure C.1 in Supplemental Material). However, in the presence

of measurement noise, xDMD has no better performance than DMD, it is even less

accurate in the extrapolation and interpolation regimes. This sensitivity to noise

mirrors the over-fitting issue in machine learning: models with more parameters fit the

limited number of available data (solution snapshots) too closely and, consequently,
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Figure 5.6: Dependence of the log relative error of the DMD and xDMD models on
time in the representation, extrapolation and interpolation modes. These errors are
reported for noiseless data (top row) and data corrupted by addition of zero-mean
white noise whose strengths at any (x, t) is 0.1% of the nominal value of u(x, t) at
that point (bottom row).

fail to fit additional data or to reliably predict future observations. Since xDMD has

more parameters than DMD due to the bias term, one should expect the former to

be more sensitive to noise than the latter.

5.3.3 Coupled Nonlinear PDEs

Common sense suggests that the success of linear models, such as DMD and xDMD,

to approximate nonlinear dynamics is not guaranteed. In machine learning, data

augmentation by feature map is widely used to deal with the nonlinearity. Similarly,

judiciously chosen observables play a crucial role in the success of data-driven (DMD)
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modeling [30, 41, 115]. The selection of observables requires prior knowledge of the

underlying process, which is out of scope of this study. Instead, we assume no prior

knowledge and apply no data augmentation, i.e., our observables are the state itself.

To satisfy the assumptions in Lemma 5.1, we restrict our attention to nonlinear PDEs,

whose solutions are confined in certain subspace M. Our numerical experiments deal

with the two-dimensional viscous Burgers’ equation (reported in the Supplemental

Material) and the two-dimensional Navier-Stokes equations. The goal of these tests

is to assess the ability of DMD and xDMD to learn complex flow maps.

We consider two-dimensional flow of an incompressible fluid with density ρ = 1

and dynamic viscosity ν = 1/600 (these and other quantities are reported in consistent

units) around an impermeable circle of diameter D = 0.1. The flow, which takes place

inside a rectangular domain D = {x = (x, y)⊤ : (x, y) ∈ [0, 2] × [0, 1]}, is driven by

an externally imposed pressure gradient; the center of the circular inclusion is xcirc =

(0.3, 0.5)⊤. Dynamics of the three state variables, flow velocity u(x, t) = (u, v)⊤ and

fluid pressure p(x, t), is described by the two-dimensional Navier-Stokes equations,





∂u

∂x
+
∂v

∂y
= 0;

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, x ∈ D, t > 0;

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
;

(5.33)

subject to initial conditions u(x, y, 0) = (0, 0)⊤ and p(x, y, 0) = 0; and boundary

conditions

p(2, y, t) = 0,
∂p

∂n
|∂D\{x=2} = 0, u(0, y, t) = (1, 0)⊤,

∂u(2, y, t)

∂n
= 0, u(x, 0, t) = u(x, 1, t) = 0.

Here n denotes the unit normal vector. This combination of parameters results in

the Reynolds number Re = 60.

The reference solution is obtained with the Matlab code [183], which implements
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Figure 5.7: Velocity magnitude U =
√
u2 + v2 of incompressible flow with the

Reynolds number Re = 60 around an impermeable circle predicted by solving nu-
merically the two-dimensional Navier-Stokes equations (5.33) (top row) and by using
the DMD and xDMD models in the representation mode. The representation er-
rors (5.30) for these two approximations are displayed in the second and third rows,
respectively.
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a finite-difference scheme on the staggered grid with ∆x = ∆y = 0.02 and ∆t =

0.0015. Our observable (quantity of interest) is the magnitude of the flow velocity,

U(x, y, t) =
√
u2 + v2. Visual examination of the solution U(x, y, t) reveals it to be

periodic from t = 7.5 to t = 15 (the simulation horizon), i.e., the solution is confined

in a fixed subspace M. We collectM = 2500 snapshots of U from t = 7.5 to t = 11.25

into a training dataset, from which DMD and xDMD learn the nonlinear dynamics.

The discrepancy between the reference solution and its fitting with the DMD and

xDMD models is the representation error.

The first row of Figure 5.7 depicts the spatial distribution of the flow speed U , at

times t = 9.38 and t = 11.25, computed with the (reference) solution of the Navier-

Stokes equations (5.33). The DMD and xDMD models have a reduced rank of 75.

Both DMD and xDMD fit the nonlinear flow data using a linear approximation with

satisfactory accuracy (the last two rows of Figure 5.7). The errors are confined to the

circle’s wake, with xDMD being two orders of magnitude more accurate than DMD.

Next, we use the learned DMD and xDMD models in the extrapolation mode,

i.e., to predict U(x, y, t) within the time interval from t = 11.25 to t = 15. As shown

in Figure 5.8, both DMD and xDMD yield accurate extrapolation, which should be

expected due to the periodic behavior of the solution. Although the accuracy in

extrapolation is diminished for both methods, xDMD remains more accurate than

DMD at different extrapolation times.

Finally, Figure 5.9 exhibits the log relative error of the two methods as function

of time. In the representation mode, both DMD and xDMD have nearly steady small

fitting error, fluctuating about 10−10 for xDMD and 10−6 for DMD. The observation

of xDMD’s higher accuracy in fitting the data is consistent with Theorem 5.1. Sim-

ilarly, the extrapolation error of DMD and xDMD validates Theorem 5.2. Although

both extrapolation errors grow slowly, the xDMD error exhibits a periodic pattern

(consistent with the periodic pattern of the solution U), indicating that the xDMD

linear model is able to capture the detailed periodic feature of the true flow better.

Once an accurate linear representation of the nonlinear flow is available, one can

conduct spatiotemporal mode analysis, reduced-order modeling and accelerated sim-

ulations. Table 5.1 collates computational times of simulating the reference solution
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Figure 5.8: Velocity magnitude U =
√
u2 + v2 of incompressible flow with the

Reynolds number Re = 60 around an impermeable circle predicted by solving numer-
ically the two-dimensional Navier-Stokes equations (5.33) (top row) and by using the
DMD and xDMD models in the extrapolation mode. The extrapolation errors (5.30)
for these two approximations are displayed in the second and third rows, respectively.
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Figure 5.9: Temporal evolution of log relative error of the DMD and xDMD models
in the representation and extrapolation modes.

Simulation DMD xDMD
Computational time 29.0776 2.1352 2.1654

Relative error – 2.0515× 10−5 3.1193× 10−6

Table 5.1: Computational time (sec) and relative error for the reference solution and
the DMD and xDMD models.

and the linear approximation models. Further reduction in computation cost can be

achieved by constructing reduced-order models using eigen-decomposition in DMD

and xDMD.

5.3.4 Generalizability to New Inputs

Generalizability refers to a model’s ability to adapt properly to new, previously unseen

data, drawn from the same distribution as the one used to create the model. With

validated generalizability, a DMD or xDMD model can be employed as a surrogate

to accelerate, e.g., expensive Markov Chain Monte Carlo (MCMC) sampling used

in inverse problems. A typical setting for this type of problems is solute transport

in groundwater flow, whose steady-state Darcy velocity (flux) q(x) = −Kc∇h is

computed from the groundwater flow equation

∇ · (Kc∇h) = 0. (5.34)
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Figure 5.10: Spatial distribution of hydraulic conductivity Kc(x) used in our simula-
tions.

Here h(x) is the hydraulic head, and Kc(x) is the hydraulic conductivity of a hetero-

geneous subsurface environment; in our simulations we use a rectangular simulation

domain D = {x = (x, y)⊤ : (x, y) ∈ [0, 128] × [0, 64]} and the Kc(x) field in Fig-

ure 5.10 (these and other quantities are expressed in consistent units). The boundary

conditions are h(x = 0, y) = 1, h(x = 128, y) = 0 and impermeable on y = 0, y = 64.

The resulting macroscopic velocity v(x) = q/ω, with ω denoting the porosity, is

then used in the advection-dispersion equation to calculate the contaminant concen-

tration u(x, y, t):

∂u

∂t
+ v · ∇u = ∇ · (D∇u), x ∈ D, t ∈ (0, T ], (5.35)

with T = 80. In general, the dispersion coefficient D is a second-rank semi-positive

definite tensor, whose components depend on the magnitude of the flow velocity,

|u|. Here, for illustrative purposes, we treat it as the identity matrix, D = I. The

boundary conditions for (5.35) are u(0, y, t) = 0.2 and ∂xu(128, y, t) = ∂yu(x, 0, t) =

∂yu(x, 64, t) = 0. The training is done for the initial condition u(x, y, 0) = uin(x, y)

with

uin = s exp[−(x− xs)
2 − (y − ys)

2], (5.36)
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where s = 100 and the coordinates of the plume’s center of mass, (xs, ys) are treated

as independent random variables with uniform distributions, xs ∼ U [0, 25] and ys ∼
U [0, 64]. An example of the training dynamics is presented in Figure 5.11.
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Figure 5.11: Representative snapshots of solute concentration, u(x, t), in the training
dataset with initial condition (5.36).

We generate NMC realizations of the pairs (xs, ys) and evaluate the corresponding

initial conditions u
(n)
in (x) for n = 1, . . . , NMC, NMC = 2000. For each of these real-

izations, (5.35) is solved1 to compute our quantity of interest, the concentration field

u
(n)
T (x) ≡ u(n)(x, T ). The matrix pairs {u(n)in , u

(n)
T }NMC

n=1 are arranged into

X1 =




| | |
u
(1)
in u

(2)
in · · · u

(NMC)
in

| | |


 and X2 =




| | |
u
(1)
T u

(2)
T · · · u

(NMC)
T

| | |


 (5.37)

1The reference solutions are obtained with the groundwater flow simulator MODFLOW and the
solute transport simulator MT3DMS, both ran on a uniform mesh ∆x = ∆y = 1.
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where un
in is vectorized u

(n)
in and un

T is vectorized u
(n)
T . Finally, the DMD and xDMD

models are deployed to learn the flow map F∆t with the time lag ∆t = T .

Our goal here is to test the ability of these models to predict u(x, T ) for other

initial conditions, such as the line source

uin =




80 x = 10, y ∈ [20, 40],

0 otherwise.
(5.38)

Figure 5.12 exhibits the reference dynamics generated from this line source. The

quantity of interest is the solute concentration map at T = 80.
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Figure 5.12: Representative snapshots of solute concentration, u(x, t), in the test case
with initial condition (5.38).

In Figure 5.13, we compare the ability of DMD and xDMD to predict a quantity

of interest, i.e., u(x, T ), for an initial condition that is qualitatively different from
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Figure 5.13: Solute concentration predicted with the DMD and xDMD models for
the initial condition not seen during training. Also shown are the absolute errors of
DMD and xDMD.

that for which they were trained2. The DMD and xDMD models have the reduced

rank of 1648. While xDMD performs well in this generalizability test, DMD yields

a wrong output concentration map because of its failure to handle inhomogeneity.

The prediction error is largest in the vicinity of the left boundary, along which the

inhomogeneous Dirichlet boundary condition is prescribed.

Figure 5.14 demonstrates the DMD and xDMD performance for the same task as

before but when noisy data are used for training. The training data are corrupted

by addition of zero-mean white noise whose strength is 0.1% of the nominal value.

Although the predictions from both models are disturbed by the white noise, xDMD

still captures the features of the concentration map. In contrast to Figure 5.6, the

correction effects from the bias term in xDMD are more dominant than over-fitting the

2The results for the initial condition given by a linear combination of two Gaussians are presented
in Appendix C.
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Figure 5.14: Solute concentration predicted with the DMD and xDMD models using
0.1% noisy data for the initial condition not seen during training. Also shown are the
absolute errors of DMD and xDMD.

noise. The prediction error of DMD is still largest in the vicinity of the left boundary

due to its failure to handle the inhomogeneous Dirichlet boundary condition.

5.4 Summary

We presented an extended DMD (xDMD) framework for representation of (linear or

nonlinear) inhomogeneous PDEs. Our xDMD borrows from residual learning and

bias identification ideas, which originated in the deep neural networks community. It

shows high accuracy in learning the underlying dynamics, especially in inhomogeneous

systems for which standard DMD fails. The inhomogeneous source can be accurately

learned from the bias term at no extra computational cost. We conducted a num-

ber of numerical experiments to demonstrate that xDMD is an effective data-driven
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modeling tool and offers better accuracy than the standard DMD.

Although xDMD provides an optimal linear approximation of the unknown dy-

namics, data-driven modeling for highly nonlinear PDE in general remains a chal-

lenging task. Judiciously chosen observables are needed in order to approximate the

corresponding Koopman operator, which requires either prior knowledge about the

dynamics or dictionary learning. Developments and experiences from deep learning

may again bring potential solutions and vice versa.

In the follow-up work, we plan to use xDMD to construct surrogates, e.g., for

Markov Chain Monte Carlo solutions of inverse problems and for uncertainty quantifi-

cations. The verified generalizability will allow us to replace the expensive simulation

with xDMD surrogates in each Monte Carlo run. Further model reduction can be

carried out to improve efficiency as well.



Chapter 6

Conclusion and Future Work

In this dissertation, we studied reduced-order models (ROMs) for transport phenom-

ena - particularly, how to construct trustworthy and efficient surrogates of reduced

dimension for subsurface simulations. Specifically, we introduced a physics-aware

dynamic mode decomposition (DMD) framework, which combines the popular data-

driven tool DMD with physics-aware ingredients. It ameliorates the following diffi-

culties in conventional ROMs for flow and transport problems:

• We derived a theoretical error estimator for DMD extrapolation of numerical

solutions, which allows one to monitor and control the errors associated with

DMD-based ROMs approximating the physics-based partial differential equa-

tion (PDE) models. The global error is accumulated from a local truncation

error that is based on computing the difference between the spectrum of the

DMD approximation and the spectrum of the dynamical operator. Our analysis

demonstrates the importance of a proper selection of observables, as predicted

by the Koopman operator theory. That, in turn, facilitates the design of efficient

algorithms for multi-scale/multi-physics simulations, e.g., by using ROMs as a

surrogate to accelerate expensive Markov Chain Monte Carlo sampling used in

inverse problems.

• Conventional DMD methods fail in the so-called translational problems, where

wave-like behaviors play a dominant role in the dynamical systems. We first
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proposed a Lagrangian-based DMD method to overcome this issue for smooth

solutions. For hyperbolic conservation laws with shocks, where the Lagrangian

framework is not valid anymore, we proposed a shock-preserving DMD based

on a nonlinear Hodograph transformation that relies on the conservation law at

hand to recover a low-rank structure. Our approaches exemplify the spirit of

physics-aware DMD since they account for the evolution of characteristic lines

and the information about rarefactions/shocks.

• Conventional DMD usually fails to provide accurate ROMs for inhomogeneous

PDEs, where the true solutions can be driven out of the training data sub-

space learned by DMD models due to the inhomogeneity. To cope with the

inhomogeneity in the dynamic system arising from different boundary condi-

tions and time-independent sources, we propose an extended DMD (xDMD)

approach. Motivated by similar ideas in deep neural networks (DNN), we equip

our xDMD with two new features. First, it has a bias term, which serves as

the physics-aware ingredient that accounts for inhomogeneity. Second, instead

of learning a flow map, xDMD learns the residual increment by subtracting the

identity operator. We also present a theoretical error analysis to demonstrate

the improved accuracy of xDMD relative to standard DMD.

The resulting ROMs from physics-aware DMD framework are capable of capturing

the key features of the underlying dynamics with higher-order accuracy than conven-

tional DMD. Meanwhile, it takes a small fraction of the computational time of other

iteration-based methods (e.g., proper orthogonal decomposition), which explains its

rapid adoption by engineers in fast predictions for for geo-potential fields [33], real-

time control for robotic systems [34] and for wind farms [35], modeling for pulsatile

blood flow [36].

Future research efforts along this line of study may include the following:

• The current framework belongs to the active research area of scientific ma-

chine learning, where data-driven modeling is enhanced by physical mecha-

nisms and scientific knowledge. It is widely applicable to applications such
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as real-time control, optimal design, data assimilation and uncertainty quan-

tifications, etc. For a wider range of practical problems, preserving physics,

e.g., preserving symplectic structure of Hamiltonian systems and preserving

mass/momentum/energy of conservation laws, always plays an essential role in

constructing robust and accurate models from data. It is also critical to balance

the trade-off between the expressiveness of finite-dimensional functional spaces

and the accuracy of the surrogate approximations on them. Closely related to

this dissertation, advances in this direction will contribute to the development

of machine learning interpretability.

• Many complex systems are designed and analyzed by their dependency on the

parameters or random coefficients, which account for variations in shape, ma-

terial, loading, and boundary and initial conditions, e.g., PDE-based models of

flow and transport in (randomly) heterogeneous porous media. On one hand,

DMD predictions with quantitative error bounds might provide a means for ac-

celerating computationally expensive Monte Carlo and multi-scale simulations.

On the other hand, DMD can be adapted to the model reduction strategies

in a parametric setting so that the resulting ROMs for these parametric com-

plex systems (known as PROMs) are robust with respect to the variations in

parameters. Some ongoing work can be found on arXiv [184].

• One of the most interesting open problems for Koopman operator theory is

that how to identify a principled way of determine the observable functions.

We want to establish the connection between Koopman operator theory and

other techniques in order to enlighten possible ways of identifying the observ-

able space. Method of distribution, kinetic reformulation, level-set method and

support vector machine have different ways to obtain linearity via dimension

augmentation/feature mapping. On the other hand, kinetic equation and PDF

equations, like many other high dimensional equations, need model reduction

techniques to be implemented efficiently. Further understanding of the connec-

tion will lead us to efficient solvers for high dimensional PDEs as well.



Appendix A

Level-set DMD for Hyperbolic

Conservation Laws

The level-set approach [185] provides another way to interpret conservation laws.

Supposed that a state variable u(x, t) satisfies the one-dimensional conservation law

∂u

∂t
+ c(u)

∂u

∂x
= 0 (A.1)

with c(u) ≥ 0. Its corresponding level-set formulation,

∂s

∂t
+ c(y)

∂s

∂x
= 0, (A.2)

is a linear two-dimensional transport equation for the dependent variable s(x, y, t) :

R2×R+ → R. Together with a Lipschitz-continuous initial function s0, which embeds

the initial data u0 (see the example below), the zeroth-level set of s(x, y, t), i.e., the

x − y contour of the solution to s(x, y, t) = 0, gives the solution to the conservation

law (A.1), u(x, t).

By way of example, we consider the inviscid Burgers equation (3.14) with initial

condition (3.15). Its level-set formulation is

∂s

∂t
+ y

∂s

∂x
= 0, s(x, y, 0) = s0(x, y) ≡ y − u0. (A.3)
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We apply Lagrangian DMD to construct a ROM for this two-dimensional linear ad-

vection equation from M = 250 snapshots. Figure A.1 demonstrates that the ROM

with the r = 3 rank truncation approximates the HFM solution u(x, t) with sat-

isfactory accuracy. Although solving a two-dimensional linear problem takes more

computational time than solving the nonlinear one-dimensional problem in this case,

the level-set DMD provides another venue for investigation of physics-aware DMD

that might have efficient applications to other problems.
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Figure A.1: Solutions of the inviscid Burgers equation, u(x, t), alternatively obtained
with the numerical method (3.2) and the ROM constructed via the level-set DMD.



Appendix B

Scalar Conservation Laws with

Convex Fluxes

Burgers’ equation has a monotonically increasing flux function. Here, we extend our

analysis to smooth, strictly convex flux functions C(u). We consider a hyperbolic con-

servation law (4.1) defined for (x, t) ∈ R× [0, T ]. It is subject to the initial condition

u(x, 0) = u0(x), where the initial data u0(x) satisfy the following assumption.

Assumption B.1. The real-valued function u0(x) is such that

• limx→±∞ u0(x) = ∓1, and

• u0(x) is non-increasing and, therefore, the inverse function x(u0) is well-defined

on −1 ≤ u0 ≤ 1.

Remark B.1. The domain of definition, x ∈ R, can be generalized to a finite-length

interval (uR, uL). The derivation is similar.

B.1 Solution Before Shock Formation

Similar to 4.2.1, hodograph transformation yields an equation for x(t, u):

dx

dt
(t, u) = c(u), x(0, u) = x0(u); u ∈ (−1, 1). (B.1)
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The convexity of C(u) ensures that its derivative c(u) is an increasing function. Let

G denote the inverse function of c:

G[c(u)] = c[G(u)] = u. (B.2)

Then, defining y(t, u) = x[t, G(u)], (B.1) becomes

dy

dt
(t, u) = u, y(0, u) = y0(u) = x0[G(u)]; u ∈ (−1, 1). (B.3)

Differentiating both sides of this equation with respect to u,

∂2y

∂t∂u
= 1, (B.4)

which gives
du

dt
(t, u) = y′0(u) + t. (B.5)

Therefore the shock formation time is determined by

t∗ = −min
u
y′0(u) = −y′0[c(u∗)] (B.6)

B.2 Solution After Shock Formation

The shock speed s is given by the Rankine-Hugoniot condition,

s =
C (u1)− C (u2)

u1 − u2
, (B.7)

where u1(t) and u2(t) are defined as the limits of u(t) from the top and bottom of the

shock, respectively. Since s = dx∗/dt, this gives an equation for the shock trajectory

x∗(t),
dx∗

dt
=
C (u1)− C (u2)

u1 − u2
. (B.8)
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A system of coupled ODEs for u1(t) and u2(t) is derived in [151],

du1
dt

= C1(u1, u2) ≡
1

g(u1)− c′(u1)t

[
c(u1)−

C(u1)− C(u2)

u1 − u2

]

du2
dt

= C2(u1, u2) ≡
1

g(u2)− c′(u2)t

[
c(u2)−

C(u1)− C(u2)

u1 − u2

]
.

(B.9)

where g(u) = −x′0(u). These ODEs are subject to initial conditions u1(t
∗) = u∗ and

u2(t
∗) = u∗.

B.3 Summary of Hodograph Solution

In summary, the reformulation for general scalar conservation law with convex flux is





t < t∗ : Equation (B.1)

t > t∗ :




Equation (B.1) for u ∈ (uR, u2) ∪ (u1, uL),

Equation (B.8) for u ∈ (u2, u1).

(B.10)

where t∗ = −x′0(u∗).

Remark B.2. One can show that u1(t) is monotonically increasing in time and u2(t)

is monotonically decreasing, so that

u1 ≥ u∗, u2 ≤ u∗, x′0(u1) + t ≤ 0, x′0(u2) + t ≤ 0. (B.11)

In many cases of interests, and in our numerical experiment, either u2 = uR and

u1 = uL or |u2 − u1| ≪ ∆t (so that u2 ≈ uR and u1 ≈ uL). This allows one to focus

on shock propagation, i.e., on (B.8), without having to solve (B.9).

Remark B.3. For more general initial condition u0, one needs to decompose u0(x)

into regions of monotonicity. Each monotonic piece of u0 would have a unique inverse

function x0(u0). Then, based on the generalized entropy condition, one constructs the

convex hull for the flux function C(u), providing a way to decompose the initial data.

Shock propagating initial data and rarefaction propagating initial data are determined
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afterwards. Then, the full solution is the combination of the rarefaction pieces and

the shock pieces.



Appendix C

Additional Numerical Tests of

Extended DMD

We provide a few additional tests used to demonstrate the relative performance of

DMD and xDMD.

C.1 Boundary Conditions and Noisy Data

We study the non-homogeneity driven by boundary conditions. Consider a one-

dimensional diffusion equation,

∂tu = D∂xxu, x ∈ [0, 1], t > 0, (C.1)

with D = 0.1. Three different cases are tested to compare DMD and gDMD:

• Case 1: Dirichlet boundary conditions,




u(x, 0) = 1,

u(0, t) = 3, u(1, t) = 2.
(C.2)
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• Case 2: Neumann boundary conditions,




u(x, 0) = e−20(x−0.5)2 ,

ux(0, t) = 0, ux(1, t) = 0.
(C.3)

• Case 3: Contaminant training data. The initial and boundary conditions are

the same as in Case 1. The training data are solution to (C.1) with 0.1%

measurement noise.

The same spatiotemporal discretization as in Test 5.3.1 is used, with the same num-

ber of training data. The solution behavior is trivial and, thus, not shown here.

The relative accuracy of DMD and xDMD is compared in Figure C.1 in terms of

representation, extrapolation and interpolation.

In Case 1, xDMD exhibits the higher-order accuracy than DMD in all three

regimes of representation, extrapolation and interpolation. DMD captures the overall

solution behavior because the diffusion effect dominates the dynamics in comparison

with the non-homogeneity driven by the boundaries. The DMD error is mostly dis-

tributed near the two boundaries, and this error accumulates with time. On the

other hand, xDMD has a flat error distribution in the physical domain with the much

smaller error magnitude.

In Case 2, which is a homogeneous case, the accuracy of xDMD than that of DMD.

The improvements are mostly due to the modification in rDMD, but also indicate

that no sacrifice of accuracy is made by adding the bias. This test guarantees better

performance of xDMD without knowledge of homogeneity.

In Case 3, both DMD and xDMD lose several orders of accuracy and behave

almost the same in the presence of noise. In the interpolation test, xDMD is even

less accurate than DMD. This behavior is reminiscent of the over-fitting issue in

machine learning: models with more parameters fit too closely to the limited number

of contaminant data and therefore fail to fit additional data or reliably predict future

observations. Obviously, xDMD has more parameters than DMD due to the bias

term.
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Figure C.1: Solution accuracy in Cases 1 (left column), 2 (middle column) and 3 (right
column) in the representation (top row), extrapolation (middle row) and interpolation
(bottom row) regimes.



138 APPENDIX C. ADDITIONAL NUMERICAL TESTS OF EXTENDED DMD

C.2 Two-dimensional Viscous Burgers’ Equation

Consider the two-dimensional viscous Burgers’ equation,




∂tu+ u∂xu+ v∂yu = ν(∂xxu+ ∂yyu)

∂tv + u∂xv + v∂yv = ν(∂xxv + ∂yyv).
(C.4)

This equation, with ν = 0.05, is defined for (x, y) ∈ [0, 2]× [0, 2] and t ∈ [0, 2]; and is

subject to no-flux boundary conditions and the initial condition

u(x, y, 0) = v(x, y, 0) =




1 (x, y) ∈ [0.5, 1]× [0.5, 1],

0 otherwise.
(C.5)

Figure C.2: Temporal snapshots of the solution, u(x, t) = v(x, t), to the 2D viscous
Burgers’ equation.

The reference solution is computed via a finite-difference scheme on a uniform

mesh with ∆x = ∆y = 0.05 and ∆t = 0.001. The snapshot solution needs to be

reshaped into a vectorized form. We randomly select 500 snapshots out of the 2000

reference solutions to form the training data. Due to the viscosity ν, the solution

exhibits weak nonlinearity and smooth diffusive profiles (Figure C.2). Both DMD

and xDMD capture the solution with satisfactory accuracy. We plot the relative

error of xDMD is two orders of magnitude smaller than DMD (Figure C.3).
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Figure C.3: Temporal evolution of the log relative errors of the DMD and xDMD
solutions, u(x, t) = (u, v)⊤, to the viscous Burgers’ equation in the interpolation
regime.

C.3 One-dimensional Advection-Diffusion Equation

Consider a one-dimensional advection-diffusion equation with a time-invariant source,




∂tu+ v∂xu = D∂xxu+ S(x), x ∈ [−4, 4], t ∈ [0, 4],

S(x) = exp(−x2/0.2).
(C.6)

We set v = 1 and D = 0.1. The training is conducted using the initial and boundary

conditions 


u(x, 0) = exp(−(x+ 2)2/0.1),

ux(−4, t) = 0, ux(4, t) = 0.
(C.7)

The initial condition mimics a localized source at point x = −2 with strength 1 and

width
√
0.1.

The training data should be carefully chosen such that its traveling wave can cover

the whole domain of interest and the training time should be sufficiently long. In this

case, one should choose a training dataset with active pulses all over the domain

[−4, 4]. Otherwise, the data-driven modeling will receive no signal in parts of the

domain and, thus, fail to learn the global dynamics. This issue has been discussed

in [30] for advection-dominant phenomena.
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The training data are collected from reference solutions using a finite-difference

scheme with ∆x = 0.04 and ∆t = 0.04. Figure C.4 shows that both DMD and

xDMD represent the training data with satisfactory accuracy. As in the previous

tests, xDMD achieves higher-order accuracy than DMD.
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-15

-10
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Figure C.4: DMD and xDMD solutions to (C.6) on the training data. Left: the DMD
and xDMD solution profiles compared with the reference solution at different times;
Right: temporal evolution of the log relative error.

Essentially, we want the DMD and xDMD models to learn, from the training

data, the advection-diffusion operator with a fixed source. If the models are accurate,

then for a different input (e.g., a point source with different strength, location and

width), one can use the DMD and xDMD approximations to obtain solutions directly,

without solving the governing equation. We test this generalizability on two types of

inputs. In Test 1, the input data are generated for a single point source u(x, 0) =

s exp(−(x− x0)2/σ2), where s ∼ U [1, 11], x0 ∼ U [−2, 1], and σ2 ∼ U [1/15, 1/10]. In

Test 2, the input data are generated from a two-point source u(x, 0) = s1 exp(−(x−
x01)

2/σ2
1) + s2 exp(−(x − x02)

2/σ2
2), where s1, s2 ∼ U [1, 11], x01, x02 ∼ U [−2, 1], and

σ2
1, σ

2
2 ∼ U [1/15, 1/10].

Figure C.5 shows that xDMD has superior performance in generalizing the learned

model to new, previously unseen inputs. The modeling errors in the two tests are

well controlled under reasonable magnitude. On the other hand, DMD has poor

performance in generalization due to the lack of source term identification. The

nature of (C.6) implies that a good model should consist of two parts: one part

accounts for the advection-diffusion operator, which is sensitive to the variation of
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Figure C.5: DMD and xDMD solutions to (C.6) on the test data. Left: the DMD
and xDMD solution profiles compared with the reference solution at different times;
Right: temporal evolution of the log relative error.

the initial inputs; the other part accounts for the inhomogeneous source term, which

is invariant to the initial inputs. This intuition is explicitly accounted for in the

xDMD framework.

C.4 Two-dimensional Advection-Diffusion Equation

Next, we consider a two-dimensional advection-diffusion equation





∂tu+ v · ∇u = ∇ · (D∇u) + S(x, y), (x, y) ∈ [0, 20]× [0, 10], t ∈ [0, T ],

S(x, y) = s exp

[
−(x− 5)2 + (y − 5)2

2σ2

]
.

(C.8)
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We set

v =


−2.75

0.0


 , D =


0.5 0

0 0.5


 , s = 100.0, σ2 = 0.05.

This equation is subject to no-flux boundary conditions and the initial condition

u(x, 0) = uin(x). The problem describes, e.g., the spatiotemporal evolution of the

concentration u(x, t) of a groundwater contaminant that is advected by flow velocity

v, while undergoing hydrodynamic dispersion. The training data are generated for

uin(x) ≡ s exp

[
−(x− xs)

2 + (y − ys)
2

2σ2

]
, (C.9)

wherein the coordinates of the plume’s center of mass, (xs, ys) are treated as indepen-

dent random variables with uniform distributions, xs ∼ U [0, 10] and ys ∼ U [0, 10].
We generate NMC = 4000 realizations of the pairs (xs, ys) and evaluate the corre-

sponding initial conditions u
(n)
in (x) for n = 1, . . . , NMC. For each of these realizations,

(C.8) is solved to compute u
(n)
T (x) ≡ u(n)(x, T ) with T = 4 using a finite-difference

scheme with ∆x = ∆y = 0.25. The matrix pairs {u(n)in , u
(n)
T }NMC

n=1 are arranged into

data matrices X1 and X2, as in (1.18). Finally, the DMD and xDMD models are

deployed to learn the flow map F∆t with the time lag ∆t = T .

We test the generalizability of the DMD and xDMD models by considering the

following three tests.

• Test 1: The initial input is the same as in (C.9) but the single point source

is now allowed to have different strength and width: s ∼ U(50, 100) and σ2 ∼
U(0.02, 0.1).

• Test 2: The initial input is a two-point source with different strengths, locations

and widths:

uin = s1 exp

[
−(x− xs1)

2 + (y − ys1)
2

2σ2
1

]
+ s2 exp

[
−(x− xs2)

2 + (y − ys2)
2

2σ2
2

]
,

(C.10)
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where s1, s2 = U(50, 100), σ2
1, σ

2
2 = U(0.02, 0.1), xs1 , xs2 ∼ U [0, 10], and ys1 , ys2 ∼

U [0, 10].

• Test 3: The initial input is a fixed-strength line source,

uin =




75 x = 5, y ∈ [3, 6],

0 otherwise.
(C.11)

For Test 1, Figure C.6 demonstrates the xDMD model’s ability to accurately

predict the solution for an initial condition not represented in the training set. At

the same time, the DMD model fails this relatively weak generalization test due to

the reason given in section C.3. The DMD error map has a peak centered at (5, 5),

which is the location of the source S(x) in (C.8). This further verifies that the loss

of accuracy is caused by the shortcoming of DMD in identifying the inhomogeneous

source term.

Figure C.7 reveals a similar performance of DMD and xDMD in the more chal-

lenging Test 2. As before, the xDMD model accurately predicts the solution at T = 4

corresponding to the two-point initial input not seen during the training. The right

corner concentration tail is mostly caused by the advection-diffusion effect on the

north-east point source. This pure advection-diffusion dynamic is well captured by

DMD, as shown by the flat low error concentration in the DMD error map. The error

peak is at (5, 5) again, showing the significant effect of identifying the source.

Figure C.8 demonstrates a similar behavior of the DMD and xDMD solutions for

a line source initial input (Test 3). Although the solutions to (C.8) with the single-

point source, two-point source and line source exhibit quite different features, all of

them can be thought of as a linear superposition of the training single-point sources.

Therefore, all the three types of the initial input can be regarded as drawn from

the same distribution. As before, xDMD again achieves satisfactory accuracy in this

generalizability test and DMD appears similar error map pattern centered at (5, 5).
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Figure C.6: Test 1: The ground truth at the end of simulation time (top row) and its
DMD and xDMD approximations (middle row), accompanied by the corresponding
absolute error maps (bottom row).
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Figure C.7: Test 2: The ground truth at the end of simulation time (top row) and its
DMD and xDMD approximations (middle row), accompanied by the corresponding
absolute error maps (bottom row).
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Figure C.8: Test 3: The ground truth at the end of simulation time (top row) and its
DMD and xDMD approximations (middle row), accompanied by the corresponding
absolute error maps (bottom row).
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C.5 Transport in Heterogeneous Media: General-

izability to New Inputs

The setting is identical to that in Section 5.3.4. Our goal here is to test the ability of

DMD and xDMD models to predict u(x, T ) for initial conditions not seen in training,

such as a two-point source with different strength and locations:

uin(x) = s1 exp(−(x− xs1)
2 + (y − ys1)

2) + s2 exp(−(x− xs2)
2 + (y − ys2)

2, (C.12)

where s1 = 50, s2 = 80, (xs1 , ys1) = (10, 40), (xs2 , ys2) = (20, 20).

Figure C.9 shows the success of xDMD in learning the solution for an initial

data not seen the training data. The xDMD error map has very small magnitude,

indicating the high accuracy of xDMD in this generalized test. On the other hand,

DMD predicts a very different concentration map, failing the generalization test.

As before, the DMD error is highest close to the left boundary, where the Dirichlet

boundary condition is imposed. This visualization again addresses the significant role

of the bias term added in the new xDMD framework.
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Figure C.9: Section 4.4: The ground truth at the end of simulation time (top row) and
its DMD and xDMD approximations (middle row), accompanied by the corresponding
absolute error maps (bottom row).
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[41] I. Mezić. Analysis of fluid flows via spectral properties of the Koopman operator.

Annu. Rev. Fluid Mech., 45:357–378, 2013.
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