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This dissertation deals with mathematical modeling of flow and transport in

random domains. Such problems arise when boundaries of simulation domains are

either uncertain or fluctuate randomly in time or both. Examples of such problems

include flow in micro-channels, micro-fin exchangers, and biological systems. In

these and other applications, random domain geometry affects flow and/or trans-

port behavior and heat efficiency.

We use a numerical algorithm consisting of three steps to solve random

domain problems with. The first step is to use a finite-term expansion (e.g., a

Karhunen-Loéve or Fourier expansion) to parameterize random surfaces (or rough-

ness) of micro-vessels and micro-channels. The second step is to use stochastic

mapping, which transforms a deterministic governing equation in a random do-
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main into a stochastic equation in a deterministic domain. The final step is to use

either a stochastic Galerkin method or a stochastic collocation method to repre-

sent a solution of the stochastic equation as polynomial chaos expansions in terms

of orthogonal polynomials. The polynomial type is dependent upon the random

variable representing the uncertain data/parameter.

This general procedure is used to investigate the effect of endothelial rough-

ness on blood flow, the impact of temporal and spatial fluctuations of cell free layer

on nitric oxide production and scavenging, and Stokes flow in domains bounded

by surfaces with roughness under a periodic condition.
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Chapter 1

Introduction

Numerical and computational models are effective tools for predicting and

understanding the behavior of real/practical systems and complex problems. In

industrial fields, numerical simulations can provide guidelines for initial product

developing and experimentation, leading to reduction in cost and developing time.

Though the complex physics in the practical system may be described by numeri-

cal and mathematical models, some differences between the model predictions and

experiments are unavoidable. That is because models are based on simplifying as-

sumptions/conceptualization and data are prone to experimental and interpretive

errors. Therefore, it is important to assess the difference between model predictions

and a real phenomenon in order to understand the real physics.

Various sources of uncertainty in physical experiments and numerical simu-

lations stem from the following questions: How to describe a system (a conceptual

1
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model simplified with assumptions)? How to solve numerically the resulting mod-

els (finite difference method, finite element method, spectral method, etc.)? How

to specify input data/ parameters (geometry, initial and boundary conditions,

physical model coefficients, operation conditions, etc.) determining the system.

These data/parameters are uncertain in many applications, such as fabrication

and assembly processes.

Understanding and assessing the impact of these sources of uncertainty on

model predictions is a goal of uncertainty quantification (UQ). UQ is also needed

to assess product and process reliability, estimate confidence levels in model predic-

tions, identify relative sources of randomness, and provide robust design solutions

capable of handling various operating conditions. This dissertation addresses some

of these issues by formulating UQ in a probabilistic/stochastic framework.

In order to solve a stochastic problem accounting for parametric uncer-

tainties, the first step is to treat uncertain inputs as random variables or ran-

dom processes. By doing this, an original deterministic problem is transformed

into a stochastic problem. The latter can be solved by employing a Generalized

Polynomial Chaos Expansion (GPCE), which uses orthogonal polynomials to de-

scribe random processes [3, 4]. Two popular numerical approaches for UQ, the

stochastic Galerkin method (SGM) and a stochastic collocation method (SCM),

are described in Appendix A. On the operational level, the key difference between

the two methods is that the SGM requires one to modify an existing deterministic

solver (intrusive method), which SCM requires no such modifications (nonintrusive
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method).

Uncertainty propagation was studied in various fluid dynamics settings,

such as incompressible/compressible flows, thermo fluids, flow with heat transfer

in stochastic media, random roughness/contact surface, reacting flows, and fluid-

structure interaction problems [5, 6, 7, 8]. The effect of uncertain viscosity on flow

and heat transfer in a two-dimensional channel and natural convection in a differ-

entially heated cavity with adiabatic top and bottom walls and cold/hot sidewalls

in the Boussinesq limit were investigated in [5, 6]. Uncertainties (such as wind con-

dition, material, manufacturing tolerance) affect the performance of wind turbines,

whose predictions require multi-physics (aerodynamics, structural, energy, acous-

tic) simulations. Design and optimization steps should include a comprehensive

estimation of uncertainties in order to achieve robust performance [9, 10].

The focus of this dissertation is on the impact of uncertain (random) ge-

ometries on system behavior. Much of the previous research in this area focused

on surface roughness. The effects of surface roughness on fluid flow behavior are

investigated [11]. It was shown to enhance heat/mass transport for such devices

as compact heat exchangers, cooling systems in microelectronics, small bioreac-

tors, oxygenators, microchannel, heat sinks, and micropumps related to heat- and

bio-technology.

Another example are surfaces formed by MEMS technologies and manufac-

turing techniques such as polydimethylsiloxane (PDMS) molding and hydroflouric

(HF) etching. Their surface roughness depends upon the fabrication process and
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material properties [12, 13]. It affects the performance in the micro systems. Ef-

fect of roughness on flow behavior and heat efficiency was investigated in mi-

crofluidic systems, such as micro bearing [14, 15], microfins heat exchangers [16],

bio-devices [17], and microchannels [18, 19].

Biological systems provide a large number of problems where bounding

surfaces are random due to either uncertainty or temporal fluctuations or both.

For example, blood vessel walls are lined with endothelium cells and in general

are very non-smooth; the inner surface of a cell-free layer is formed by chaotic

movement of red blood cells in the vessel’s core; etc. The latter surface vary in

time and space, and are notoriously hard to image. The impact on blood flow

and chemical reactions of random variability of these two surfaces is analyzed in

Chapters 2 and 4.

Most early studies of surface roughness employed deterministic methods.

This precludes one from incorporating surface measurements and measurement er-

rors into such analyses. By treating these geometries/roughness as random, the

problem can be computed. Geometric uncertainties give rise to boundary value

problems in random domains. A mapping of random simulation domains onto

a deterministic domain transforms a deterministic differential equations into its

stochastic counterpart. To solve a problem on a random domain, it is important

to parameterize its bounding surface. One such parameterization/representation

is provided by Karhunen-Loéve expansions that are related to the correlation func-

tion and probability distribution of the random surface [3]. Another representation
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of a periodic random process is Fourier expansions [20, 21]. Both of these parame-

terization strategies are used in this work. We also employ to alternative numerical

approaches, the stochastic Galerkin method in Chapters 2 and 3, and the stochastic

collocation method in Chapter 4.

1.1 Flow and Transport in Microvessels

We apply the computational tools developed in this research to model blood

flow and nitric oxide transport in microcirculation. This setting is ideal because

it enables us to explore the effects of random boundaries that are either fixed

in time (endothelium surface) or time-varying (the outer layer of the red blood

cell–RBC–core). The region between these two surfaces is called a cell free layer

(CFL). In cylindrical coordinates its random boundaries are defining by two radii,

that of the RBC core RRBC and the inner radius of the endothelial surface Re

(Figure 1.1). Both radii vary in space, i.e., depend on the spatial coordinates

(φ, z); the RBC column radius RRBC also varies with time t, reflecting chaotic

temporal fluctuationss in the CFL width due to intruding RBCs. In other words,

Re = Re(φ, z) and Re = Re(φ, z, t).

This spatio-temporal variability, combined with the practical impossibility

of measuring the radii values at every space-time point (φ, z, t), renders estimates

of the radii RRBC and Re uncertain. This uncertainty propagates through the

modeling process, affecting predictions of key physiological quantities such as wall
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shear stress, effective blood viscosity, and delineation of barriers to oxygen and

nitric oxide transport. The uncertainty is quantified by treating the radii RRBC

and Re as random fields, which vary not only in physical space (φ, z) and time t, but

also in the probability space ω ∈ Ω. The latter space consists of the collection of

all possible realizations of the random radii RRBC and Re. Thus, Re = Re(φ, z, ω)

and Re = Re(φ, z, t, ω).

The randomness of RRBC and Re affects the modeling process since flow

and transport processes in the CFL are now defined by equations (e.g., Stokes

equations for flow and advection-reaction-diffusion equations for transport) that

must be solved on the domain bounded by these random boundaries. Analysis

of this problem is facilitated by the use of stochastic mappings, an approach that

has been promulgated in a series of recent papers [22, 23, 20]. The basic idea of

this approach is to map a random domain onto its deterministic counterpart. In

the present context, this is accomplished by transforming the (r, φ, z) coordinate

system associated with the random boundaries of the CFL into the (ξ1, ξ2, ξ3)

coordinate system, such that ξ1 = (r − RRBC)/(Re − RRBC), ξ2 = φ, and ξ3 = z.

While the radius r varies between the two random limits, RRBC(φ, z, t, ω) ≤ r ≤

Re(φ, z, ω), the transformed variable ξ1 is defined on the deterministic interval

0 ≤ ξ1 ≤ 1.

Since the transformation Jacobian J(ξ1, ξ2, ξ3, ω) = ∂(r, φ, z)/∂(ξ1, ξ2, ξ3) is

random, the transformed flow and/or transport equations become stochastic. Since

the theory of stochastic differential equations defined on deterministic domains is
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relatively mature, one can use a variety of well-established techniques, including

perturbation expansions [22], polynomial chaos expansions [23], and stochastic

collocation methods [24].

Random variability of the CFL boundaries can significantly affect the phys-

iological phenomena taking place in the CFL. For example, a classical treatment

of blood flow in arteries whose walls are modeled as smooth surfaces of radii R

relies on the Poiseuille law to relate volumetric flow rate Q to pressure gradient

dp/dz (pressure drop along the blood vessel divided by its length),

Q = −πR
4

8µ

dp

dz
(1.1)

where µ is the dynamic blood viscosity of blood. For flow in vessels with rough

walls, this expression is phenomenologically modified,

Q = −πR
4CL

8µ

dp

dz
, (1.2)

where CL is the Lomize roughness coefficient [25]. Depending on the degree of wall

roughness, the reliance on the standard Poiseuille law can yield estimates of the

blood viscosity that are as much as 20% lower.

Since the Lomize roughness coefficient CL is largely phenomenological, its

values for different vessel radii cannot be ascertained with certainty, and measure-

ments of the CFL topology (i.e., observations of RRBC and Re) cannot be readily

incorporated to improve estimates of CL. The stochastic framework overcomes

these limitations by both providing a theoretical foundation for the concept of

the Lomize roughness coefficient and facilitating data processing by using data to
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estimate statistical properties (e.g., means, variances, and space-time correlation

functions) of the random fields RRBC and Re.

Random variability of these surfaces also affects the production and scav-

enging of nitric oxide (NO), which plays an important role in relaxing the smooth

muscle. The NO distribution in microcirculation depends on mechanical charac-

teristics of blood flow, such as wall shear stress, radial velocity profile, hematocrit,

and the CFL width. This problem is studied in Chapter 4.

1.2 Governing Equations

Using the Einstein summation notation, the mass conservation (continuity)

equation can be written as

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (1.3)

where ρ is the blood viscosity, ui (i = 1, 2, 3) are the components of the velocity

vector u. The momentum conservation equation is

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

, (1.4)

where σij (i, j = 1, 2, 3) are components the stress tensor σ defined as

σij = −pδij + τij, τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
(1.5)

where p is pressure, and τij (i, j = 1, 2, 3) are components of the deviatoric stress

tensor σ. For steady, two-dimensional, incompressible, low Reynolds/film flow,
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Figure 1.1: Cell free plasma layer (CFL) in vivo. Image of an arteriolar wall

showing CFL width, the distance between the RBC column (black) and the en-

dothelium lining the vessel wall. This image shows a few RBCs positioned closer

to the endothelium. CFL width is the distance between A and B. RBCs are 7 m

in diameter. Blood flow is from right to left (arrow) [1].
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the momentum equation is given by

∂p

∂x
=
∂τxx
∂x

+
∂τxy
∂y

,
∂p

∂y
=
∂τxy
∂x

+
∂τyy
∂y

, (1.6)

τxx = 2µ
∂u

∂x
, τxy = µ

(
∂u

∂y
+
∂v

∂x

)
, τyy = 2µ

∂v

∂y
. (1.7)

These equations are used in Chapters 2 and 3 to model Stokes flows in vessels

with random walls. They are general enough to handle two-phase fluids separated

by a random interface. When combined with the continuity equation, the Stokes

equations become

∂p

∂x
= µ

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂p

∂y
= µ

(
∂2v

∂x2
+
∂2v

∂y2

)
. (1.8)

In physical spaces, we have used spectral collocation method and spectral element

method [26, 27, 28, 29]. In chapter 2, these equations are solved by using the

spectral method in which the solution expanded in a series of orthogonal basis

functions put into the differential equations and the coefficients of expansion is

obtained with collocation. In chapter 3 and 4 the spectral element method is used

in physical spaces . This spectral element method is described in Appendix C.



Chapter 2

Flow over Random Wall

2.1 Introduction

The distribution of nitric oxide (NO) in the microcirculation is determined,

in large part, by the balance between NO production and consumption in the

blood and tissue compartments. A key mechanism of this balance is the gradient

of NO concentration at the interface between blood and tissue, a complex sub-

microscopic region generally free of red blood cells (RBCs). It is termed the “cell

free layer” (CFL). The CFL is bounded by the surface of the endothelium and

the surface of the moving RBC column, a configuration that can be modeled as

a two layer system. Analysis of this model can be approximated by assuming a

Newtonian fluid and a parabolic profile velocity within the CFL which mergers

into plug flow and non-Newtonian flow properties in the central RBC core [30, 31].

Several studies used this approach to estimate the velocity gradient in the CFL and

11
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to estimate shear stress at the vessel wall. The level of shear stress determines the

rate of NO production by the endothelium [1]. The width of the CFL modulates

the rate of NO scavenging by RBCs, since it determines the distance from the

source of NO to its major sink on the blood side [32, 33, 31, 34].

Shear stress is determined by the effective viscosity, the velocity gradient,

the nature of the flow and the flow boundary geometry. NO bioavailability and

oxygen transfer is determined by the shear stress, flow conditions, hematocrit

(Hct) and the CFL width. The relation between NO production and shear stress

has been analyzed experimentally and theoretically [35, 36]. Theoretical studies

reveal that the CFL width and shear stress are primary factors in determining

NO bioavailability in the vessel wall [37]. These studies assume that the interface

between the RBC column and plasma is a smooth deterministic surface. However

this surface is formed by RBC that deform and aggregate forming an irregular

boundary [38, 39], affecting flow and shear stress on the endothelium. Likewise,

the endothelium surface exhibits (random) spatial variability.

The endothelium is exposed to a flow field that transmits a distribution

of shear stresses to its surface. These forces have a heterogeneous spatial distri-

bution evidenced by the difference of response levels even in contiguous cells are

often noted in neighboring cells. This variability was proposed [40] to be in part

the consequence of the cell surface geometry. The latter was quantified in living

endothelium by means of atomic force microscopy measurements [41].

A deterministic characterization of this undulating surface [42], which treated
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its profile as a sinusoid, relied on two parameters: the length in flow direction

divided by the width transverse to flow, and the height-to-length ratio. These

parameters were used to determine the maximum shear stress and shear stress

gradient developed by flow by mean of an analytic linearized solution to the gov-

erning equations. The analysis in [42] revealed that shear stress gradients at the

surface of the endothelium are very large, a consequence of the small dimension

over which changes occur.

The topographic variability of the endothelial surface is not well estab-

lished, rendering their deterministic descriptions problematic. It is known that

the endothelial surface is affected by both blood flow and the physiological con-

dition. Various factors, such as endothelial swelling and dehydration [43] and

endothelial contractility [44], are modulators of the surface topography that re-

main unexplored. The study [41] showed that flow also changes the surface from

a smooth and uniform sinusoid-like variation to the appearance of fibrous struc-

tures embedded in the surface. Such a variety of features suggests that the surface

be described by means of stochastic variables and treated as a random boundary

characterized by a correlation length (of its variability) in the direction of flow, a

mean perturbation height and a standard deviation of this mean height.

Spatial variability of the CFL width is highly uncertain [38, 39]. To quan-

tify the impact of this uncertainty on measured and observed flow characteristics

(e.g., shear stress on endothelium walls), we treat the CFL surface as a random

field. A problem formulation, which describes blood flow in a flow chamber with
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randomly varying aperture, is presented in Section 2.2. In Section 2.3 we use a

Karhunen-Loève expansion [45] as a means of statistical parameterization of this

random boundary. A numerical algorithm for solving the Stokes flow equations in

the resulting random domain is described in Section 2.4. It follows a procedure in-

troduced in [22, 20, 23] and consists of two steps. First, the random flow domain is

mapped onto a deterministic domain with smooth boundaries (Section 2.4.1), the

transformed Stokes equations become stochastic. Second, a generalized polynomial

chaos expansion [4] is used in Section 2.4.3 to solve these equations. Biophysical

implications of our analysis are discussed in detail in Section 2.5 and summarized

in Section 2.6.

2.2 Problem Formulation

Consider viscous (low Reynolds number) steady-state blood flow between

two plates, one of which is smooth (deterministic) and the other is rough (random).

Let µ denote the kinematic viscosity of blood. Then flow velocity u = (u1, u2)T

and pressure distribution p at every point x in the flow domain D are governed by

the Stokes and continuity equations,

µ∇2u = ∇p, ∇ · u = 0, x ∈ D. (2.1)

The lower boundary, s(x1), of the flow domain D = {(x1, x2) : 0 ≤ x1 ≤

Lx, s(x1) ≤ x2 ≤ Ly} is uncertain. This uncertainty is conceptualized by allowing

s to vary randomly in space, i.e., by treating it as a random field s(x1, ω) where
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ω ∈ Ω indicates a realization (“coordinate”) in probability space Ω. A typical

realization of the random flow domain D(ω) is shown in Figure 2.3a below.

The flow is driven by an externally imposed pressure gradient, such that

p(0, x2) = Pl, p(Lx, x2) = Pr, s ≤ x2 ≤ Ly. (2.2a)

The normal components of the pressure gradient on the two walls is zero,

n · ∇p(x1, s) = 0,
∂p

∂x2

(x1, Ly) = 0. (2.2b)

We assume the lower and upper plates to be impermeable,

n · u(x1, s) = 0, v(x1, Ly) = 0, (2.3a)

and impose no-slip boundary conditions,

s · u(x1, s) = 0, u(x1, Ly) = 0. (2.3b)

Here n and s denote the unit normal and tangential vectors to the random surface

s(x1, ω), respectively.

2.3 Statistical Representation of Random Sur-

faces

Let us employ the Reynolds decomposition, s(x1, ω) = s(x1) + s′(x1, ω),

to represent the random surface s(x1, ω) as the sum of its ensemble mean s(x1)

and zero-mean fluctuations s′(x1, ω) about this mean. We assume that available
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data, such as those reported in [39], are sufficient to estimate the relevant statistics

of s(x1, ω), including its mean s, standard deviation σs, and a two-point correla-

tion function ρs(x1, y1). Then the random field s(x1, ω) can be represented via a

Karhunen-Loève expansion,

s(x1, ω) = s(x1) + σs

∞∑
m=1

√
λmfm(x1)Ym(ω). (2.4)

Here Ym(ω) (m ≥ 1) are independent random variables, and λm and fm(x1) are

eigenvalues and eigenfunctions of Fredholm equations,∫ Lx

0

ρs(x1, y1)fm(y1)dy1 = λmfm(x1), m ≥ 1. (2.5)

For an exponential correlation function,

ρs(x1, y1) = e−|x1−y1|ls (2.6)

with the correlation length ls > 0, the eigenvalue problem in Eq. 2.5 admits an

analytical solution [24],

λm =
2ls

l2sω
2
m + 1

, m ≥ 1 (2.7)

and

fm(x) =
1√

(l2sω
2
m + 1)Lx/2 + ls

[lsωmcos(ωmx) + sin(ωmx)] (2.8)

where ωm in Eqs. 2.7 and 2.8 are solutions of

(l2sω
2
m − 1)sin(ωmLx) = 2lsωmcos(ωmLx). (2.9)

Practical implementation of Karhunen-Loève expansions requires one to

truncate the infinite summation in Eq. 2.4. The resulting truncation error depends
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on the correlation length ls. The larger the correlation length, the few terms in

Eq. 2.4 are necessary to represent the random surface s1(x1, ω) with a given degree

of accuracy. Figure 2.1 shows how the decreasing correlation lengths ls affect the

decay of the eigenvalues λm for the exponential correlation function in Eq. 2.6.

Within the statistical framework adopted here, the endothelium roughness

is characterized by two parameters: the standard deviation σs and the correlation

length ls. Typical realizations of the uncertain (random) endothelium surface

s(x1, ω) for several values of standard deviation σs and correlation length ls are

shown in Figure 2.2.

2.4 Solving Stokes Equations on Random Do-

main

A two-step approach to solving differential equations on random (uncertain)

domains is described and implemented below.

2.4.1 Stochastic mapping onto a deterministic domain

Let us introduce a new coordinate system (ξ1, ξ2), in which the original

stochastic flow domain D takes the form of a deterministic rectangle E = {(ξ1, ξ2) :

0 ≤ ξ1 ≤ Lx, 0 ≤ ξ2 ≤ Ly}. A mapping D → E is accomplished by a transforma-

tion of coordinates ξi = ξi(x1, x2) (i = 1, 2). For the relatively simple flow domain

under consideration, such a mapping can be defined analytically, for example, as
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Figure 2.1: Decay of eigenvalues λn with n for several correlation lengths ls.
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s(x1, ω) for several values of standard deviation σs and correlation length ls.
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ξ1 = x1 and ξ2 = (Ly−x2)/[Ly−s(x1, ω)]. For more complex geometries, a stochas-

tic mapping ξi = ξi(x1, x2) (i = 1, 2) and its inverse xi = xi(ξ1, ξ2) (i = 1, 2) are

constructed [22, 23] by solving Laplace’s equations,

∂2xi
∂ξ2

1

+
∂2xi
∂ξ2

2

= 0, (ξ1, ξ2) ∈ E, i = 1, 2. (2.10)

subject to the boundary conditions

x1(0, ξ2) = 0, x1(Lx, ξ2) = Lx, x1(ξ1, 0) = ξ1, x1(ξ1, Ly) = ξ1; (2.11a)

x2(0, ξ2) = ξ2, x2(Lx, ξ2) = ξ2, x2(ξ1, 0) = s, x2(ξ1, Ly) = Ly. (2.11b)

Uncertainty (randomness) in domain geometry, s(x1, ω), manifests itself in

the mapping problem through a boundary condition in Eqs. 2.11. To facilitate

numerical solution of the mapping problem given by Eqs. 2.10–2.11, one has to

truncate the infinite series in the Karhunen-Loève expansion (2.4) after K terms.

For a given accuracy, the smaller the correlation length ls, the higher the value of

K [see, e.g.,[4, 23]].

Solutions of Eqs. 2.10–2.11 can now be approximated by series

xi(ξ1, ξ2, ω) =
K∑
k=0

x̂i,k(ξ1, ξ2)Yk(ω), i = 1, 2. (2.12)

Substituting Eq. 2.12 into Eq. 2.10 and taking a Galerkin projection yields 2(K+1)

Laplace’s equations for the coefficients x̂i,k(ξ1, ξ2),

∂2x̂i,k
∂ξ2

1

+
∂2x̂i,k
∂ξ2

2

= 0, (ξ1, ξ2) ∈ E, i = 1, 2, k = 0, . . . , K. (2.13)
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For k = 0, Eqs. 2.13 are subject to boundary conditions

x1,0(0, ξ2) = 0, x1,0(Lx, ξ2) = Lx, x1,0(ξ1, 0) = ξ1, x1,0(ξ1, Ly) = ξ1; (2.14a)

x2,0(0, ξ2) = ξ2, x2,0(Lx, ξ2) = ξ2, x2,0(ξ1, 0) = s, x2,0(ξ1, Ly) = Ly. (2.14b)

For k ≥ 1, these boundary conditions are replaced with their homogeneous coun-

terparts,

x1,k(0, ξ2) = 0, x1,k(Lx, ξ2) = 0, x1,k(ξ1, 0) = 0, x1,k(ξ1, Ly) = 0; (2.14c)

x2,k(0, ξ2) = 0, x2,k(Lx, ξ2) = 0, x2,k(ξ1, Ly) = 0, (2.14d)

except for the boundary conditions

x2,k(ξ1, 0) = σs
√
λkψk(ξ1). (2.14e)

We use a Chebyshev spectral method to solve Eqs. 2.13–2.14. An example of

such calculations is shown in Figure 2.3 for one realization of the random surface

s(x1, ω).

2.4.2 Transformed Stokes equations

The procedure outlined above enables one to compute, among other things,

a transformation Jacobian,

J(ξ1, ξ2, ω) ≡ ∂(ξ1, ξ2)

∂(x1, x2)
= J [ξ1, ξ2, Y1(ω), · · · , YK(ω)]. (2.15)

For an arbitrary twice-differentiable function f(x) defined on D,

∇2
xf ≡ ∇x · F =

1

J

(
∂F 1

∂ξ1

+
∂F 2

∂ξ2

)
≡ 1

J
∇ξ · F, (2.16a)
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Figure 2.3: (a) A typical realization of the random flow domain D(ω) and (b) its

mapping onto a deterministic domain.
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∇xf =
1

J

[(
∂x2

∂ξ2

i− ∂x1

∂ξ2

j

)
∂f

∂ξ1

−
(
∂x2

∂ξ1

i− ∂x1

∂ξ1

j

)
∂f

∂ξ2

]
. (2.16b)

where i and j are the normal vectors of the (ξ1, ξ2) coordinate system, and the

contravariant components F 1 and F 2 of the transformed vector F(ξ) are given by

F 1 = A
∂f

∂ξ1

−B ∂f

∂ξ2

, F 2 = −B ∂f

∂ξ1

+ C
∂f

∂ξ2

(2.16c)

with

A =
1

J

[(
∂x2

∂ξ2

)2

+

(
∂x1

∂ξ2

)2
]
, B =

1

J

(
∂x2

∂ξ1

∂x2

∂ξ2

+
∂x1

∂ξ1

∂x1

∂ξ2

)
,

C =
1

J

[(
∂x2

∂ξ1

)2

+

(
∂x1

∂ξ1

)2
]
. (2.16d)

Using Eqs. 2.16 to rewrite the Stokes Eqs. 2.1 in the (ξ1, ξ2) coordinate

system, we obtain

∂

∂ξ1

(
A
∂u1

∂ξ1

−B∂u1

∂ξ2

)
− ∂

∂ξ2

(
B
∂u1

∂ξ1

− C∂u1

∂ξ2

)
=

1

µ

(∂x2

∂ξ2

∂p

∂ξ1

− ∂x2

∂ξ1

∂p

∂ξ2

)
(2.17a)

and

∂

∂ξ1

(
A
∂u2

∂ξ1

−B∂u2

∂ξ2

)
− ∂

∂ξ2

(
B
∂u2

∂ξ1

− C∂u2

∂ξ2

)
=

1

µ

(∂x1

∂ξ2

∂p

∂ξ2

− ∂x1

∂ξ2

∂p

∂ξ1

)
. (2.17b)

The Stokes and continuity Eqs. 2.1 imply that ∇2
xp = 0. When written in the

(ξ1, ξ2) coordinate system, this equation takes the form

∂

∂ξ1

(
A
∂p

∂ξ1

−B ∂p

∂ξ2

)
− ∂

∂ξ2

(
B
∂p

∂ξ1

− C ∂p

∂ξ2

)
= 0. (2.18)

The transformed flow Eqs. 2.16–2.18 are stochastic, i.e., have random co-

efficients. The theory of stochastic differential equations defined on deterministic
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domains is relatively mature. Their solutions can be obtained with a variety of

well-established techniques, including perturbation-based moment equations [46],

stochastic finite elements [3], and stochastic collocation methods [24, and the ref-

erences therein]. In the subsequent numerical simulations we employ a stochastic

finite element method, which is also known as the generalized polynomial chaos

expansion [23].

2.4.3 Solution of stochastic flow equations

Let {Ψm(Y)}Mm=0 denote a set of multidimensional orthogonal polynomials

of the random vector Y(ω) ≡ (Y1, . . . , YK)T of the K independent random variables

Y1(ω), . . . , YK(ω) introduced in Eqs. 2.4 and 2.12. The polynomials are chosen to

have the ensemble means Ψ0 = 1 and Ψk = 0 (k ≥ 1) and satisfy the orthogonality

condition

ΨiΨj = Ψ2
i δij, ΨiΨj ≡

∫
Ψi(Y)Ψj(Y)W (Y)dY1 . . . dYK , (2.19)

where δij is the Kronecker delta and W (Y) is a weight function corresponding to

a given polynomial type.

The size of the polynomial set, M , is determined by the “stochastic dimen-

sion” K and the order P of polynomials Ψk, according to

M =
(K + P )!

K!P !
− 1. (2.20)

Polynomial chaos expansions (PCEs) represent a system state, e.g., pressure p(ξ, ω),
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a random field whose ensemble statistics are to be determined, as a series

p(ξ, ω) =
M∑
k=0

p̂k(ξ)Ψk[Y(ω)]. (2.21)

Similar expansions are employed for the other two state variables, u1(ξ, ω) and

u2(ξ, ω) and metrics coefficients, A(ξ, ω) ,B(ξ, ω) and C(ξ, ω). Following the

Galerkin projection procedure outlined in the Appendix A.1, we obtain a set of de-

terministic equations for the coefficients {p̂k(ξ)}Mk=0, {û1k(ξ)}Mk=0 and {û2k(ξ)}Mk=0,

M∑
j,k=0

Cijk
[
∂

∂ξ

(
Âk
∂ûj
∂ξ
− B̂k

∂ûj
∂η

)
+

∂

∂η

(
Ĉk
∂ûj
∂η
− B̂k

∂ûj
∂ξ

)]

=
1

µ

M∑
j,k=1

Cijk
(
D̂k

∂p̂j
∂ξ
− Êk

∂p̂j
∂η

)
(2.22)

M∑
j,k=0

Cijk
{
∂

∂ξ

(
Âk
∂v̂j
∂ξ
− B̂k

∂v̂j
∂η

)
+

∂

∂η

(
Ĉk
∂v̂j
∂η
− B̂k

∂v̂j
∂ξ

)}

=
1

µ

M∑
j,k=0

Cijk
(
−F̂k

∂p̂j
∂ξ

+ Ĝk
∂p̂j
∂η

)
(2.23)

M∑
j,k=0

Cijk
{(

D̂k
∂ûj
∂ξ
− Êk

∂ûj
∂η

)
+

(
−F̂k

∂v̂j
∂ξ

+ Ĝk
∂v̂j
∂η

)}
= 0 (2.24)

M∑
j,k=0

Cijk
[ ∂
∂ξ

(
Âk
∂p̂j
∂ξ
− B̂k

∂p̂j
∂η

)
+

∂

∂η

(
Ĉk
∂p̂j
∂η
− B̂k

∂p̂j
∂ξ

)]
= 0. (2.25)

Here Cijk ≡ ΨiΨjΨk, A =
∑M

k ÂkΨk, and B̂k, Ĉk, D̂k, Êk, F̂k, Ĝk are coefficients

in the similar expansions of B, C, D, E, F , and G, respectively.

Algebraic Eqs. 2.22–2.25 were solved by using a spectral collocation method.
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2.5 Simulation Results and Discussion

Algebraic Eqs. 2.22–2.25 were solved by using a spectral collocation method.

Then, the mean p(x) and variance σ2
p(x) of pressure p(ξ, ω) are computed as

p(x) = p0(x), σ2
p(x) =

M∑
k=1

p2
k(x)Ψ2

k. (2.26)

The identical procedure are used to compute the means and variances of the veloc-

ity components u1(ξ, ω) and u2(ξ, ω). These means and variances serve to predict

respectively the average behavior of, and to quantify predictive uncertainty for,

blood pressure and velocity (Section 2.5.1) and shear stress on the endothelium

(Section 2.5.2). In Section 2.5.3 we investigate the impact of endothelium rough-

ness on the estimation of effective blood viscosity.

2.5.1 Blood pressure and velocity

Figure 2.4 exhibits the statistics of pressure resultant from uncertain geom-

etry of the endothelium wall s(x1). The mean pressure p in Figure 2.4a decreases

linearly from left to right between two pressure values imposed on the inlet and

outlet of the flow chamber. In other words, the mean pressure gradient is constant

and unaffected by the endothelium roughness. The uncertain geometry of the en-

dothelium manifests itself in pressure fluctuations about the mean, as quantified

by the standard deviation σp in Figure 2.4b. Predictive uncertainty increases with

the distance from the inlet and outlet, where pressure is certain, reaching its max-

imum in the middle of the flow chamber (ξ1 = Lx/2). It also decreases with the
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distance from the uncertain endothelium surface (ξ2 = 0).

Figure 2.5 highlights these observations further by presenting several cross-

sections of the standard deviation of pressure σp. In particular, it reveals the

dependence of σp on the distance from the uncertain endothelium surface is rel-

atively mild (Figure 2.5b). This dependence becomes more pronounced as the

degree of uncertainty about the endothelium geometry (σs) increases.

The mean flow velocity u and the standard deviation σu1 of the horizontal

component of the flow velocity u1 induced by randomly fluctuating pressure gradi-

ent ∇ξp are shown in Figure 2.6. The flow is horizontal in the mean (Figure 2.6a).

The no-slip boundary conditions at the walls imply that the horizontal component

of flow velocity at the walls is known with certainty (u1 = 0 at ξ2 = 0 and ξ2 = 1),

so that σu1 = 0. Predictive uncertainty (σu1) increases with the distance from the

walls, reaching its maximum in the middle of the flow chamber, ξ2 = 0.5.

Figure 2.7 reveals how the endothelium roughness (as quantified by σs and

ls) affects the mean flow velocity u. The overall effect is to reduce the mean

flow velocity relative to its counterpart resulting from the assumption of smooth

endothelium (σs = 0). For a given σs, the mean velocity decreases as ls becomes

smaller, i.e., the endothelium surface becomes more irregular.

2.5.2 Flow rate and wall shear stress

The decrease in mean velocity with increasing endothelium roughness (Fig-

ure 2.7) translates into the corresponding decrease in the volumetric flow rate
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Figure 2.4: (a) Average pressure p and (b) deviations from the mean (standard

deviation) σp.
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Figure 2.5: Standard deviation of pressure, σp, along several horizontal cross-

sections ξ2 = c (a) and vertical cross-section ξ1 = Lx/2 (b).
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Figure 2.6: (a) Average flow velocity u and (b) deviations from the mean of the

horizontal component of the flow velocity (its standard deviation) σu1 .
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Q =
∫ 1

0
u1dξ2. It is well known that, for a given pressure gradient, Q decreases

as wall roughness increases. Figure 2.8 quantifies this effect in terms of the ob-

servable statistics of endothelium roughness, σs and ls. The flow rate decreases as

the roughness amplitude (standard deviation) σs increases and/or the correlation

length ls decreases.
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Figure 2.8: The volumetric flow rate, normalized with its counterpart in the flow

chamber with smooth walls, as a function of the statistical parameters σs and ls

characterizing endothelium roughness.

Another quantity of physiological significance is the shear stress on the

endothelium wall s(x1, ω),

τw(ξ1, s;ω) = µ
∂u1(ξ1, s;ω)

∂ξ2

. (2.27)

Spatial variability of the mean, τw(ξ1), and standard deviation, στ (ξ1), of
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the endothelium shear stress τw is shown in Figure 2.9 for several degrees of en-

dothelium roughness (σs and ls). The mean shear stress τw increases with both

the magnitude of the endothelium fluctuations (its standard deviation σs) and its

correlation length ls. Predictive uncertainty (as quantified by στ ) increases with σs

and, somewhat surprisingly, decreases with ls. Boundary effects (deviation from

the fully-developed flow regime, wherein the shear stress statistics are constant)

extend further inside the flow chamber as σs increases and/or ls decreases.

2.5.3 Effective blood viscosity

A classical treatment of blood flow in arteries whose walls are modeled as

smooth surfaces relies on the Poiseuille law to relate the volumetric flow rate Q to

the pressure gradient dp/dx,

Q = −
L3
y

12µ

dp

dx
. (2.28)

Accounting for (random) endothelium roughness requires one to replace the Poiseuille

law in Eq. 2.28 with its “effective” or “equivalent” counterpart,

Q = −
L3
y

12µe

dp

dx
, (2.29)

wherein µe denotes the effective viscosity.

Figure 2.10 demonstrates that µe, the blood viscosity inferred from in vivo

experiments via the Poiseuille law, depends not only on blood properties but also

on the statistical parameters characterizing the endothelium roughness (σs and ls).

The effective viscosity µe increases as σs increases and/or ls decreases.
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Figure 2.9: Spatial variability of the mean shear stress τw(ξ1, ξ2) and its stan-

dard deviation στ (ξ1, ξ2) along the endothelium wall ξ2 = 0 for several degrees of

endothelium roughness (σs and ls).
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Figure 2.10: Effective blood viscosity µe, normalized with its counterpart cor-

responding to the smooth wall approximation, as a function of the endothelium

roughness parameters σs and ls.

2.6 Conclusions

We developed a computational framework to quantify the impact of uncer-

tainty in the cell free layer (CFL) width on measured and observed flow character-

istics (e.g., shear stress on endothelium walls). This is accomplished by treating

the CFL surface as a random field with zero mean, standard deviation σs and

correlation length ls. This surface is represented via a Karhunen-Loève expansion.

The Stokes equations defined on the resultant random domain are solved in two

steps. First, the random flow domain is mapped onto a deterministic domain with

smooth boundaries, which renders the transformed Stokes equations stochastic.

Second, a generalized polynomial chaos expansion is used to solve these equations.

Our analysis leads to the following major conclusions.

• The mean pressure gradient is constant and unaffected by the endothelium
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roughness. Uncertainty in (randomness of) the endothelium surface man-

ifests itself in pressure fluctuations about the mean, as quantified by the

standard deviation σp.

• The overall effect of endothelium roughness is to reduce the mean blood

flow velocity relative to its counterpart corresponding to the assumption of

smooth endothelium (σs = 0). For a given σs, the mean velocity decreases

as ls becomes smaller, i.e., the endothelium surface becomes more irregular.

• The decrease in mean velocity with increasing endothelium roughness trans-

lates into the corresponding decrease in the volumetric flow rate. The volu-

metric flow rate decreases as the roughness amplitude (standard deviation)

σs increases and/or the correlation length ls decreases.

• The mean shear stress increases with both the magnitude of the endothelium

fluctuations (its standard deviation σs) and its correlation length ls. Bound-

ary effects (deviation from the fully-developed flow regime, wherein the shear

stress statistics are constant) extend further inside the flow chamber as σs

increases and/or ls decreases.

• The blood viscosity, inferred from in vivo experiments via the Poiseuille law,

depends not only on blood properties but also on the statistical parameters

characterizing the endothelium roughness (σs and ls). The effective blood

viscosity increases as σs increases and/or ls decreases.
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Chapter 3

Alternative Representation of

Random Surfaces

Consider the stochastic process in a finite interval T = [−L,L] of a one-

dimensional space. A Fourier series provides a natural representation of such ran-

dom fields, and can be viewed as a special case of the KL expansions [47, 21, 48,

49, 50]. Thus, a random field v(x, ω) can be represented by a Fourier-like series

v(x) =
a0√

2
ξ0 +

∞∑
n=1

[(
an cos

2nπ

T
x

)
ξn +

(
bn cos

2nπ

T
x

)
ηn

]
(3.1)

where ξn and ηn are independent identically-distributed random variables. The

covariance function Cv(x1, x2) = 〈v(x1)v(x2)〉 is defined as

Cv =
a2

0

2
+
∞∑
n=1

[
a2
n + b2

n

2
cos

2nπ

T
(x1 − x2) +

a2
n − b2

n

2
cos

2nπ

T
(x1 + x2)

]
. (3.2)

A (bilateral) second-order autoregressive process with a periodic condition is re-

lated to a solution of the modified Helmholtz equation [47, 21]. Specifically, for
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the period T = 2L and v(0) = v(L) = 0, the covariance is given explicitly by

Cv =
∞∑
n=1

b2
n

2

[
cos

nπ

L
(x1 − x2)− cos

nπ

L
(x1 + x2)

]
, b2

n =
2

Lk4

[
1 +

(nπ
Lk

)2
]−2

(3.3a)

This random process is represented by a sine Fourier expansion,

v(x) =
∞∑
n=1

ηnbn sin
2nπ

T
x. (3.4)

This expansion is described in detail in [47, 21, 50]. We adopt this representation

in order to solve the Stokes equations in random domains.

3.1 Problem formulation

Consider Stokes flow between two parallel plates, one of which is randomly

rough. The random flow domain is D : {(x, y) ∈ [−T/2, T/2] × [h, δ]. The upper

plate, y = δ, is smooth and deterministic. The lower plate, y = h, is a random

surface represented by the truncated expansion with zero mean (h̄ = 0),

h(x;ω) = h̄(x) + σ
N∑
k=1

bk sin

(
2kπx

T

)
ξk(ω), (3.5)

in which the random variables ξk(ω) are uniformly distributed, T is the length of

the process along the x-axis, σ controls the strength of the process, and

bk =
2√
T`2

[
1 +

(
2πn

T`

)2
]−1

, (3.6)

where ` = T/`s and `s is the correlation length of h(x;ω). The random variables

ξk(ω) have zero mean and unit variance on ξk(ω) ∈ [−
√

3,
√

3].
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To compute the periodic problem, we adopt the covariance kernel intro-

duced in [47, 21]. We solve the periodic Stokes flow problem with δ = 1, σ = 0.2

or 0.4, and ` = T/ls = 2. This choice of the correlation length ratio ` facilitates

representation of the roughness in a higher-dimensional random space at a man-

ageable cost. This means that more stochastic dimensions are needed at higher

accuracy as the correlation length decreases. The number of terms in the Fourier

expansion that are necessary to represent h(x;ω) with a given degree of accuracy

(α) are presented in Table 3.1. Typical realizations of the random plate h(x;ω),

for the above-mentioned statistical parameters and the Fourier expansion with the

accuracy α = 95%, are shown in Fig. 3.1. We computed the problem with two

cases of α = 95%

Table 3.1: The truncated number of terms in the KL expansion (3.5), obtained by

using ΣN
n=1(b2

n) ≥ αΣ∞n=1(b2
n) criterion at the correaltion length ratio ` = 2.0.

α N(ls = 1, T = 2) N(ls = 5, T = 10)

90% 2 5

95% 2 6

99% 4 12

Figure 3.2 demonstrates that the smaller the correlation length, the more

random/rough the surface. A deterministic domain on which the transformed
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and the channel length T = 2 (`s = 1 upper) and 10 (below).
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stochastic equations are to be solved is D : {(x, y) ∈ [−T/2, T/2]× [0, 1].

The flow is driven by the externally applied pressure gradient −∂P/∂x = 2.
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Figure 3.2: Realizations of the random bottom plate of the channel for ` = 2.0

and the channel length T = 2 (`s = 1 red) and 10 (`s = 5 blue) in the same region

(−1 < x < 1).

3.2 Results and Discussion

We use the mapping approach [51, 23] to compute this periodic Stokes

flow problem. This is a two-step computational method: first, a random flow

domain is mapped onto a deterministic domain; second the transformed stochastic
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counterparts of Stokes equations are solved in a deterministic domain using a

stochastic Galerkin method (SGM) with generalized polynomial chaos expansions

(gPC) in the probability space and a spectral element method in the physical space.

This approach is briefly outlined in Appendix A. In the mapping approach, an

extensive effort has been made to obtain the grid-independent (converged) first and

second moments of the horizontal (u) and vertical (v) components of the random

velocity vector.

The stochastic mapping function is defined by η1 = x and η2 = (y −

h)/(1 − h). It transforms the random flow domain Df into a deterministic do-

main Dt : {(η1, η2) ∈ [−T/2, T/2] × [0, 1]. The ensemble statistics of u(x, η2;ω)

are displayed at a few cross-sections x = const. Based on the covariance kernel

and the correlation length utilized, we chose the cross-sections x = ±0.5 for T = 2

and ls = 1, and the cross-sections x = ±2.5 for T = 10 and ls = 5. In both cases,

these cross-sections correspond to the locations with the maximum variance of the

random roughness h(x, ω).

Figure 3.3 exhibits the mean velocity profiles across the channel width, E[u],

for ls = 1 and either σ = 0.2 or σ = 0.4. As expected, Fig. 3.3 demonstrates that

the mean centerline velocity and, hence, the volumetric flow rate decrease as the

wall roughness (σ) increases.

Figure 3.4 shows the standard deviation of u(x, η2;ω) computed at x =

±0.5. Since the wall roughness is highest at x = ±0.5, one can expect the maximum

predictive uncertainty (as quantified by Std[u]) to occur at these cross-sections.
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Figure 3.3: Mean velocity profiles across the channel width for ls = 1 and either

σ = 0.2 and σ = 0.4. Also shown are the Poiseuille velocity profiles (Analytic) for

smooth walls.
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Figure 3.4 reveals that vertical profiles of Std[u] at x = 0.5 and x = −0.5 are

the same and distinct from the profiles at x = 0 in which the roughness is lowest.

The maximum value of Std[u] is towards the random wall (η2 ≈ 0.25) in both

cases (σ = 0.2 or 0.4). The location of highest predictive uncertainty is seen to be

insensitive to the strength of wall randomness (σ = 0.2 or 0.4).
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Figure 3.4: Standard deviation of u at x = ±0.5 for ls = 1 and σ = 0.4 and

σ = 0.2.

The process by which the random wall roughness has been generated results

in the known (deterministic) position of the bottom wall h = 0 at x = 0 (Fig. 3.1).

Therefore, it is reasonable to expect that the predictive uncertainty, i.e., Std[u]

and Std[v], is smallest at x = 0.0. Yet it is not zero due to random fluctuations of
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the rough wall in the neighborhood of x = 0.0. Figure 3.5 demonstrates that this

is indeed the case. The standard deviation of u at x = 0.0 is almost an order of

magnitude smaller than its counterpart at x = 0.5 (Fig. 3.4).

The presence of random roughness induces the vertical fluctuations in flow

velocity. While E[v] = 0, the standard deviation of the vertical velocity component

Std[v] is appreciable (Fig.3.5). In fact, at x = 0.0 it is an order of magnitude higher

than Std(u). Figure 3.6 shows that the peak positions of Std(u) and Std(v) are

insensitive to the strength of the random roughness σ.

The comparison of Figs. 3.3 and 3.7 demonstrates that the flow rate de-

creases as ls increases. The impact of larger correlation lengths (ls = 5) on the

standard deviation of u and v is found in Figs. 3.5 and 3.6. The comparison

of these figures demonstrates that the location of maximum fluctuations moves

closer toward the random rough wall as `s decreases, i.e., the wall becomes rougher

(Fig. 3.2).

Figure 3.8 shows that the number of grid points in the x direction affects

predictions of the flow behaviors since the representation of roughness is based on

the limit of a second-order autoregressive process with a periodic condition [21].

That process is derived from a modified Helmholtz equation with the limit of

∆x→ 0 and is dependent upon the length between grid points.
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3.3 Summary and conclusions

We analyzed Stokes flow with periodic conditions in a random domain by

using the stochastic mapping approach and stochastic Galerkin method, which is an

intrusive approach that leads to a set of M deterministic coupled PDEs. The finite

number of stochastic expansion is computed as M = (N+P )!
N !P !

, where P is the order

of polynomials in the gPC expansions. Since it is difficult to solve the problem with

periodic conditions by using the Karhunen-Loéve expansion described in Chapter 2,

the random roughness was modeled by a second-order autoregressive process and

was represented using another form of Karhunen-Loéve expansion for the periodic

flow.

Our study leads to the following major conclusions:

• Random roughness reduces the volumetric flow rate and increases the magni-

tude of fluctuations of the velocity components; this reduction becomes more

pronounces as the roughness’ variance increases and/or its correlation length

decreases.

• The peak of predictive uncertainty is shifted from the channels centerline

towards its random wall. The location of maximum predictive uncertainty is

insensitive to the roughness’ variance but is affected by its correlation length.

The location of maximum fluctuations moves toward the random surface with

smaller correlation length (the surface becomes rougher).



Chapter 4

Reaction-Diffusion in Random

Domains

4.1 Introduction

Nitric oxide (NO) plays a critical role in the control of smooth muscle tone,

ultimately regulating blood flow at the microvascular level. The distribution of NO

in the microcirculation is determined by the balance between NO production and

consumption in the blood and tissue compartments. The local concentration of NO

in blood results from the competition between NO diffusing from the endothelium

and NO scavenging by hemoglobin contained by red blood cells (RBCs) (or at times

dissolved in plasma). Mathematical modeling of this process has been used [52, 53,

54, 55, 32, 37, 56, 57] to determine the NO distribution in cylindrical and parallel-

plate compartments that simulate blood vessels as a function of local transport
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parameters, such as NO production rate, scavenging reaction rate and diffusion

coefficients in blood and tissue.

A significant portion of the NO involved in the regulation of blood flow is

generated by mechanotrasduction [32, 57] via shear stress developed by flow at the

vascular (WSS). This is the mechanical effector that links the biochemistry of NO

production by the endothelium with flow conditions since the effects of NO on vessel

diameter determine the anatomical component of vascular flow resistance. Shear

stress is developed at the vascular wall by tangential stresses caused by flowing

blood whose RBC concentration (hematocrit, Hct) diminishes from maximal at the

blood flow core to zero in the cell free layer (CFL) next the vessel wall. Therefore

the fluid next to the vessel wall can be modeled as a two layer system by assuming

two immiscible fluids. Flow velocity profiles can be assumed to be parabolic within

the CFL and plug-like in the RBC core region [37, 58, 59]. Flow in the latter region

exhibits non-Newtonian behavior.

Changes of NO production due to changes in WSS caused by the variation

of blood flow and plasma viscosity [60] appear to dominate other factors, such as

changes in hemoglobin concentration or Hct [55, 32, 37, 56, 61]. Experimental

evidence (e.g., [62]) suggests that NO production rate by the endothelium varies

linearly with WSS (see also [53, 63]). However there appears to be a fundamental

difference in the rate of production between steady and time-varying WSS [53], the

latter being significantly greater. It should be noted that this effect is found for

macroscopic time-varying flow (and therefore shear stress) imposed on endothe-
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lialized surfaces obtained by cell culture techniques.

The virtually universal method of studying endothelial shear stress re-

sponses in parallel plate flow chambers, where endothelial cells are grown to a

confluent layer on the plates, has significantly advanced our understanding of their

reactions to different flow and shear stress regimes. However it is recognized that

the experimental set up differs from in vivo conditions in some potentially impor-

tant ways, such as using culture media fluid instead of blood and the use of high

oxygen tension.

Another hitherto not considered, yet potentially significant, difference be-

tween the experiments and reality stems from microscopic spatio-temporal fluc-

tuations of the CFL width. These fluctuations are due to both the microscopic

spatial variability of the endothelial surface (blood vessel walls) [64, 65] and the

stochastic, time-dependent variability of the outer layer of RBCs in the flowing

blood column. The latter is caused by the shear-rate-gradient-induced torque on

RBCs and the physical interactions between cells. Consequently, RBCs’ deforma-

tions and aggregation produce a highly irregular surface between the blood column

and the CFL [66, 67], affecting flow and shear stress on the endothelium. These

unpredictable fluctuations can be captured by treating the CFL width at any given

location as a random field that determines the distance between the NO source and

its sink. Another mechanism by which the stochasticity of the CFL width affects

NO concentration is due to its repercussion on the local, microscopic variability of

the flow field, and therefore on shear rates and shear stresses.
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While the (random) spatio-temporal fluctuations of CFL width and its

bounding surfaces clearly affects NO bioavailability and production rate, most

studies (including those mentioned above) treat the interface between the RBC

column and plasma as a smooth deterministic surface. In the present study, we

adopt a more realistic approach by treating the surface flowing RBCs and the

CFL as a random field whose statistics are calculated from the experimental stud-

ies [53, 2]. Within this conceptual framework, we formulate a model that describes

the NO bioavailability in microcirculation. More specifically, our objective is to

determine the distribution of NO concentration in the regions of the interface be-

tween blood and tissue at the blood vessel wall (RBC-rich core, cell free layer, and

tissue layer) [52].

4.2 Mathematical Model of NO Transport

4.2.1 Model Formulation

According to the standard Krogh tissue cylinder model, an arteriolar cross-

section consists of the RBC-rich core (E1 : 0 ≤ r ≤ r1), the CFL (E2 : r1 < r ≤ r2),

the endothelial-cell region (E3 : r2 < r ≤ r3), and the smooth-muscle region

(E4 : r3 < r ≤ r4). Stochastic fluctuations of the interface formed by flowing RBCs,

r1(θ, t), are modeled by treating it as a random function of both angular coordinate

θ and time t, i.e., r1 = r1(θ, t;ω) with ω ∈ Ω indicating a realization (“coordinate”)

in the probability space Ω. This renders the CFL width w = r2 − r1 random, i.e.,
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w = w(θ, t;ω). Our goal is to capture the effects of stochastic fluctuations of the

RBC-CFL interface r1(θ, t;ω) on distribution of NO concentration, CNO, in the

Krogh tissue cylinder D = {(r, θ) : 0 ≤ r ≤ r4, 0 ≤ θ ≤ 2π}.
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E3

R(ω,t,θ)

Figure 4.1: Arteriolar cross-section is conceptualized by the Krogh tissue cylinder

model (not to scale, R = r1).

In each region of the computational domain, Ei (i = 1, . . . , 4) (Fig. 4.1),

the concentration CNO satisfies a reaction-diffusion equation

∂CNO

∂t
= Di∇2CNO − kiCNO, (r, θ) ∈ Ei, (4.1)

where Di and ki are the diffusion coefficient and degradation (reaction) rate in

the i-th region, respectively. These four equations are coupled by the continuity
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conditions at the interfaces ri (i = 1 . . . , 3),

C−NO = C+
NO, F−n − F+

n = q̇i, r = ri. (4.2)

Here the superscripts − and + indicate the left and right limits of the corresponding

quantities at the i-th interface, Fn = Fi ·ni is the normal component of Fick’s flux

Fi = −Di∇CNO at the i-th interface whose outward unit normal is ni, and q̇i

denotes the NO production rates at the interface r = ri. Since only endothelium

cells are involved in NO production, q̇1 ≡ 0. We assume that no nitric oxide leaves

the outer boundary of the smooth-muscle region, r = r4, so that

n · ∇C = 0, r = r4. (4.3)

The coupling of the reaction-diffusion equations (4.1) at the interfaces r = ri

(i = 1, 2, 3) propagates uncertainty (randomness) in the topology of the RBC-CFL

interface r1(θ, t;ω) through the modeling process, leading to randomly varying NO

concentration CNO(r, θ, t;ω) throughout the Krogh tissue cylinder.

4.2.2 Model Parameterization

While the reaction rates ki in the endothelium (i = 3) and tissue (i = 4)

can be considered constant [54, 68, 56], the reaction rate in the RBC-rich core (k1)

is related to hemoglobin levels. The latter depends on hematocrit H(r) and radial

component of blood flow velocity V (r, θ, t). Let ks denote the reference rate of

NO scavenging by RBCs at the reference level of hematocrit Hs. Then, the NO
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scavenging rate k1 corresponding to a given hematocrit level Hc is given by [53, 32]

k1 =
Hc

Hs

ks. (4.4)

The hematocrit ratio Hc/Hs is determined by mass conservation,

2π∫
0

r2∫
0

H(r, t)V (r, θ, t)rdrdθ = Hs

2π∫
0

r2∫
0

V (r, θ, t)rdrdθ. (4.5)

In the general stochastic framework we advocate here, blood is a two-phase

fluid that exhibits non-Newtonian behavior in the RBC-rich core and Newtonian

one in the CFL, with the random surface r1(θ, t;ω) separating the two regions. This

implies that flow velocity V (r, θ, t;ω) is random as well, being given by a solution of

corresponding flow equations in random domains [51]. To focus on NO transport,

we simplify the flow calculations by adopting two alternative approximations.

The first is based on a lubrication approximation in which random geometry

parameterizes an otherwise deterministic velocity profile [69]. This approach yields

a random velocity profile V (r, θ, t;ω),

V

Vmax

=


1− µp

µc

r2

r2
2

−
(

1− µp
µc

)
r2

1

r2
2

0 ≤ r ≤ r1

1− r2

r2
2

r1 ≤ r ≤ r2

(4.6)

where Vmax = Jr2
2/(4µp) is the (maximal) centerline velocity, J is the externally

imposed pressure gradient, and µp and µc are the viscosities of the plasma viscos-

ity and RBC-rich core. In this formulation, the only source of the non-Newtonian

behavior of the RBC-rich core is the dependence of the core viscosity µc on the (ran-

dom) CFL width. Following [58] and many others, we assume a linear relationship
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µc = 0.1678Hc−4.348 between a hematocrit level Hc and the viscosity of the RBC

core µc. Specifying a (random) radial distribution of hematocrit, H = H(r, t;ω),

as a step function

H

Hc

=


1 0 ≤ r ≤ r1

0 r1 < r ≤ r2

(4.7)

enables one to compute the randomly fluctuating NO scavenging rate k1(t;ω) by

combining (4.4)–(4.7). First, the system of equations (4.5)–(4.7) was solved using

Matlab function “Solve” to compute Hc for µp = 1.2 cP and two values of Hs.

Then k1(t;ω) was obtained from (4.4).

The second alternative for obtaining k1(t;ω) treats the blood as a single-

phase fluid with a parabolic velocity profile

V

Vmax

= 1− r2

r2
2

, 0 ≤ r ≤ r2. (4.8)

The CFL and the random RBC-CFL interface r1(θ, t;ω) enter this formulation via

a radial distribution of hematocrit,

H

Hc

=


1 0 ≤ r ≤ r1(
r2 − r
r2 − r1

)2

r1 ≤ r ≤ r2

. (4.9)

Combining (4.4)–(4.7) yields an alternative expression for the NO scavenging rate

k1(t;ω). This approach was used in [54, 68, 56] in the deterministic context that

treated r1(θ, t) as constant.

Finally, we allow the NO production rates by the endothelium, i.e., q̇2 and

q̇3 in (4.2), to vary with the wall shear stress τw exerted on the endothelium walls
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by blood flow. Following [2, 53, 52], we assume a linear relation

q̇2 = q̇3 =
τw
τ ?w
q̇?, τw = µp

Vedge
w

, (4.10)

where τ ? is the reference wall shear stress, q̇? is the control NO production rate,

and Vedge is the mean velocity at the outer edge of RBC cores. These production

rates fluctuate randomly, i.e., q̇2(t;ω) and q̇3(t;ω), due to their dependence on the

random flow velocity V and the CFL width w(θ, t;ω) = r2 − r1(θ, t;ω).

In lieu of example, in the numerical results reported below we assume the

diffusion coefficients Di in (4.1) to be the same and equal to D. Its value and the

values of the remaining parameters used in our are model are reported in Table 4.1.

4.2.3 Statistical Representation of Random Surface

We represent spatio-temporal variations of the RBC-CFL interface,

r1(θ, t;ω) = [rt + r′t(t;ω)][rθ + r′θ(θ;ω)], (4.11)

as the product of mutually uncorrelated temporal and angular fluctuations rt(t;ω)

and rθ(θ;ω), respectively. A Reynolds decomposition is used to represent each

of these fields, r = r + r′, as the sum of its ensemble mean r and zero-mean

fluctuations r′. Setting rθ = 1 yields the mean and variance of the RBC-CFL

interface: r1 = rt and σ2
r = r2

tσ
2
θ + σ2

t (1 + σ2
θ). The coefficient of variation of the

CFL width, CVw = σw/w, is given by

CV 2
w =

(
rt
w

)2

σ2
θ + CV 2

t (1 + σ2
θ) (4.12)
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where w = r2 − r1 is the mean CFL width and σw is its standard deviation.

Since the random field r′θ(θ, ω) is periodic, a truncated Fourier-type expan-

sion

r′θ(θ;ω) ≈ σθ

Nθ∑
n=−Nθ

νn(ω)e−inθ (4.13)

provides its natural representation. Here the eigenvalues νn(ω) are complex zero-

mean random variables, whose real and imaginary parts are mutually independent

for all n. Each has zero mean and variance σ2
n = Cn/4, where

Cn =
1

π

2π∫
0

Cp
θ cos(nθ)dθ, −N ≤ n ≤ N (4.14)

are coefficients of the Fourier cosine expansion of a 2π-periodic covariance function

Cp
θ of the random field r′θ(θ, ω). It is constructed as follows. First, we note that

statistics of r′θ(θ;ω) are rotationally invariant on the circle, such that a covariance

function Cθ is

〈r′θ(θ1;ω)r′θ(θ2;ω)〉 = Cθ(∆θ), ∆θ = |θ1 − θ2| . (4.15)

Then Cp
θ is constructed by extending the covariance function Cθ of the random

field r′θ(θ, ω) to a 2π-periodic periodic domain. We employ a Gaussian covariance

function Cθ(∆θ) = exp(−∆2
θ/l

2
θ) with the correlation length lθ. The decay of the

Fourier cosine coefficients Cn determines the number of terms Nθ in the expan-

sion (4.13) that is required to achieve a given truncation error. As the correlation

length lθ decreases, Nθ increases.
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We represent the random field r′t(t;ω) via a truncated Karhunen-Loéve

expansion,

rt(t, ω) = σt

Nt∑
m=1

√
λmfm(t)Ym(ω), (4.16)

where Ym(ω) (m ≥ 1) are independent random variables, and λm and fm(t) are

respectively the eigenvalues and eigenfunctions of Fredholm equations,

T∫
0

ρt(t, t
′)fm(t′)dt′ = λmfm(t), m ≥ 1. (4.17)

For an exponential correlation function ρt(t, t
′) = exp(−|t−t′|/lt) with the correla-

tion length lt > 0, the eigenvalue problems (4.17) admit an analytical solution [24],

λm =
2lt

l2tω
2
m + 1

, fm =
ltωm cos(ωmt) + sin(ωmt)√

(l2tω
2
m + 1)T/2 + lt

(4.18)

where ωm are solutions of (l2tω
2−1) sin(ωT ) = 2ltω cos(ωT ) and m ≥ 1. The trun-

cation error of the Karhunen-Loéve expansion (4.16) depends on the correlation

length lt. The smaller the correlation length, the more terms Nt are necessary to

represent the random field r′(t, ω) with a given degree of accuracy.

Within the statistical framework adopted here, the random RBC-CFL in-

terface is characterized by four parameters: variances σ2
θ and σ2

t , and correlation

lengths lθ and lt. Experimental data, such as those reported in [67], can be used

to estimate these statistics. Table 4.1 contains the values of these parameters used

in our simulations.
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Table 4.1: Parameters and their values used in the model.

Parmeters Symbol Value Units Source

Vessel radius r2 23.3 µm [2]

Blood lumen width r1 = r̄1 + r′ random µm -

Mean cell free layer width w̄ = r2 − r̄1 2.73 or 3.22 µm [2]

Endothelial cell width r3 − r2 2.5 µm [70]

Tissue layer width r(∞)− r3 250.0 µm -

Diffusion coefficient D 3300.0 µm2 / s [54]

Control NO production rate q̇?NO 2.65 ·10−14 µmol / (µm2s) [54]

NO scavenging rate at Hc 40% ksys 382.5 1 / s [32]

NO scavenging rate in endothelium kEC 0.1 1 / s [55]

NO scavenging rate in tissue kT 0.1 1 / s [55]

Plasma viscosity µp 1.2 cP [71]

Reference wall shear stress τw,ref 2.4 Pa [56]
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4.3 Numerical Solution

4.3.1 Mapping onto Deterministic Domain

We introduce a new coordinate system (ξ1, ξ2), in which the original stochas-

tic domain D maps onto a rectangle B = {(ξ1, ξ2) : −1 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 2π}. A

mapping D = ∪4
i=1E

i → V is accomplished analytically by the coordinate trans-

formation

r = ri−1 +
ξ1 + 1

2
(ri − ri−1), θ = ξ2; (r, θ) ∈ Ei (4.19)

where i = 1, . . . , 4 and r0 = 0. The random RBC-CFL interface r1(θ, t;ω) is

represented by the expansions described above.

4.3.2 Transformed Stochastic Equations

The mapping (4.19) renders the transformation Jacobian

J(ξ1, ξ2, ω) ≡ ∂(ξ1, ξ2)

∂(r, θ)
= J [ξ1, ξ2, Y1(ω), · · · , YK(ω)] (4.20)

and other related metrics stochastic, i.e., dependent on a set of K = 2Nθ + Nt

independent random variables {Yi(ω)}Ki=1. The first Nt variables Y1, . . . , YNt co-

incide with those introduced in (4.16) and the remaining 2Nθ variables represent

their counterparts in (4.13), such that YNt+1 = ν−Nθ , . . . , YK = νNθ . Consequently,

the deterministic reaction-diffusion equations (4.1) are transformed into stochastic
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equations of the form (Appendix B)

∂CNO

∂t
=

2∑
i,j=1

∂

∂ξi

(
DAij

∂CNO

∂ξj

)
− kCNO (4.21)

where the random coefficients A11, A12 = A21, and A22 are given by (B.2) in the

Appendix B.

These stochastic differential equations on the deterministic domainB can be

solved with a variety of well-established techniques, including perturbation-based

moment equations [46, and the references therein], stochastic finite elements [72],

and stochastic collocation on sparse grids [24, and the references therein]. In the

subsequent numerical simulations we employ the latter approach (Appendix A.2).

4.4 Simulation Results and Discussion

Solutions of the stochastic system of transport equations (4.1)–(4.3) are

given in terms of statistical moments of the dependent variables. Ensemble means,

e.g., mean NO concentration C̄NO, serve as unbiased predictors of the system be-

havior; variances, e.g., NO concentration variance σ2
C , act as a measure of predictive

uncertainty.

4.4.1 Data-driven model parameterization

The CFL width measurements [2] are used to construct a probabilistic

model for the random input parameter w(θ, t;ω) = r2 − r1 in which the random

RBC-CFL interface r1(θ, t;ω) is given by (4.11). These data, which represent
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temporal fluctuations of w at a single spatial location (say, θ = 0), give rise to the

histogram and auto-correlation reported in Figs. 4.2 and 4.3, respectively. This

histogram (and the obvious fact that the CFL width is both non-negative and

smaller than the vessel radius r2) indicates that the random field w(θ, t;ω) is non-

Gaussian. We fit the histogram in Fig. 4.2 with a beta distribution fw(W ) =

B−1r1−α−β
2 Wα−1(r2 − W )β−1, where B(α, β) = Γ(α + β)/[Γ(α)Γ(β)] is the beta

function, Γ(·) is the complete gamma function, 0 ≤ W ≤ r2, and α > 0 and

β > 0 are shape parameters. Setting α = 4.358 and β = 32.9 provides the best

data fit, resulting in the mean CFL width w̄ = 2.73 µm. The auto-correlation

data in Fig. 4.3 were fitted with an exponential correlation function ρ(t, t′) =

exp(−|t− t′|/lt), yielding the correlation length lt = 0.007 s.

Another data set reported in [2] contains information about temporal fluc-

tuations of the CFL width w(0, t;ω) after Dextran infusion. Fitting the beta

distribution (α = 3.464 and β = 21.5) and the exponential correlation function

to these data leads to estimates of the mean CFL width w̄ = 3.22 µm and the

correlation length lt = 0.008 s.

Experimental limitations preclude data acquisition at multiple azimuths θ,

which requires us to postulate a probabilistic model for rθ(θ;ω). In analogy with its

temporal counterpart rt(t;ω), we chose rθ(θ;ω) to have the beta distribution with

unit mean and variance σ2
θ and the exponential correlation function with correlation

length lθ. In this formulation (4.12), the amplitude of spatio-temporal (in the

angular coordinate θ and time t) fluctuations of both the RBC-CFL interface
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(b)

Figure 4.2: Frequency distribution of the data reported in [2] and the fitted β-

distribution for (a) 2.73 µm and (b) 3.22 µm.
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Figure 4.3: Auto-correlation of the data reported in [2] (solid line) and the fitted

exponential correlation function (dashed line).
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r1(θ, t;ω) and CFL width w(θ, t;ω) = r2 − r1 increases with the variances σ2
θ and

σ2
t , while the smoothness of these fluctuations increases with the correlation lengths

lθ and lt. This behavior, which reflects chaotic motion of RBCs in the blood core, is

demonstrated by two representative realizations of the random CFL width shown

in Fig. 4.4.
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Figure 4.4: Realizations of temporal fluctuations of the CFL width w at angular

coordinate θ = 0.0.

4.4.2 Random fluctuations of wall shear stress

The CFL width w in (4.10) is inversely proportional to the wall shear stress

(WSS) τw. Hence the random spatio-temporal fluctuations in w induce corre-

sponding fluctuations in τw, as shown in Fig. 4.5. Here and below we used the

values of the edge velocity Ve = 0.54mm/s and the corresponding pressure gradi-
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Figure 4.5: Realizations of temporal fluctuations of wall shear stress τw at angular

coordinate θ = 0.0.

ent J = 2.15×104 computed by fitting the smooth-wall model to the experimentally

observed peak NO concentration of 11.2 nM.

The statistics commonly available from experimental studies similar to [66,

67, 2] is the coefficient of variation of the CFL width, CVw = σw/w̄. Figure 4.6

shows how the mean WSS τ̄w, normalized with the smooth-vessel WSS τ ?w, increases

with CVw. (Recall that the fixed/smooth boundaries of the CFL correspond to

CVw = 0 and τ̄w/τ
?
w = 1.) The rate of growth of the mean WSS depends on the

model’s statistical parameters, some of which, especially lθ, are not found in the

experiments [66, 67, 2]. Fortunately, Fig. 4.6 reveals that the mean WSS is nearly

insensitive to lθ, being dominated by the temporal fluctuations statistics that are

more readily measurable.
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NO production rate, normalized with the control production rate q̇?) as a func-

tion of the coefficient of variation (CVw = σw/w̄) of the CFL width for several

combinations of constitutive statistical parameters.



71

4.4.3 NO production rate

It follows from (4.10) that the NO production rate by the endothelium, q̇2,

is directly proportional to the WSS. When normalized by the control production

rate q̇?, it is equal to the ratio τw/τ
?
w. In other words, the statistics of the ratios

q̇2/q̇
? and τw/τ

?
w coincide. Therefore, Fig. 4.6 also demonstrates how the mean

NO production rate by the endothelium, ˙̄q2/q̇
?, increases with the coefficient of

variation of the CFL width, CVw.

4.4.4 Mean profiles of NO concentration

Unless specified otherwise, the results reported below correspond to the

hematocrit-dependent reaction rate k1 in (4.4) given by the constitutive model (4.8)–

(4.9). We start by computing a (deterministic) reference NO concentration c?NO(r)

as a solution of (4.1)–(4.3) with smooth (constant) interfaces r1 and r2. It serves

as an initial condition for transient stochastic simulations.

The mean concentration profiles computed with these simulations, C̄NO(r),

are exhibited in Figure 4.7. While the NO production rates (q̇2 and q̇3) on both

sides of the endothelium (r = r2 and r3) are the same, the NO scavenging rate in

the RBC core (0 ≤ r ≤ r1) is higher than that in the muscle tissue (r > r3). That

is why the peak NO concentration is at the endothelium surface facing the tissue

(r = r3).

Figure 4.7 also reveals that random fluctuations of the CFL width increase
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Figure 4.7: Mean NO Concentraion for temporal and spacial variation of CFL.

the NO availability relative to that predicted by the model that ignores them.

This is to be expected, since these fluctuations enhance the NO production by

the endothelium (Fig. 4.6). NO production and availability increase with the the

degree of roughness of the random RBC-CFL interface r1(θ, t;ω): the higher CVw

and/or the smaller the correlation lengths lt and lθ, the rougher the interface is.

The simulation results reported in Table 4.2 demonstrate the relative im-

portance of temporal and angular fluctuations of the CFL width on NO availabil-

ity. The latter is reported in terms of the ratio of the peak NO concentrations,

R = (C̄max − C?
max)/C?

max, where C?
max = C?

NO(r3) and C̄max = C̄NO(r3). Larger

values of R indicate the stronger impact of the CFL width fluctuations.
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Table 4.2: Summary of simulation results.

Case Dt Dθ σt σθ lt lθ Cv R w̄ (µm)

temporal variation 6 0.06 0.2 0.464 14.2 2.73

6 0.2 0.443 12.4 ** 2.73

10 0.1 0.443 13.2 ** 2.73

6 0.08 0.2 0.525 20.4 3.22

6 0.2 0.509 18.3 ** 3.22

temporal and 6 4 0.06 0.34 0.2 1 0.448 10.7 2.73

spacial variation 6 6 0.06 0.27 0.2 0.6 0.44 9.1 2.73

6 4 0.08 0.35 0.2 1 0.519 12.4 3.22

6 6 0.08 0.28 0.2 0.6 0.509 10.7 3.22

10 5 0.06 0.3 0.2 0.7 0.509 11.8 2.73

10 5 0.06 0.3 0.2 0.7 0.509 11.2 2.73*

*: degrading reaction rate is based on two layer velocity

**: value with curve fitting
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4.4.5 Effect of constitutive models

The above-made estimates of NO production and availability rely on the

NO scavenging rate k1(t;ω) given by the constitutive law (4.8)–(4.9), which treats

blood as a single-phase fluid. The alternative constitutive model for k1(t;ω), which

explicitly accounts for the CFL presence, is given by (4.6)–(4.7). Our simulations

demonstrate that the difference between the mean peak NO concentrations pre-

dicted with the two models is less than 1 per cent (Table 4.2). This provides a

confirmation of the robustness of our predictions of expected NO production and

availability with respect to model selection for the scavenging rate.

4.4.6 Effect of dextran infusion

In the experiments reported in [2], infusion of a plasma expander dextran

increases the average CFL width from w̄ = 2.73 µm to 3.22 µm. It also enhances

fluctuations of the CFL width, increasing CVw from 0.443 to 0.509 while leaving

the correlation length lt practically unchanged (it increases from 0.007 s before the

dextran infusion to 0.008 s after). To match the decrease in the reported peak NO

concentration from 11.2 nM to 9.5 nM, we recalculated the value of the pressure

gradient J = 2.15× 104 and 1.72× 104 Pa.

Figure 4.8 demonstrates that changing the mean CFL width (from 2.73 µm

to 3.22 µm) does not significantly change the mean WSS, but has a more pro-

nounced effect on the mean peak NO concentrations. The peak NO concentration
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ratio R reported in Table 4.2 further emphasizes this effect.

4.4.7 Quantification of predictive uncertainty

Figure 4.9 shows that std NO concentration is increased with a higher

control parameter σθ and a peak values is at the location r3 (the endothelium

surface toward tissue), which is the same point the mean NO peak value arise at.

4.5 Conclusions

We developed a computational framework to quantify the impact of uncer-

tainty in the CFL width on the distribution of NO concentration. This is accom-

plished by treating the RBC-CFL interface (and the corresponding CFL width) as

a space-time correlated random field. This surface is represented via Karhunen-

Loéve and Fourier expansions. The differential equations describing blood flow

and NO production and transport, defined on random simulation domains, were

solved by using a stochastic collocation method.

Our analysis leads to the following major conclusions.

• Both NO production rate by the endothelium and NO scavenging by RBCs

depend upon the CFL width. Random fluctuations in the CFL width results

in random fluctuations of NO production and availability.

• Even though the NO concentration in microvascular systems depends on

fluctuations of the WSS-induced NO production rate and the scavenging
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Figure 4.8: Mean NO peak ratio and mean Wall shear stress ratio for temporal

and spatial variations of the CFL for the mean CFL width 2.73µm and 3.22µm.
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rate related to velocity profile and hematocrit, the effect of fluctuations of

the CFL width on the latter is smaller than that on the former. Also, the

effect of the mean value of the CFL width on NO concentration is significant.

• Random temporal fluctuations of the CFL width increase the NO peak con-

centration relative to its values predicted with a model that ignores such

fluctuations.

• Dextran infusion increases not only the mean CFL width but also its corre-

lation length.



Chapter 5

Conclusions

This dissertation leads to the following major conclusions:

1. The mean pressure gradient is constant and unaffected by the endothelium

roughness. Uncertainty in (randomness of) the endothelium surface man-

ifests itself in pressure fluctuations about the mean, as quantified by the

standard deviation σp.

2. The overall effect of endothelium roughness is to reduce the mean blood

flow velocity relative to its counterpart corresponding to the assumption of

smooth endothelium (σs = 0). For a given σs, the mean velocity decreases

as ls becomes smaller, i.e., the endothelium surface becomes more irregular.

3. The decrease in mean velocity with increasing endothelium roughness trans-

lates into the corresponding decrease in the volumetric flow rate. The volu-

metric flow rate decreases as the roughness amplitude (standard deviation)

79
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σs increases and/or the correlation length ls decreases.

4. The mean shear stress increases with both the magnitude of the endothelium

fluctuations (its standard deviation σs) and its correlation length ls. Bound-

ary effects (deviation from the fully-developed flow regime, wherein the shear

stress statistics are constant) extend further inside the flow chamber as σs

increases and/or ls decreases.

5. The blood viscosity, inferred from in vivo experiments via the Poiseuille law,

depends not only on blood properties but also on the statistical parameters

characterizing the endothelium roughness (σs and ls). The effective blood

viscosity increases as σs increases and/or ls decreases.

6. Random roughness reduces the volumetric flow rate and gets larger the mag-

nitude in fluctuations of the velocity components; this reduction becomes

more pronounces as the roughness’ variance increases and/or its correlation

length decreases.

7. The the peak of predictive uncertainty is shifted from the channels centerline

towards its random wall. The location of maximum predictive uncertainty

is insensitive to the roughness’ variance but is affected by its correlation

length. The location in maximum magnitude of fluctuations moves toward

the random surface with smaller correlation length(rougher).

8. Both NO production rate by the endothelium and NO scavenging by RBCs
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depend upon the CFL width. Random fluctuations in the CFL width results

in random fluctuations of NO production and availability.

9. Even though the NO concentration in microvascular systems depends on

fluctuations of the WSS-induced NO production rate and the scavenging

rate related to velocity profile and hematocrit, the effect of fluctuations of

the CFL width on the latter is smaller than that on the former. Also, the

effect of the mean value of the CFL width on NO concentration is significant.

10. Random temporal fluctuations of the CFL width increase the NO peak con-

centration relative to its values predicted with a model that ignores such

fluctuations.

11. Dextran infusion increases not only the mean CFL width but also its corre-

lation length.



Appendix A

Stochastic Methods

Let {Ψm(Y)}Mm=0 denote a set of multidimensional orthogonal polynomials

of the random vector Y(ω) ≡ (Y1, . . . , YK)T . The polynomials are chosen to have

the ensemble means Ψ0 = 1 and Ψk = 0 (k ≥ 1) and to satisfy the orthogonality

condition

〈ΨiΨj〉 = 〈Ψ2
i 〉δij (A.1)

where the 〈·〉 operator is defined by

〈ΨiΨj〉 ≡
∫

Ψi(Y)Ψj(Y)W (Y)dY1 . . . dYK , (A.2)

δij is the Kronecker delta and W (Y) is a weight function corresponding to a given

polynomial type. The size of the polynomial set, M , is determined by the “stochas-

tic dimension” K and the order P of polynomials Ψk, according to

M =
(K + P )!

K!P !
− 1. (A.3)
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Polynomial chaos expansions (PCEs) represent a system state, e.g., u(ξ, ω),

a random field whose ensemble statistics are to be determined, as a series

u(ξ, ω) =
M∑
k=0

ûk(ξ)Ψk[Y(ω)]. (A.4)

With the representation of system response u(ξ, ω) as Polynomial chaos expansions,

we adopt Stochastic Galerkin Method and Stochastic Collocation Method to solve

the problems with Uncertainty.

A.1 Stochastic Galerkin Method

A good introduction to stochastic finite elements can be found in [3]. Here

we provide a brief description. Let L(ξ, ω;u) denote a stochastic differential oper-

ator acting on u(ξ, ω). Consider a stochastic partial differential equation (PDE)

L(ξ, ω;u) = f(ξ, ω), (A.5)

where f is a (random) source function. Substituting the polynomial chaos expan-

sion of u, Eq. A.4, into Eq. A.5 yields

L

(
ξ, ω;

M∑
k=0

ukΨk

)
= f(ξ, ω). (A.6)

Multiplying both sides of Eq. A.6 with Ψi and taking the mean, while accounting

for the orthogonality condition in Eq. A.1, yields a Galerkin projection onto the

i-th basis polynomial Ψi,〈
L

(
ξ, ω;

M∑
k=0

ukΨk

)
,Ψi

〉
= 〈f(ξ, ω),Ψi〉 , i = 0, . . . ,M. (A.7)
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Here the inner product 〈a, b〉 between two functions a(Y) and b(Y) is defined in

terms of the ensemble average ab in Eq. A.1. Equation A.7 gives rise to a system

of M + 1 deterministic PDEs for uk(x) (k = 0, . . . ,M).

A.2 Stochastic Collocation Method

Stochastic Collocation Method requires the solution of a set of decoupled

equations as Monte Carlo Method.

Consider a stochastic partial differential equation (PDE)

L(x, ξ(ω);u) = f(x, ξ(ω)), (A.8)

The solution to SPDE is approximated by using Lagrange formula,

u(x, ξ(ω)) =

Nq∑
k=0

uk(x, ξ(ω)k)Lk(ξ(ω)), (A.9)

where, uk(x, ξ(ω)k) is the solution at the set of collocation points {ξk}Nqk=0, Li is

the Lagrane polynomial of (Nq+1) order and Li(ξj) = δij. This Lagrange for-

mula(Equation A.9) is putting into the inner product formula(Eq. with the basis

functions chosen to be dirac delta functions δ(ξ− ξk), and then (Nq+1) uncoupled

deterministic problems is obtained at the collocation points.

L(x, ξk(ω);uk) = f(x, ξk(ω)), for k=0, ... , Nq (A.10)

Once the solutions at a set of collocation points is obtained, Statistics of the
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solutions can be computed by using the corresponding quadrature rule.

u(x) =

∫
Γ

u(x, ξ)p(ξ)dξ ≈
Nq∑
k=1

u(x, ξk)wk (A.11)

σ2
u(x) =

∫
Γ

[u(x, ξ)− u(x)]2p(ξ)dξ ≈
Nq∑
k=1

u(x, ξk)2wk − u(x)2 (A.12)

where, {wk}Nqk=1 is a set of weights corresponding to the set of quadrature points

{ξk}Nqk=0



Appendix B

Transformed Transport Equations

A general transformation of coordinates ξi(x1, x2) transforms the Fickian

flux F(x) = −D∇xCNO into a vector F(ξ) whose contravariant components F 1

and F 2 are given by

F i = D
1

J

2∑
k=1

Aik
∂CNO

∂ξk
, i = 1, 2 (B.1)

where J is the transformation Jacobian (4.20) and

A11 =

(
∂x2

∂ξ2

)2

+

(
∂x1

∂ξ2

)2

, (B.2a)

A12 =A21 = −∂x2

∂ξ1

∂x2

∂ξ2

− ∂x1

∂ξ1

∂x1

∂ξ2

, (B.2b)

A22 =

(
∂x2

∂ξ1

)2

+

(
∂x1

∂ξ1

)2

. (B.2c)

Furthermore,

∇x · F =
1

J

(
∂F 1

∂ξ1

+
∂F 2

∂ξ2

)
≡ 1

J
∇ξ · F. (B.3)

Substituting (B.1)–(B.3) into (4.1) leads to (4.21).
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Appendix C

Spectral Element Method

C.1 Galerkin Formulation for Spectral Element

Method

The spectral methods in single element domain can be extended to a multi-

element domain to compute problems in more complex domain, problems with

coordinate singularities, and problems with discontinuous coefficients or solutions.

First, we can use the weak form of the governing equations in each element domain,

that is Galerkin based methods [26, 27, 28, 29]. The Galerkin approximation

have natural coupling that follows from the weak form. This is Spectral Element

Method(SEM) similar to Finite Element Method.

We describe how to formulate the Galerkin approximation of Poisson equa-

tion
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C.1.1 Formulation

Consider one dimensional Poisson’s equation in a domain E = {x : 0 ≤ x ≤

1} and E =
∑N

e=1E
e.

The strong form of poisson’s equation is stated as follows:

L(ψ) ≡ ∇2ψ + s = 0, ψ(0) = gD,
∂ψ

∂x
= gN (C.1)

The weak form is derived by multiplying equation (C.1) by a test functon φ.

(φ,L(ψ)) =

∫ 1

0

φ

(
∂2ψ

∂x2
+ s

)
dx = 0, (C.2)

Then integration by parts states that

∫ 1

0

∂φ

∂x

∂ψ

∂x
dx =

∫ 1

0

φsdx+

[
φ
∂ψ

∂x

]1

0

=

∫ 1

0

φsdx+ φ(1)gN (C.3)

In spectal/finite element method a whole domain E consists in N finite elements.

Equation (C.3) is represented as

∫ 1

0

∂φ

∂x

∂ψ

∂x
dx =

N∑
e=1

∫
Ee

∂φ

∂x

∂ψ

∂x
dx

= −
N∑
e=1

∫
Ee
φ
∂2ψ

∂x2
dx+

N∑
e=1

[
φ
∂ψ

∂x

]EeR
EeL

= −
∫ 1

0

φ

(
∂2ψ

∂x2

)
dx+

N∑
e=1

[
φ
∂ψ

∂x

]EeR
EeL

(C.4)

where, L and R are the left and right end in a element Ee. φeR and φe+1
L at the

interface between two elements (Ee and Ee+1) are the same.
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By substituting equation (C.4) into equation (C.3), the following equation is de-

rived

−
∫ 1

0

φ

(
∂2ψ

∂x2
+ s

)
dx−

[
φ
∂ψ

∂x

]
E1
L

+
N−1∑
e=1

[
φ
∂ψ

∂x

∣∣∣∣
EeR

− φ
∂ψ

∂x

∣∣∣∣
Ee+1
L

]
[
φ
∂ψ

∂x

∣∣∣∣
ENR

− φ(1)gN

]
= 0 (C.5)

The second term and the last term are zero since E1
L is a Dirichlet boundary and EN

R

is a Neumann boundary. The third term stands for the jump in the derivative at

the interface between two elements. This jump/flux condition is used in chapter 4.

When the derivative of function is continuous such that

φ
∂ψ

∂x

∣∣∣∣
EeR

= φ
∂ψ

∂x

∣∣∣∣
Ee+1
L

, (C.6)

the only first terms is not zero and equation (C.5) becomes the standard weighted

residual. No jump condition is used in chapter 3 and 4.

It is convenient to impose a jump condition at the interface between ele-

ments in finite/spectral element method [26, 27, 28, 29].
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C.1.2 2D SEM for Transformed equations

Consider two-dimensional Potential equation with Dirichlet boundary con-

dition in a domain Ω =
∑K

k=1 Ωk.

L(ϕ) ≡ ∇2ϕ− s = 0, (x, y) ∈ Ω (C.7)

ϕ = ϕb, x ∈ ∂Ω (C.8)

Weak Form is stated as

(φ,L(u)) =

∫∫
Ω

φ
(
∇2ϕ− s

)
dxdy = 0, (C.9)

where φ is a smooth function. Applying Green’s identity, equation (C.9) is derived

as

∫∫
Ω

φ∇2ϕdxdy =

∫
∂Ω

φ
∂ϕ

∂n
dL−

∫∫
Ω

∇ϕ · ∇φdxdy, (C.10)

Equation (C.10) is represented as the form of the sum of elements(Ωk).

K∑
k=1

(∫
∂Ωk

φ
∂ϕ

∂n
dL−

∫∫
Ωk
∇ϕ · ∇φdxdy

)
=

K∑
k=1

(∫∫
Ωk
sφdxdy

)
(C.11)

For convenience, the left and right side represent as

Ik1 =

(∫
∂Ωk

φ
∂ϕ

∂n
dL−

∫∫
Ωk
∇ϕ · ∇φdxdy

)
Ik2 =

(∫∫
Ωk
sφdxdy

)
(C.12)

We first map the element Ωk onto the reference square(E = {(ξ, η)| − 1 ≤ ξ ≤

1, −1 ≤ η ≤ 1}) by a mapping x = X(ξ, η)
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Through a mapping, Equations (C.12) is derived as

Ik2 =

(∫ 1

−1

∫ 1

−1

Jksφdξdη

)
(C.13)

Ik1 =

(∫
∂Ωk

φ
∂ϕ

∂n
dL−

∫∫
Ωk
∇ϕ · ∇φdxdy

)
=

∫ 1

ξ=−1

φF 2
]1
η=−1

dξ +

∫ 1

η=−1

φF 1
]1
ξ=−1

dη

−
∫ 1

−1

∫ 1

−1

(
F 1φξ + F 2φη

)
dξdη (C.14)

where the gradient in the mapped coordinate is

∇ϕ =
1

J

[(
∂y

∂η
i− ∂x

∂η
j

)
∂ϕ

∂ξ
−
(
∂y

∂ξ
i− ∂x

∂ξ
j

)
∂ϕ

∂η

]
. (C.15)

∇ϕ · ∇φ =
1

J
[(Aϕξ −Bϕη)φξ + (Cϕη −Bϕξ)φη]

=
1

J

(
F 1φξ + F 2φη)

)
(C.16)

with

A =
1

J

[(
∂y

∂η

)2

+

(
∂x

∂η

)2
]
, B =

1

J

(
∂y

∂ξ

∂y

∂η
+
∂x

∂ξ

∂x

∂η

)
,

C =
1

J

[(
∂y

∂ξ

)2

+

(
∂x

∂ξ

)2
]
. (C.17)

and

F 1 = (Aϕξ −Bϕη) , F 2 = (Cϕη −Bϕξ) (C.18)

Therefore, 2 dimensional potential equation in each element(Ωk) is represented as∫ 1

ξ=−1

φF 2
]1
η=−1

dξ +

∫ 1

η=−1

φF 1
]1
ξ=−1

dη

−
∫ 1

−1

∫ 1

−1

(
F 1φξ + F 2φη

)
dξdη =

∫ 1

−1

∫ 1

−1

sJkφdξdη (C.19)
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Replacing ϕ by its polynomial approximation Ψ and φ by a piecewise continuous

polynomial approximation.

φk =

N,M∑
i,j=0

φkij li(ξ)lj (η) (C.20)

The following equations are derived.

Ik1 ≈
∑
i,j

φki,j

{∫ 1

ξ=−1

[
li(ξ)lj(η)F 2

]1
η=−1

dξ +

∫ 1

η=−1

[
li(ξ)lj(η)F 1

]1
ξ=−1

dη

}

−
∑
i,j

φki,j

{∫ 1

−1

∫ 1

−1

(
F 1l′i(ξ)lj(η) + F 2li(ξ)l

′
j(η)

)
dξdη

}
(C.21)

Ik2 ≈
∑
i,j

φki,j

{∫ 1

−1

∫ 1

−1

Sli ljdξdη

}
(C.22)

where, l is lagrange basis polynomials.

Applying Gauss Lobatto quadrature,

∑
i,j

φki,j
{(
∇2Ψ, lilj

)
N
− SkijJkijωiωj

}
= 0 (C.23)

where ω is the quadrature weight. Finally, 2D potential equation in a domain Ω

is represented as

K∑
k=1

(∑
i,j

φki,j
{(
∇2Ψ, lilj

)
N
− SkijJkijωiωj

})
= 0 (C.24)

where

(
∇2Ψ, lilj

)
N

= −

{
N∑
n=0

D
(ξ)T
in F 1

njωnωj +
M∑
m=0

D
(η)T
im F 2

imωiωm

}

+
[
F 1(1, ηj)li(1)− F 1(−1, ηj)li(−1)

]
ωj +

[
F 2(ξi, 1)lj(1)− F 2(ξi,−1)lj(−1)

]
ωi

(C.25)
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and by replacing Ψ by a piecewise continuous polynomial approximation

Ψ =

N,M∑
i,j=0

Ψk
ij li(ξ)lj (η) (C.26)

the solution for Ψij are computed.

At the element interfaces, second and third terms in the right side of equa-

tion (C.25) becomes zero, however on jump/flux interface condition, these terms

still remains [26, 27, 28, 29].
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