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a b s t r a c t

A finite sequence of nonnegative integers is called graphic if the terms in the sequence
can be realized as the degrees of vertices of a finite simple graph. We present two new
characterizations of graphic sequences. The first of these is similar to a result of Havel-
Hakimi, and the second equivalent to a result of Erdős & Gallai, thus providing a short proof
of the latter result. We also show how some known results concerning degree sets and
degree sequences follow from our results.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A finite sequence d1, d2, . . . , dn of nonnegative integers is said to be graphic if there exists a finite simple graph G with
vertices v1, v2, . . . , vn such that each vi has degree di. Two obvious necessary conditions for such a sequence to be graphic are:
(1) di < n for each i, and (2)

∑n
i=1 di is even. However, these two conditions together do not ensure that a sequence will be

graphic. Necessary and sufficient conditions for a sequence of nonnegative integers to be graphic are well known. Sierksma
and Hoogeveen [10] list seven such characterizations. Two of the most well known characterizations of graphic sequences
are due to Havel [7], and independently, Hakimi [5], and jointly due to Erdős and Gallai [4]. The result of Havel–Hakimi has
been extended by Kleitman and Wang [9], and that of Erdős and Gallai by Eggleton [3], and by Tripathi and Vijay [11].

We give a simple criterion to characterize graphic sequences. Our characterization relies on repeated applications of the
Havel–Hakimi theorem to Theorem 1, which we prove below. We recall the Havel–Hakimi theorem:

Theorem H–H (Havel [7]; Hakimi [5]). Let {a1, a2, . . . , an} be a sequence of positive integers such that n−1 ≥ a1 ≥ a2 ≥ · · · ≥ an.
Then the sequence {a1, a2, . . . , an} is graphic if and only if the sequence {a2 − 1, a3 − 1, . . . , aa1+1 − 1, aa1+2, . . . , an} is graphic.

The following extension of Theorem H–H, due to Kleitman and Wang, is sometimes more useful:

Theorem KW (Kleitman and Wang [9]). Let s := {a1, a2, . . . , an} be a list of positive integers. Then the list s′ obtained from s by
deleting any term ai and subtracting 1 from the ai largest terms remaining in the list is graphic if and only if the list s is graphic.
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2. Main results

We say that two sequences s1 and s2, of nonnegative integers, are graphically equivalent provided s1 is graphic if and only
if s2 is graphic. Theorem 1 provides an instance of graphically equivalent sequences, much like Theorems H–H and KW.
However, in this case, for any d ≥ 0, we replace the largest term ∆ in the sequence by ∆+ d and also adjoin d 1’s.

Theorem 1. Let {a1, a2, a3, . . . , an} be a sequence of positive integers such that n−1 ≥ a1 ≥ a2 ≥ · · · ≥ an, and let N ≥ a1+1. Let
1r denote r occurrences of 1. Then the sequence {a1, a2, a3, . . . , an} is graphic if and only if the sequence {N, a2, a3, . . . , an, 1N−a1 }

is graphic.

Proof. Suppose s := {a1, a2, a3, . . . , an} is a graphic sequence. To a graph G with degree sequence s, add N − a1 vertices and
join each of these to the vertex of degree a1. This gives a graph with degree sequence {N, a2, a3, . . . , an, 1N−a1 }.

Conversely, suppose s′ := {N, a2, a3, . . . , an, 1N−a1 } is a graphic sequence. Applying Theorem KW N−a1 times, with ai = 1
each time, results in the sequence s, which must be graphic. This completes the proof. �

Theorem 1 is similar in nature to Theorems H–H and KW, but gives a graphically equivalent sequence with a larger
number of terms. The following definitions are central to our results, and repeatedly used in what follows.

Definition 1. For a given sequence {a1, a2, . . . , an} of positive integers such that a1 ≥ a2 ≥ · · · ≥ an, we denote by λ the
largest positive integer i for which ai ≥ i and by Ri the number of occurrences of i in the sequence.

Our next result is derived by successive applications of Theorems 1 and H–H.

Theorem 2. The sequence {a1, a2, . . . , an}, with a1 ≥ a2 ≥ · · · ≥ an, is graphic if and only if for 1 ≤ s ≤ λ− 1

f (s) :=
s∑

i=1
[(n− 1)− ai − (s− i)Ri] ≥ 0, (1)

and f (λ) is even.

Proof. Starting with the given sequence s0, we first apply Theorem 1 and then the Havel–Hakimi condition to obtain a
graphically equivalent sequence s1:

s0 := {a1, a2, . . . , an};

{n− 1, a2, . . . , an, 1n−1−a1 };

s1 := {a2 − 1, a3 − 1, a4 − 1, . . . , an − 1, 1n−1−a1 }.

Observe that this procedure transforms a sequence s0 to a graphically equivalent sequence s1 with a smaller maximum
term. Thus this procedure must eventually lead to a sequence of 1’s, after discarding all 0’s at each step. However, to apply
Theorem 1, we must ensure that none of the terms in the sequence are 0 and also that the maximum term is at least one less
than the number of positive terms. So we must keep track of the number of positive terms at each stage in the procedure.
Therefore we may equivalently assume that the sequence s1 contains only positive terms. To do this, we may remove the R1
(in s0) terms in s1 that are 0 and assume that the transformed sequence has only positive terms.

Let Ni denote the number of positive terms in the sequence si obtained from s0 after i iterations; thus N0 = n and
N1 = (n− 1 − R1) + (n− 1 − a1) = 2(n− 1) − a1 − R1. If we apply Theorem 1 followed by the Havel–Hakimi condition to
the sequence s1, finally removing the zero terms, we get

s1 := {a2 − 1, a3 − 1, a4 − 1, . . . , an − 1, 1n−1−a1 } with N1 positive terms;
{N1 − 1, a3 − 1, . . . , an − 1, 1n−1−a1 , 1N1−a2 };

s2 := {a3 − 2, a4 − 2, . . . , an − 2, 1N1−a2 } with N2 positive terms,

where N2 = (n−2−R1−R2)+ (N1−a2) = 3n−4− (a1+a2)− (2R1+R2). Continuing in this manner, after i steps, removing
the terms that are 0 at each stage, we arrive at

si := {ai+1 − i, ai+2 − i, . . . , an − i, 1Ni−1−ai+(i−2)} (2)

with

Ni = (i+ 1)n− 2i− (a1 + a2 + · · · + ai)− (Ri + 2Ri−1 + · · · + iR1) (3)

positive terms. In order to continue this procedure at each stage, it is not only necessary that the maximum term in si be at
most Ni − 1 (otherwise we cannot apply Theorem 1), but also sufficient (otherwise si cannot be graphic). Thus we need

ai+1 − i ≤ Ni − 1 = (i+ 1)n− 2i− (a1 + a2 + · · · + ai)− (Ri + 2Ri−1 + · · · + iR1)− 1,

or

(i+ 1)(n− 1) ≥ (a1 + a2 + · · · + ai+1)+ (Ri + 2Ri−1 + · · · + iR1). (4)
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With i = λ, we arrive at

sλ := {aλ+1 − λ, aλ+2 − λ, . . . , an − λ, 1Nλ−1−aλ+(λ−2)}, (5)

where Nλ−1 = λn − 2(λ − 1) − (a1 + a2 + · · · + aλ−1) − (Rλ−1 + 2Rλ−2 + · · · + (λ − 1)R1). The condition on λ implies
aλ+1 ≤ λ ≤ aλ. Thus sλ = {1r}, where r = Nλ−1 − aλ + (λ− 2), is graphic if and only if

r = λ(n− 1)− (a1 + a2 + · · · + aλ)− (Rλ−1 + 2Rλ−2 + · · · + (λ− 1)R1) = f (λ) ≡ 0 (mod 2). (6)

This completes the proof of our theorem. �

A theorem of Erdős and Gallai [4] gives another well known characterization of graphic sequences. Unlike the
Havel–Hakimi condition, this characterization requires verification of n inequalities, where n denotes the number of terms
in the sequences. For the sake of reference, we state this result below:

Theorem EG. [Erdős and Gallai, [4]] Let {a1, a2, . . . , an} be a sequence of positive integers such that a1 ≥ a2 ≥ · · · ≥ an. Then
the sequence {a1, a2, . . . , an} is graphic if and only if

∑n
i=1 ai is even and the inequalities

s∑
i=1

ai ≤ s(s− 1)+
n∑

i=s+1
min{s, ai} (7)

hold for each s with 1 ≤ s ≤ n.

It is interesting to note that inequalities (7) need not be verified for all s, but only for those s with as > as+1 and as ≥ s
in the notation of Theorem EG; see [11]. Since Theorems 2 and EG both require checking inequalities as a characterization
for graphic sequences, it stands to reason that there is some relation between the inequalities (1) and (7), where in (7) we
check only those s for which both as > as+1 and as ≥ s. Indeed, as we shall presently show, they are algebraically the same.
Fix s with 1 ≤ s ≤ λ− 1. Then inequality (1) is the same as

s∑
i=1

ai ≤
s∑

i=1
[(n− 1)− (s− i)Ri] = s(s− 1)+ s(n− s)−

s∑
i=1

(s− i)Ri.

Now for s < λ, i ≤ s implies ai ≥ as ≥ s. Therefore
n∑

i=s+1
min{s, ai} = s(n− s)−

n∑
i=1
ai<s

(s− ai) = s(n− s)−
s−1∑
j=1

(s− j)Rj = s(n− s)−
s∑

i=1
(s− i)Ri.

We have thus shown

f (s) :=
s∑

i=1
[(n− 1)− ai − (s− i)Ri] = s(s− 1)+

n∑
i=s+1

min{s, ai} −
s∑

i=1
ai (8)

for 1 ≤ s ≤ λ−1. This proves the equivalence of (1) and (7). In particular, Eq. (8) shows that f (λ) is even if and only if
∑n

i=1 ai
is even since min{λ, ai} = ai for λ + 1 ≤ i ≤ n. This proves the desired equivalence between Theorem 2 and the stronger
version of Theorem EG. We summarize these comments in the following.

Remark 1. Theorem 2 can be strengthened to verifying (1) only for those s with both as > as+1 and as ≥ s.

Remark 2. We note that the above discussion shows that Theorem 2 gives an alternate proof of Theorem EG. The original
proof of Theorem EG was simplified by Choudum in [2]. Sierksma and Hoogeveen showed that Hässelbarth’s criterion [6] is
equivalent to Theorem EG in [10]. However, Theorem 2 shows that Theorem EG can be reformulated solely in terms of the
frequency of the items in the list, and in this manner, proved in a simpler though indirect manner.

3. Applications

In this section, we apply the results in the previous section, mainly Theorem 2, to obtain some results on degree sequences
and degree sets. An easy consequence of Theorem 2 is the following well known result:

Proposition 1. Let n, r be integers, with n ≥ 1 and 0 ≤ r ≤ n − 1. Then the sequence {rn} is graphic if and only if nr is even. In
other words, there exists a r-regular graph of order n if and only if nr is even.

Proof. Using the notation in Theorem 2, λ = r and the only nonzero Ri is Rr = n. Therefore the inequality in Eq. (1) is met,
and the sequence {rn} is graphic if and only if

(n− 1)r − r2
= nr − r(r + 1) ≡ nr ≡ 0 (mod 2). �
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Following Behzad and Chartrand in [1], we say that a graph has a perfect degree sequence if the sequence consists of
distinct integers. Therefore the only perfect degree sequence of a graph of order n must be {0, 1, 2, . . . , n−1}. Perfect degree
sequences cannot exist since both d(x) = 0 and d(y) = n− 1 cannot hold in any (simple) graph of order n. Moreover, we say
that a degree sequence is quasi-perfect if it has exactly one repeated entry. Behzad and Chartrand also showed that there are
exactly two quasi-perfect graphic sequences of order n for each n > 1, and that the corresponding graphs are complements
of each other. We explicitly show that there are exactly two quasi-perfect graphic sequences of order n for each n > 1. We
use the following lemma, whose proof is trivial and omitted:

Lemma 1. Let {a1, a2, . . . , an} be a sequence of nonnegative integers. Then the sequence {a1, a2, . . . , an} is graphic if and only if
the sequence {n− 1− a1, n− 1− a2, . . . , n− 1− an} is graphic.

Theorem 3 (Behzad and Chartrand [1]). For each n > 1, there are exactly two quasi-perfect graphic sequences of order n:

n− 1, n− 2, . . . , bn/2c, bn/2c, . . . , 2, 1; n− 2, n− 3, . . . , b(n− 1)/2c, b(n− 1)/2c, . . . , 1, 0.

Proof. Let n > 1. Since a quasi-perfect degree sequence of order n must have exactly one of 0, n − 1, the two possibilities
are 0, 1, . . . , n−2 with some r appearing twice, and 1, 2, . . . , n−1, again with some r appearing twice. We prove this result
only in the case when n = 2m is even, the other case being similar.

We prove that there is exactly one value of r in each case. Consider the sequence {2m−1, 2m−2, . . . , r+1, r, r, r−1, . . . , 1},
where 1 ≤ r ≤ 2m − 1. With the notation of Theorem 2, we may denote this sequence by {a1, a2, . . . , a2m}. Recall that λ
denotes the largest positive integer i such that ai ≥ i and Ri the number of occurrences of i in the sequence. The requirement
on parity of the sum yields r ≡ m (mod 2). Moreover am+1 ≤ m ≤ am implies λ = m. Observe that

f (s) = [(n− 1)− a1 − (s− 1)R1] + · · · + [(n− 1)− as−1 − Rs−1] + [(n− 1)− as]

is the sum of an s-term arithmetic progression with first term 1 − s and common difference 2 if 1 ≤ s ≤ r, unless
the repeated term r is greater than m. Thus, if 1 ≤ s ≤ r ≤ m, f (s) = 0 and f (r + 1) = −1 since Rr = 2, while
f (2m − r + 1) = −1 if r > m. Therefore, the inequality in (1) fails if r 6= m, and by Theorem 2, the given sequence
is not graphic in these cases. On the other hand, if r = m, f (s) = 0 for 1 ≤ s ≤ m, and so the sequence is graphic
only in this case. By Lemma 1, the sequence {2m − 2, 2m − 3, . . . , r + 1, r, r, r − 1, . . . , 1, 0} is graphic if and only if
{2m−1, 2m−2, . . . , 2m−r, 2m−1−r, 2m−1−r, . . . , 2, 1} is graphic. Therefore there is exactly one value of r for which quasi-
perfect sequences with a 0 are graphic, with the repeated value r given by 2m−1−r = m, so that r = m−1. This completes the
assertion. �

The degree set of a graph is the set of (distinct) degrees of its vertices. A natural question that arises in the context of
degree sets is to determine the least order among graphs with a given degree set. This was answered by Kapoor, Polimeni
and Wall in [8], and a short proof of this was given by Tripathi and Vijay in [12]. While both these proofs construct the
required graph by inducting on the size of the set, the following result explicitly provides a sequence, which we prove to be
graphic by using Theorem 2.

Theorem 4 (Kapoor, Polimeni and Wall [8]). Let S be a set of positive integers with maximum element ∆. Then there exists a
(∆+ 1)-term graphic sequence with set of distinct terms S. Moreover, there cannot be such a graphic sequence, with degree set S,
having fewer terms.

Proof. Let S = {a1, a2, . . . , an}, where a1 > a2 > · · · > an ≥ 1. We construct a graphic sequence of order a1 + 1 with degree
set S. Consider the sequence

(a1)m1 , (a2)m2 , . . . , (an)mn ,

with m1 = an, mi = an+1−i− an+2−i for 2 ≤ i ≤ n, i 6= r, and mr = ad(n+1)/2e− ad(n+1)/2e+1+1, where r = b(n+1)/2c. We verify
that this sequence is graphic by using the strong version of Theorem 2, stated at the end of Section 2. We show this only in
the case n is odd, the case when n is even being similar.

Let σi = m1 + m2 + · · · + mi for 1 ≤ i ≤ n. We need to show that the sequence has a1 + 1 terms, that λ = σr − 1, that
f (σi) ≥ 0 for 1 ≤ i ≤ r − 1, and that f (λ) is even.

We observe that there are

an +
n∑

i=2
(an+1−i − an+2−i)+ 1 = a1 + 1

terms in the sequence.
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A simple calculation shows that σi equals an+1−i for 1 ≤ i ≤ r − 1 and an+1−i + 1 for r ≤ i ≤ n. Since aσr−1 = ar = aσr and
σr − 1 = an+1−r = ar , aλ = λ = aλ+1 for λ = σr − 1. Let 1 ≤ j ≤ r − 1. Then

f (σj) =

σj∑
i=1
[a1 − ai − (σj − i)Ri]

=

j∑
i=1

mi(a1 − ai)−
j∑

i=1
(σj − ai)Rai

=

j∑
i=1

mi(a1 − σj) = σj(a1 − σj) ≥ 0. (9)

A calculation similar to the one above shows that f (λ) = f (σr − 1) = ar(a1 − ar). This must be even since a1 is odd.
That there cannot be a graphic sequence with fewer than ∆ + 1 terms and with degree set S is obvious. This completes

the assertion. �
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