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Abstract

We consider information theoretic secret key agreement and secure function computation by multiple

parties observing correlated data, with access to an interactive public communication channel. Our main

result is an upper bound on the secret key length, which is derived using a reduction of binary hypothesis

testing to multiparty secret key agreement. Building on this basic result, we derive new converses for

multiparty secret key agreement. Furthermore, we derive converse results for the oblivious transfer

problem and the bit commitment problem by relating them to secret key agreement. Finally, we derive

a necessary condition for the feasibility of secure computing by trusted parties that seek to compute a

function of their collective data, using interactive public communication that by itself does not give away

the value of the function. In many cases, we strengthen and improve upon previously known converse

bounds. Our results are single-shot and use only the given joint distribution of the correlated observations.

For the case when the correlated observations consist of independent and identically distributed (in time)

sequences, we derive strong versions of previously known converses.

I. INTRODUCTION

Information theoretic cryptography relies on the availability of correlated random observations to the

parties. Neither multiparty secret key (SK) agreement nor secure computing is feasible if the observation

of the parties are mutually independent. In fact, SK agreement is not feasible even when the observations

are independent across some partition of the set of parties1. As an extension of this principle, we can

expect that the efficiency of a cryptographic primitive is related to how far the joint distribution of the

observations is from a distribution that renders the observations independent (across some partition of

the set of parties). We formalize this heuristic principle and leverage it to bound the efficiency of using

correlated sources to implement SK agreement and secure computing. We present single-shot converse

1With restricted interpretations of feasibility, these observations appear across the vast literature on SK agreement and secure
computing; see, for instance, [34], [1], [14], [45], [32], [62], [36].
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results; in particular, we do not assume that the observations of parties consist of long sequences generated

by an independent and identically distributed (IID) random process2.

In multiparty SK agreement, a set of parties observing correlated random variables (RVs) seek to

agree on shared random bits that remain concealed from an eavesdropper with access to a correlated

side information. The parties may communicate with each other over a noiseless public channel, but the

transmitted communication will be available to the eavesdropper. The main tool for deriving our converse

results is a reduction argument that relates multiparty SK agreement to binary hypothesis testing3. For

an illustration of our main idea, consider the two party case when the eavesdropper observes only the

communication between the legitimate parties and does not observe any additional side information.

Clearly, if the observations of the legitimate parties are independent, a SK cannot be generated. We

upper bound the length of SKs that can be generated in terms of “how far” is the joint distribution

of the observations of the parties and from a distribution that renders their observations independent.

Specifically, for this special case, we show that the maximum length S
✏

(X
1

, X
2

) of a SK (for a given

security index ✏) is bounded above as

S
✏

(X
1

, X
2

)  � log �
✏+⌘

�
P

X1X2
,P

X1
⇥ P

X2

�
+ 2 log(1/⌘),

where �
✏

�
P

X1X2
,P

X1
⇥P

X2

�
is the optimal probability of error of type II for testing the null hypothesis

P

X1X2
with the alternative P

X1
⇥ P

X2
, given that the probability of error of type I is smaller than ✏;

this �
✏

serves as a proxy for “distance” between P

X1X2
and P

X1
⇥ P

X2
. Similarly, in the general case

of an arbitrary number of parties with correlated side information at the eavesdropper, our main result

in Theorem 3 bounds the secret key length in terms of the “distance” between the joint distribution of

the observations of the parties and the eavesdropper and a distribution that renders the observations of

the parties conditionally independent across some partition, when conditioned on the eavesdropper’s side

information. This bound is a manifestation of the aforementioned heuristic principle and is termed the

conditional independence testing bound.

Our approach brings out a structural connection between SK agreement and binary hypothesis testing.

This is in the spirit of [39], where a connection between channel coding and binary hypothesis testing

was used to establish an upper bound on the rate of good channel codes (see, also, [58], [24]). Also,

our upper bound is reminiscent of the measure of entanglement for a quantum state proposed in [57],

2Throughout this paper, IID observations refer to observations that are IID in time; at each instant t, the observations of the
parties are correlated.

3This basic result was reported separately in [56].
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namely the minimum distance between the density matrix of the state and that of a disentangled state.

This measure of entanglement was shown to be an upper bound on the entanglement of distillation in

[57], where the latter is the largest proportion of maximally entangled states that can be distilled using

a purification process [6].

Using our basic result, we obtain new converses for SK agreement, and also, for secure computing

by reducing SK agreement to oblivious transfer and bit commitment. In many cases, we strengthen and

improve upon previously known results. Our main contributions are summarized below.

A. SK agreement

For two parties, the problem of SK agreement from correlated observations is well-studied. The problem

was introduced by Maurer [34] and Ahlswede and Csiszár [1], who considered the case where the parties

observe IID sequences. However, in certain applications it is of interest to consider observations arising

from a single realization of correlated RVs. For instance, in applications such as biometric and hardware

authentication (cf. [38], [17]), the correlated observations consist of different versions of the biometric

and hardware signatures, respectively, recorded at the registration and the authentication stages. To this

end, Renner and Wolf [45] derived bounds on the length of a SK that can be generated by two parties

observing a single realization of correlated RVs, using one-side communication.

The problem of SK agreement with multiple parties, for the IID setup, was introduced in [14] (also, see

[9] for an early formulation). In this work, we consider the SK agreement problem for multiple parties

observing a single realization of correlated RVs. Our conditional independence testing bound is a single-

shot upper bound on the length of SKs that can be generated by multiple parties observing correlated

data, using interactive public communication4. Unlike the single-shot upper bound in [45], which is

restricted to two parties with one-way communication, we allow arbitrary interactive communication

between multiple parties. Asymptotically our bound is tight – its application to the IID case recovers

some previously known (tight) bounds on the asymptotic SK rates. In fact, we strengthen the previously

known asymptotic results since we do not require the probability of error in SK agreement or the security

index to be asymptotically5
0. See Section IV for a detailed discussion.

4A single-shot upper bound using Fano’s inequality for the length of a multiparty SK, obtained as a straightforward extension
of [14], [15], was reported in [55].

5Such bounds that do not require the probability of error to vanish to 0 are called strong converse bounds [13].
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B. Secure computing

Secure computing by two parties was introduced by Yao in [65]. Two (mutually untrusting) parties

seek to compute a function of their collective data, without sharing anything more about their data than

what is given away by the function value. Several specific instances of this general problem have been

studied. We consider the problems of oblivious transfer (OT) and bit commitment (BC), which constitute

two basic primitives for secure computing.

OT between two parties is a mode of message transmission “where the sender does not know whether

the recipient actually received the information” [41]. In this paper, we consider the one-of-two OT problem

[18] where the first party observes two strings K
0

and K
1

of length l each, and the second party seeks

the value of the Bth string, B 2 {0, 1}. The goal is to accomplish this task in such a manner that B and

K
B

remain concealed, respectively, from the first and the second party. This simply stated problem is at

the heart of secure function computation as it is well-known [31] that any secure function computation

task can be accomplished using the basic OT protocol repeatedly (for recent results on the complexity

of secure function computation using OT, see [4]). Unfortunately, information theoretically secure OT

is not feasible in the absence of additional resources. On the bright side, if the parties share a noisy

communication channel or if they observe correlated randomness, OT can be accomplished (cf. [11],[2]

[36]). In this paper, we consider the latter case where, as an additional resource, the parties observe

correlated RVs X
1

and X
2

. Based on reduction arguments relating OT to SK agreement, we derive upper

bounds on the length l of OT that can be accomplished for given RVs X
1

, X
2

. The resulting bound is, in

general, tighter than that obtained in [61]. Furthermore, an application of our bound to the case of IID

observations shows that the upper bound on the rate of OT length derived in [36] and [2] is strong, i.e.,

the bound holds even without requiring asymptotically perfect recovery.

We now turn to the BC problem, the first instance of which was introduced by Blum in [7] as the

problem of flipping a coin over a telephone, when the parties do not trust each other. A bit commitment

protocol has two phases. In the first phase the committing party generates a random bit string K, its “coin

flip”. Subsequently, the two parties communicate with each other, which ends the first phase. In the second

phase, the committing party reveals K. A bit commitment protocol must forbid the committing party from

cheating and changing K in the second phase. As in the case of OT, information theoretically secure BC

is not possible without additional resources. We consider a version where two parties observing correlated

observations X
1

and X
2

want to implement information theoretically secure BC using interactive public

communication. The goal is to maximize the length of the committed string K. By reducing SK agreement
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to BC, we derive an upper bound on BC length which improves upon the bound in [42]. Furthermore,

for the case of IID observations, we derive a strong converse for BC capacity; the latter is the maximum

rate of BC length and was characterized in [62].

C. Secure computing with trusted parties

In a different direction, we relate our result to the following problem of secure function computation

with trusted parties introduced in [53] (for an early version of the problem, see [37]): Multiple parties

observing correlated data seek to compute a function of their collective data. To this end, they com-

municate interactively over a public communication channel, which is assumed to be authenticated and

error-free. It is required that the value of the function be concealed from an eavesdropper with access

to the communication. When is such a secure computation of a given function feasible? In contrast to

the traditional secure computing problem discussed above, this setup is appropriate for applications such

as sensor networks where the legitimate parties are trusted and are free to extract any information about

each other’s data from the shared communication. Using the conditional independence testing bound, we

derive a necessary condition for the existence of a communication protocol that allows the parties to

reliably recover the value of a given function, while keeping this value concealed from an eavesdropper

with access to (only) the communication. In [53], matching necessary and sufficient conditions for secure

computability of a given function were derived for the case of IID observations. In contrast, our necessary

condition for secure computability is single-shot and does not rely on the observations being IID.

D. Outline of paper

The next section reviews some basic concepts that will be used throughout this work. The conditional

independence testing bound is derived in Section III. In the subsequent three sections, we present the

implications of this bound: Section IV addresses strong converses for SK capacity; Section V addresses

converse results for the OT and the bit commitment problem; and Section VI contains converse results

for the secure computing problem with trusted parties. The final section contains a brief discussion of

possible extensions.

E. Notations

For brevity, we use abbreviations SK, RV, and IID for secret key, random variable, and independent

and identically distributed, respectively; a plural form will be indicated by appending an ‘s’ to the

abbreviation. The RVs are denoted by capital letters and the corresponding range sets are denoted by
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calligraphic letters. The distribution of a RV U is given by P

U

, when there is no confusion we drop the

subscript U . The set of all parties {1, ...,m} is denoted by M. For a collection of RVs {U
1

, .., U
m

} and

a subset A of M, U
A

denotes the RVs {U
i

, i 2 A}. For a RV U , Un denotes n IID repetitions of the

RV U . Similarly, Pn denotes the distribution corresponding to the n IID repetitions generated from P.

All logarithms in this paper are to the base 2.

II. PRELIMINARIES

A. Secret keys

Consider SK agreement using interactive public communication by m (trusted) parties. The ith party

observes a discrete RV X
i

taking values in a finite set X
i

, 1  i  m.6 Upon making these observations,

the parties communicate interactively over a public communication channel that is accessible by an

eavesdropper, who additionally observes a RV Z such that the RVs (XM, Z) have a distribution P

XMZ

.

We assume that the communication is error-free and each party receives the communication from every

other party. Furthermore, we assume that the public communication is authenticated and the eavesdropper

cannot tamper with it. Specifically, the communication is sent over r rounds of interaction. In the jth

round of communication, 1  j  r, the ith party sends F
ij

, which is a function of its observation X
i

,

a locally generated randomness7 U
i

and the previously observed communication

F
11

, ..., F
m1

, F
12

, ..., F
m2

, ..., F
1j

, ..., F
(i�1)j

.

The overall interactive communication F
11

, ..., F
m1

, ..., F
1r

, ..., F
mr

is denoted by F. Using their local

observations and the interactive communication F, the parties agree on a SK.

Formally, a SK is a collection of RVs K
1

, ...,K
m

, where the ith party gets K
i

, that agree with

probability close to 1 and are concealed, in effect, from an eavesdropper. Formally, the ith party computes

a function K
i

of (U
i

, X
i

,F). Traditionally, the RVs K
1

, ...,K
m

with a common range K constitute an

(✏, �)-SK if the following two conditions are satisfied (for alternative definitions of secrecy, see [34],

[12], [14])

P (K
1

= · · · = K
m

) � 1� ✏, (1)

d (P
K1FZ

,Punif ⇥ P

FZ

)  �, (2)

6The conditional independence testing bound given in Theorem 3 remains valid for RVs taking countably many values.
7The RVs U1, ..., Um are mutually independent and independent jointly of (XM, Z).

July 9, 2014 DRAFT



7

where Punif is the uniform distribution on K and d (P,Q) is the variational distance between P and Q

given by

d (P,Q) =

1

2

X

x

|P (x)�Q (x) |.

The first condition above represents the reliable recovery of the SK and the second condition guarantees

security. In this work, we use the following alternative definition of a SK, which conveniently combines

the recoverability and the security conditions (cf. [43]): The RVs K
1

, ...,K
m

above constitute an ✏-SK

with common range K if

d
⇣
P

KMFZ

,P(M)

unif ⇥ P

FZ

⌘
 ✏, (3)

where

P

(M)

unif (kM) =

(k
1

= · · · = k
m

)

|K| .

In fact, the two definitions above are closely related8.

Proposition 1. Given 0  ✏, �  1, if KM constitute an (✏, �)-SK under (1) and (2), then they constitute

an (✏+ �)-SK under (3).

Conversely, if KM constitute an ✏-SK under (3), then they constitute an (✏, ✏)-SK under (1) and (2).

Therefore, by the composition theorem in [8], the complex cryptographic protocols using such SKs

instead of perfect SKs are secure.9

We are interested in characterizing the maximum length log |K| of an ✏-SK.

Definition 1. Given 0  ✏ < 1, denote by S
✏

(XM|Z) the maximum length log |K| of an ✏-SK KM with

common range K.

Our upper bound is based on relating the SK agreement problem to a binary hypothesis testing problem;

below we review some basic concepts in hypothesis testing that will be used.

8Note that a SK agreement protocol that satisfies (3) universally composable-emulates an ideal SK agreement protocol (see
[8] for a definition).The emulation is with emulation slack ✏, for an environment of unbounded computational complexity.

9A perfect SK refers to unbiased shared bits that are independent of eavesdropper’s observations.
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B. Hypothesis testing

Consider a binary hypothesis testing problem with null hypothesis P and alternative hypothesis Q,

where P and Q are distributions on the same alphabet X . Upon observing a value x 2 X , the observer

needs to decide if the value was generated by the distribution P or the distribution Q. To this end, the

observer applies a stochastic test T, which is a conditional distribution on {0, 1} given an observation

x 2 X . When x 2 X is observed, the test T chooses the null hypothesis with probability T(0|x) and

the alternative hypothesis with probability T (1|x) = 1� T (0|x). For 0  ✏ < 1, denote by �
✏

(P,Q) the

infimum of the probability of error of type II given that the probability of error of type I is less than ✏,

i.e.,

�
✏

(P,Q) := inf

T :P[T]�1�✏

Q[T], (4)

where

P[T] =

X

x

P(x)T(0|x),

Q[T] =

X

x

Q(x)T(0|x).

We note two important properties of the quantity �
✏

(P,Q).

1) Data processing inequality. Let W be a stochastic mapping from X to Y , i.e., for each x 2 X ,

W (· | x) is a distribution on Y . Then,

�
✏

(P,Q)  �
✏

(P �W,Q �W ), (5)

where (P �W )(y) =
P

x

P (x)W (y | x).

2) Stein’s Lemma. (cf. [33, Theorem 3.3]) For every 0 < ✏ < 1, we have

lim

n!1
� 1

n
log �

✏

(P

n,Qn

) = D(PkQ), (6)

where D(PkQ) is the Kullback-Leibler divergence given by

D(PkQ) =

X

x2X
P(x) log

P(x)

Q(x)
,

with the convention 0 log(0/0) = 0.

We close with a discussion on evaluating �
✏

(P,Q). Note that the expression for �
✏

(P,Q) in (4) is

a linear program, solving which has a polynomial complexity in the size of the observation space. A
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simple manipulation yields the following computationally more tractable bound:

� log �
✏

(P,Q)  inf

�

� � log

✓
P

✓
log

P(X)

Q(X)

 �

◆
� ✏

◆
. (7)

When P and Q correspond to IID RVs, the tail probability in (7) can be numerically evaluated directly

or can be approximated by the Bérry-Esséen theorem (cf. [19]). On the other hand, numerical evaluation

of the tail probability is rather involved when P and Q correspond to Markov chains. For this case, a

computationally tractable and asymptotically tight bound on �
✏

(P,Q) was established recently in [60].

Also, by setting � = D
↵

(P,Q)+

1

1�↵

log(1� ✏� ✏0), where D
↵

(P,Q) is the Rényi’s divergence of order

↵ > 1 and given by [46]

D
↵

(P,Q) =

1

↵� 1

log

X

x2X
P(x)↵Q(x)1�↵,

the following simple, closed-form bound on �
✏

(P,Q) is obtained10:

� log �
✏

(P,Q)  D
↵

(P,Q) +

1

1� ↵
log(1� ✏� ✏0)� log ✏0.

While this bound is not tight in general, as its corollary we obtain Stein’s lemma (see (6)).

Finally, we remark that when the condition

log

P(X)

Q(X)

= D(PkQ) (8)

is satisfied with probability 1 under P, the bound in (7) implies

� log �
✏

(P,Q)  D(PkQ) + log(1/(1� ✏)). (9)

C. Smooth minimum entropy and smooth maximum divergence

Given two RVs X and Y , a central question of information theoretic secrecy is (cf. [27], [28], [5]):

How many unbiased, independent bits can be extracted from X that are unavailable to an observer of Y ?

When the underlying distribution is IID, the optimum rate of extracted bits can be expressed in terms

of Shannon entropies and is given by H(X|Y ). However, for our single-shot setup, smooth minimum

entropy introduced in [45], [43] is a more relevant measure of randomness. We use the definition of

smooth min entropy introduced11 in [43]; for a review of other variations, see [48].

10For other connections between �✏ and Rényi’s divergence, see [40].
11A review of the notion of smooth minimum entropy without the notations from quantum information theory can be also

found in [59].
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We also review the leftover hash lemma [27], [5], which brings out the central role of smooth minimum

entropy in the answer to the question above. Also, as a “change of measure companion” for smooth

minimum entropy, we define smooth maximum divergence and note that it satisfies the data processing

inequality.

Definition 2. (Minimum entropy) The minimum entropy of P is defined as

H
min

(P) := min

x

log

1

P (x)
.

For distributions P

XY

and Q

Y

, the conditional minimum entropy of P
XY

given Q

Y

is defined as

H
min

(P

XY

|Q
Y

) := min

x2X , y 2 supp(QY )

log

Q

Y

(y)

P

XY

(x, y)
.

Finally, the conditional minimum entropy12 of P
XY

given Y is defined as

H
min

(P

XY

|Y ) := sup

QY

H
min

(P

XY

|Q
Y

),

where the sup is over all Q
Y

such that supp(P
Y

) ✓ supp(Q
Y

).

The definition of minimum entropy and conditional minimum entropy above remain valid for all

subnormalized, nonnegative functions P

XY

, i.e., P
XY

such that

X

x,y

P

XY

(x, y)  1.

We need this extension and the concept of smoothing, defined next, to derive tight bounds.

Definition 3. (Smooth minimum entropy) Given ✏ � 0, the ✏-smooth conditional minimum entropy of

P

XY

given Y is defined as

H✏

min

(P

XY

|Y ) := sup

˜

PXY : d

(

PXY ,

˜

PXY ) ✏

H
min

(

˜

P

XY

|Y ),

where the sup is over all subnormalized, nonnegative functions ˜

P

XY

. When Y is a constant, the ✏-smooth

minimum entropy is denoted by H✏

min

(P

X

).

We now state the leftover hash lemma, which says that we can extract H✏

min

(P

XY

|Y ) unbiased,

independent bits from X that are effectively concealed from an observer of Y .

12There is no consensus on the definition of conditional minimum entropy. The form here is appropriate for our purpose.
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Lemma 2. (Leftover hash) [43] Given a joint distribution P

XY

, for every 0  2✏ < 1 and 0 < ⌘ there

exists a mapping13 K : X ! K with log |K| = bH✏

min

(P

XY

|Y )� 2 log(1/2⌘)c such that

d
�
P

K(X)Y

,Punif ⇥ P

Y

�
 2✏+ ⌘.

Finally, we review smooth maximum divergence, which was introduced first in [16] for a quantum

setting. The method of smoothing in the following definition is slightly different from the one in [16]

and is tailored to our purpose.

Definition 4. (Smooth maximum divergence) The maximum divergence between two distributions P

and Q is defined as

D
max

(PkQ) := max

x

log

P (x)

Q (x)
,

with the convention log(0/0) = 0, and for 0 < ✏ < 1, the ✏-smooth maximum divergence between P

and Q is defined as

D✏

max

(PkQ) := inf

˜

PP:

˜

P(X )� 1�✏

D
max

(

˜

PkQ),

where the inf is over all subnormalized, nonnegative functions ˜

P such that ˜

P (x)  P (x) for all x 2 X

and
P

x

˜

P (x) � 1� ✏.

The following two properties of smooth maximum divergence will be used:

1) Data processing inequality. For every stochastic mapping W : X ! Y ,

D✏

max

(P �WkQ �W )  D✏

max

(PkQ). (10)

Indeed, for every ˜

P such that ˜

P (x)  P (x) for all x 2 X and
P

x

˜

P (x) � 1 � ✏, the following

hold

(

˜

P �W )(Y) � 1� ✏,

(

˜

P �W )(y)  (P �W )(y), 8 y 2 Y.

13A randomly chosen function from a 2-universal hash family suffices.
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The property follows upon noting that for every y 2 Y

D
max

(

˜

PkQ) = max

x

log

˜

P (x)

Q (x)

� log

(

˜

P �W )(y)

(Q �W )(y)
,

since max

i

(a
i

/b
i

) � (

P
i

a
i

/
P

i

b
i

).

2) Convergence to Kullback-Leibler divergence. For IID distributions P

n and Q

n,

lim

n!1

1

n
D✏

max

(P

nkQn

) = D(PkQ), 8 0 < ✏ < 1.

The inequality ‘’ follows upon choosing ˜

P

n

(x) = P

n

(x) (x 2 T
n

), where T
n

is the typical set

for Pn. For the other direction, given a ˜

P

n

 P

n with ˜

P

n

(X n

) � 1� ✏, we have

˜

P

n

(T
n

) � (1� ✏)/2, (11)

for all n sufficiently large. Thus,

max

x

log

˜

P

n

(x)

Q

n

(x)

� max

x2Tn

log

˜

P

n

(x)

Q

n

(x)

�
X

x2Tn

˜

P

n

(x) log

˜

P

n

(x)

Q

n

(x)

� ˜

P

n

(T
n

) log

˜

P

n

(T
n

)

Q

n

(T
n

)

� (1� ✏)

2

log

1

Q

n

(T
n

)

+ o(n)

where the third inequality is by log-sum inequality [13, Lemma 3.1], and the last inequality uses

(11). The proof is completing upon noting that

logQ

n

(T
n

) = �nD(PkQ) + o(n).

III. THE CONDITIONAL INDEPENDENCE TESTING BOUND

Converse results of this paper are based on an upper bound on the maximum length S
✏

(XM|Z) of an

✏-SK. We present this basic result here14.

Consider a (nontrivial) partition ⇡ = {⇡
1

, ...,⇡
l

} of the set M. Heuristically, if the underlying

distribution of the observations P
XMZ

is such that XM are conditionally independent across the partition

14The results of this section were presented in [56].
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⇡ given Z, the length of a SK that can be generated is 0. Our approach is to bound the length of a

generated SK in terms of “how far” is the distribution P

XMZ

from another distribution Q

⇡

XMZ

that renders

XM conditionally independent across the partition ⇡ given Z – the closeness of the two distributions is

measured by �
✏

�
P

XMZ

,Q⇡

XMZ

�
.

Specifically, for a partition ⇡ with |⇡| � 2 parts, let Q(⇡) be the set of all distributions Q

⇡

XMZ

that

factorize as follows:

Q

⇡

XM|Z(x1, . . . , xm|z) =
|⇡|Y

i=1

Q

⇡

X⇡i |Z
(x

⇡i |z). (12)

Theorem 3 (Conditional independence testing bound). Given 0  ✏ < 1, 0 < ⌘ < 1 � ✏, and a

partition ⇡ of M. It holds that

S
✏

(XM|Z)  1

|⇡|� 1


� log �

✏+⌘

�
P

XMZ

,Q⇡

XMZ

�
+ |⇡| log(1/⌘)

�
(13)

for all Q⇡

XMZ

2 Q(⇡).

Remarks. (i) Renner and Wolf [45] derived a bound on the length of a SK that can be generated by two

parties using one-way communication. A comparison of this bound with the general bound in Theorem

3 is unavailable, since the former involves auxiliary RVs and is difficult to evaluate.

(ii) For m = 2 and Z = constant, the upper bound on the length of a SK in Theorem 3 is related

closely to the meta-converse of Polyanskiy, Poor, and Verdú [39]. Indeed, a code for reliable transmission

of a message M over a point-to-point channel yields a SK for the sender and the receiver; the length

of this SK can be bounded by Theorem 3. However, the resulting bound is slightly weaker than the

meta-converse and does not yield the correct third order asymptotic term (the coefficient of log n) in the

optimal size of transmission codes [49].

(iii) The proof of Theorem 3 below remains valid even when the security condition (3) is replaced by

the following more general condition:

d
⇣
P

KMFZ

,P(M)

unif ⇥Q

FZ

⌘
 ✏,

for some distribution Q

FZ

. In particular, upper bound (13) holds even under the relaxed security criterion

above.

To prove Theorem 3, we first relate the SK length to the exponent of the probability of error of type

II in a binary hypothesis testing problem where an observer of (KM,F, Z) seeks to find out if the
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underlying distribution was P

XMZ

or Q⇡

XMZ

. This result is stated next.

Lemma 4. For an ✏-SK KM with a common range K generated using an interactive communication F,

let W
KMF|XMZ

be the resulting conditional distribution on (KM,F) given (XM, Z). Then, for every

0 < ⌘ < 1� ✏ and every Q

⇡

XMZ

2 Q(⇡), we have

log |K|  1

|⇡|� 1


� log �

✏+⌘

�
P

KMFZ

,Q⇡

KMFZ

�
+ |⇡| log(1/⌘)

�
, (14)

where P

KMFZ

is the marginal of (KM,F, Z) for the joint distribution

P

KMFXMZ

= P

XMZ

W
KMF|XMZ

,

and Q

⇡

KMFZ

is the corresponding marginal for the joint distribution

Q

⇡

KMFXMZ

= Q

⇡

XMZ

W
KMF|XMZ

.

Also, we need the following basic property of interactive communication from [52], which will be

used throughout this paper (see, also, [13, Lemma 17.18]).

Lemma 5 (Interactive communication property). Given Q

⇡

XMZ

2 Q(⇡) and an interactive communi-

cation F, the following holds:

Q

⇡

XM|FZ

(xM|f, z) =
|⇡|Y

i=1

Q

⇡

X⇡i |FZ

(x
⇡i |f, z),

i.e., conditionally independent observations remain so when conditioned additionally on an interactive

communication. In particular, if Q
X1X2|Z = Q

X1|ZQX2|Z , then

Q

X1X2|FZ

= Q

X1|FZ

⇥Q

X2|FZ

.

Proof of Lemma 4. We establish (14) by constructing a test for the hypothesis testing problem with null

hypothesis P = P

KMFZ

and alternative hypothesis Q = Q

⇡

KMFZ

. Specifically, we use a deterministic

test15 with the following acceptance region (for the null hypothesis)16:

A :=

(
(kM, f, z) : log

P

(M)

unif

(kM)

Q

⇡

KM|FZ

(kM|f, z) � �
⇡

)
,

15In fact, we use a simple threshold test on the log-likelihood ratio but with P(M)
unif ⇥PFZ in place of PKMFZ , since the two

distributions are close to each other by the security condition (3).
16The values (kM, f, z) with Q⇡

KM|FZ(kM|f, z) = 0 are included in A.
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where

�
⇡

= (|⇡|� 1) log |K|� |⇡| log(1/⌘).

For this test, the probability of error of type II is bounded above as

Q

⇡

KMFZ

(A) =

X

f,z

Q

⇡

FZ

(f, z)
X

kM:

(kM,f,z)2A

Q

⇡

KM|FZ

(kM|f, z)

 2

��⇡

X

f,z

Q

⇡

FZ

(f, z)
X

kM

P

(M)

unif

(kM)

= |K|1�|⇡|⌘�|⇡|. (15)

On the other hand, the probability of error of type I is bounded above as

P

KMFZ

(Ac

)  d
⇣
P

KMFZ

,P(M)

unif

⇥ P

FZ

⌘
+ P

(M)

unif

⇥ P

ZF

(Ac

)

 ✏+ P

(M)

unif

⇥ P

FZ

(Ac

), (16)

where the first inequality follows from the definition of variational distance, and the second is a conse-

quence of the security condition (3) satisfied by the ✏-SK KM. The second term above can be expressed

as follows:

P

(M)

unif

⇥ P

FZ

(Ac

) =

X

f,z

P

FZ

(f, z)
1

|K|
X

k

((k, f, z) 2 Ac

)

=

X

f,z

P

FZ

(f, z)
1

|K|
X

k

⇣
Q

⇡

KM|FZ

(k|f, z)|K||⇡|⌘|⇡| > 1

⌘
,

(17)

where k = (k, . . . , k). The inner sum can be further upper bounded as

X

k

⇣
Q

⇡

KM|FZ

(k|f, z)|K||⇡|⌘|⇡| > 1

⌘


X

k

⇣
Q

⇡

KM|FZ

(k|f, z)|K||⇡|⌘|⇡|
⌘ 1

|⇡|

= |K|⌘
X

k

Q

⇡

KM|FZ

(k|f, z)
1

|⇡|

= |K|⌘
X

k

|⇡|Y

i=1

Q

⇡

K⇡i |FZ

(k|f, z)
1

|⇡| , (18)

where the previous equality uses Lemma 5 and the fact that given F, K
⇡i is a function of (X

⇡i , U⇡i).
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Next, an application of Hölder’s inequality to the sum on the right-side of (18) yields

X

k

|⇡|Y

i=1

Q

⇡

K⇡i |FZ

(k|f, z)
1

|⇡| 
|⇡|Y

i=1

 
X

k

Q

⇡

K⇡i |FZ

(k|f, z)
! 1

|⇡|


|⇡|Y

i=1

0

@
X

k⇡i

Q

⇡

K⇡i |FZ

(k
⇡i |f, z)

1

A

1
|⇡|

= 1. (19)

Upon combining (17)-(19) we obtain

P

(M)

unif

⇥ P

FZ

(Ac

)  ⌘,

which along with (16) gives

P

KMFZ

(Ac

)  ✏+ ⌘. (20)

It follows from (20) and (15) that

�
✏+⌘

�
P

KMFZ

,Q⇡

KMFZ

�
 |K|1�|⇡|⌘�|⇡|,

which completes the proof.

Proof of Theorem 3. Using the data processing inequality (5) with P = P

XMZ

, Q = Q

⇡

XMZ

, and

W = W
KMF|XMZ

, we get

�
✏+⌘

�
P

XMZ

,Q⇡

XMZ

�
 �

✏+⌘

�
P

KMFZ

,Q⇡

KMFZ

�
,

which along with Lemma 4 gives Theorem 3.

IV. IMPLICATIONS FOR SK CAPACITY

For the SK agreement problem, a special case of interest is when the observations consist of n length

IID sequences, i.e., the ith party observes (X
i1

, ..., X
in

) and the eavesdropper observes (Z
1

, ..., Z
n

) such

that the RVs {XMt

, Z
t

}n
t=1

are IID. For this case, it is well known that a SK of length proportional to

n can be generated; the maximum rate (log |K
n

|/n) of a SK is called the SK capacity [34], [1], [14].

To present the results of this section at full strength, we need to take recourse to the original definition

of (✏, �)-SK given in (1) and (2). In the manner of Definition 1, denote by S
✏,�

(XM|Z) the maximum

length of an (✏, �)-SK. It follows from Proposition 1 that S
✏,�

(XM|Z)  S
✏+�

(XM|Z).
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Definition 5. (SK capacity) Given 0 < ✏, � < 1, the (✏, �)-SK capacity C
✏,�

(XM|Z) is defined by

C
✏,�

(XM|Z) := lim inf

n!1

1

n
S
✏,�

(Xn

M|Zn

),

where the RVs {XMt

, Z
t

} are IID for 1  t  n, with a common distribution P

XMZ

. The SK capacity

C (XM|Z) is defined as the limit

C (XM|Z) := lim

✏+ �!0

C
✏,�

(XM|Z) .

For the case when the eavesdropper does not observe any side information, i.e., Z = constant, the SK

capacity for two parties was characterized by Maurer [34] and Ahlswede and Csiszár [1]. Later, the SK

capacity for a multiparty model, with Z =constant was characterized by Csiszár and Narayan [14]. The

general problem of characterizing the SK capacity for arbitrary Z remains open. Several upper bounds

for SK capacity are known [34], [1], [35], [44], [14], [15], [23], which are tight for special cases.

In this section, we derive a single-shot version of the Gohari-Anantharam bound [23] on the SK

capacity for two parties, which is the best known bound for this case. Furthermore, for multiple parties,

we establish a strong converse for SK capacity, which shows that, surprisingly, we cannot improve the

rate of a SK by relaxing the recoverability requirement (1) or the security requirement (2).

A. Converse results for two parties

It was shown in [23] that for two parties,

C(X
1

, X
2

|Z)  min

U

I (X
1

^X
2

|U) + I(X
1

, X
2

^ U |Z). (21)

The proof in [23] relied critically on the assumption that the RVs {(XMt

, Z
t

)}n
t=1

are IID and does not

apply to the single-shot setup. The result below is a single-shot version of (21) and is proved by relying

only on the structure of the SKs, without recourse to the potential function approach17 of [23].

Theorem 6. For 0 < ✏, � with ✏+ 2� < 1,

S
✏,�

(X
1

, X
2

|Z)  S
✏,2�+⌘

(X
1

, X
2

|Z,U) +D⇠

max

�
P

X1X2ZU

kP
X1X2Z

P

U |Z
�
+ 2 log(1/2(⌘ � ⇠)) + 1,

for every RV U and every 0  ⇠ < ⌘ < 1� ✏� 2�.

17In fact, a simple proof of (21) follows upon noting that for an optimum rate SK (K1,K2) recoverable from a communication
F, the SK capacity C(X1, X2|Z) approximately equals (1/n)H(K1|F, Zn)  (1/n)H(K1|F, Un, Zn) + (1/n)I(K1,F ^
Un|Zn), which is further bounded above by C(X1, X2|U) + I(X1, X2 ^ U |Z).
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As corollaries, we obtain a single-shot version and a strong version of the upper bound in (21), which

does not require perfect asymptotic recovery or perfect asymptotic security.

Corollary 7 (Single-shot bound for SK length). For 0 < ✏, � with ✏+ 2� < 1,

S
✏,�

(X
1

, X
2

|Z)  � log �
✏+2�+⌘

(P

X1X2ZU

,P
X1|ZU

P

X2ZU

)

+D⌘1
max

�
P

X1X2ZU

kP
X1X2Z

P

U |Z
�
+ 4 log(1/(⌘ � ⌘

1

� ⌘
2

)) + 1,

for every RV U and every 0  ⌘
1

+ ⌘
2

< ⌘ < 1� ✏� 2�.

Corollary 8 (Strong bound for SK capacity). For 0  ✏, � with ✏+ 2� < 1,

C
✏,�

(X
1

, X
2

|Z)  min

U

I (X
1

^X
2

|U) + I(X
1

, X
2

^ U |Z).

We conclude this section with proofs. The core of Theorem 6 is contained in the following lemma.

Lemma 9. Let (K
1

,K
2

) be an (✏, �)-SK taking values in K, recoverable from a communication F. Then,

H�+⇠/2

min

(P

K1FZU

|FZU) � log |K|�D⇠

max

�
P

K1FZU

kP
K1FZ

P

U |Z
�

for every RV U and every 0  ⇠ < 1� ✏� 2�.

Proof of Theorem 6. Let (K
1

,K
2

) be an (✏, �)-SK taking values in K. Then, by Lemma 9 and the

data processing property of smooth maximum divergence (10), we get

H�+⇠/2

min

(P

K1FZU

|FZU) � log |K|�D⇠

max

�
P

X1X2ZU

kP
X1X2Z

P

U |Z
�
.

By the leftover hash lemma (see Section II-C), there exists a mapping K 0 of K taking at least log |K|�

D⇠

max

�
P

X1X2ZU

kP
X1X2Z

P

U |Z
�
� 2 log(1/2(⌘ � ⇠))� 1 values and satisfying

d
�
P

K

0
(K1)FZU

,Punif ⇥ P

FZU

�
 2� + ⌘.

Therefore, (K 0
(K

1

),K 0
(K

2

)) constitutes an (✏, 2� + ⌘)-SK for X
1

and X
2

, when the eavesdropper

observes (Z,U) and so,

log |K|�D⇠

max

�
P

X1X2ZU

kP
X1X2Z

P

U |Z
�
� 2 log(1/2(⌘ � ⇠))� 1  S

✏,2�+⌘

(X
1

, X
2

|Z,U).

Corollary 7 follows by Theorem 3.
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Proof of Corollary 8. The result follows by Corollary 7 upon using Stein’s lemma (see Section II-B),

along with the convergence property of smooth maximum divergence (see Section II-C).

Proof of Lemma 9. By definitions of H�+⇠/2

min

and D⇠

max

, it suffices to show that for every mapping

T : (k
1

, f, z, u) 7! [0, 1] such that

X

k1,f,z,u

P (k
1

, f, z, u)T (k
1

, f, z, u) � 1� ⇠, (22)

there exist a subnormalized nonnegative function Q

K1FZU

and a distribution ˜

Q

FZU

satisfying the fol-

lowing:

d (P
K1FZU

,Q
K1FZU

)  � + ⇠/2, (23)

H
min

⇣
Q

K1FZU

|˜Q
FZU

⌘
= log |K|�D

max

�
P

K1FZU

TkP
K1FZ

P

U |Z
�
. (24)

To that end, note

P (k
1

|f, z, u) = P (k
1

|f, z)


P (k
1

, u|f, z)
P (k

1

|f, z) P (u|f, z)

�
,

and let

Q (k
1

, f, z, u) := Punif (k1)


P (k

1

, u|f, z)
P (k

1

|f, z) P (u|f, z)

�
P (f, z, u)T (k

1

, f, z, u),

˜

Q

FZU

:= P

FZ

P

U |Z .

Since T (k
1

, f, z, u)  1, it follows that

X

k1,f,z,u

Q (k
1

, f, z, u)  1,
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and so Q is a valid subnormalized nonnegative function. Also,

2d (P,Q)

=

X

f,z,u

P (f, z, u)
X

k1

|P (k
1

|f, z, u)�Q (k
1

|f, z, u) |


X

k1,f,z,u

P (k
1

, f, z, u) |1� T (k
1

, f, z, u)|

+

X

f,z,u

P (f, z, u)
X

k1

|P (k
1

|f, z, u)T (k
1

, f, z, u)�Q (k
1

|f, z, u) |

 ⇠ +
X

f,z,u

P (f, z, u)
X

k1

|P (k
1

|f, z, u)T (k
1

, f, z, u)�Q (k
1

|f, z, u) |, (25)

where the previous inequality uses (22). For the second term above, from the definition of Q and security

condition (2), we have

X

f,z,u

P (f, z, u)
X

k1

|P (k
1

|f, z, u)T (k
1

, f, z, u)�Q (k
1

|f, z, u) |


X

k1,f,z,u

P (f, z) P (u|k
1

, f, z) |P (k
1

|f, z)� Punif (k1)|


X

k1,f,z

P (f, z) |P (k
1

|f, z)� Punif (k1)|

 2�,

which together with (25) yields (23).

Next, observe that

Q (k
1

, f, z, u)
˜

Q(f, z, u)
= Punif (k)


P (u|k

1

, f, z)

P (u|z)

�
T (k

1

, f, z, u),

and so,

H
min

⇣
Q

K1FZU

|˜Q
FZU

⌘
= log |K|� max

k1,f,z,u

log

P (k
1

, f, z, u)T (k
1

, f, z, u)

P (k
1

, f, z) P (u|z) ,

which is the same as (24).

B. Strong converse for multiple parties

Now we move to the m terminal case where the eavesdropper gets no side information, i.e., Z =

constant. With this simplification, the SK capacity C (XM) for multiple parties was characterized by
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Csiszár and Narayan [14]. Furthermore, they introduced the remarkable expression on the right-side of

(26) below as an upper bound for C (XM), and showed its tightness for m = 2, 3. Later, the tightness

of the upper bound for arbitrary m was shown in [10]; we summarize these developments in the result

below.

Theorem 10. [14], [10] The SK capacity C for the case when eavesdropper’s side information Z =

constant is given by

C (XM) = min

⇡

1

|⇡|� 1

D

✓
P

XM

����
|⇡|Y

i=1

P

X⇡i

◆
, (26)

where the min is over all partitions ⇡ of M.

This generalized the classic result of Maurer [34] and Ahlswede and Csiszár [1], which established

that for two parties, C (X
1

, X
2

) = D (P

X1X2
kP

X1
⇥ P

X2
) = I (X

1

^X
2

).

The converse part of Theorem 10 relied critically on the fact that ✏
n

+ �
n

! 0 as n ! 0. Below we

strengthen the converse and show that the upper bound for SK rates implied by Theorem 10 holds even

when (✏
n

, �
n

) is fixed. Specifically, for 0 < ✏, � with ✏ + � < 1 and Z = constant, an application of

Theorem 3 to the IID rvs Xn

M, with Q

⇡

X

n
M

=

Q|⇡|
i=1

P

n

X⇡i
, yields

S
✏,�

(Xn

1

, ..., Xn

m

)  1

|⇡|� 1

2

4� log �
✏+�+⌘

0

@
P

n

XM
,

|⇡|Y

i=1

P

n

X⇡i

1

A
+ |⇡| log(1/⌘)

3

5 ,

where ⌘ < 1� ✏� �. Therefore, using Stein’s Lemma (see (6)) we get

C
✏,�

(XM)  1

|⇡|� 1

lim inf

n!1
� 1

n
log �

✏+�+⌘

0

@
P

n

XM
,

|⇡|Y

i=1

P

n

X⇡i

1

A

=

1

|⇡|� 1

D

✓
P

XM

����
|⇡|Y

i=1

P

X⇡i

◆
.

Also, note that if ✏+ � > 1, the SK rate can be infinity. Indeed, even for ✏+ � = 1 the SK rate is infinity,

as is seen by time sharing between an infinite rate (1, 0)-SK of rate infinity and (0, 1)-SK of rate infinity.

Thus, we have established the following strong converse for the SK capacity when Z = constant.

Corollary 11 (Strong converse for SK capacity). Given 0 < ✏, � < 1, the (✏, �)-SK capacity C
✏,�

(XM)
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is given by

C
✏,�

(XM) = min

⇡

1

|⇡|� 1

D

✓
P

XM

����
|⇡|Y

i=1

P

X⇡i

◆
, if ✏+ � < 1,

and

C
✏,�

(XM) = 1, if ✏+ � � 1.

V. IMPLICATIONS FOR SECURE COMPUTING

In this section, we consider secure computing by two (mutually untrusting) parties. First introduced

by Yao in [65], these problems have propelled the research in cryptography over the last three decades.

In particular, we will consider the oblivious transfer and the bit commitment problem, the two basic

primitives for secure computing. We will look at the information theoretic versions of these problems

where, as an additional resource, the parties observe correlated RVs X
1

and X
2

. Our converse results

are based on reduction arguments which relate these problems to the SK agreement problem, enabling

the application of Theorem 3.

To state our results, we need the notions of maximum common function and minimum sufficient statistic;

their role in bounding the performance of secure computing protocols was first highlighted in [64].

Specifically, for RVs X
1

, X
2

, denote by mcf(X
1

, X
2

) the maximum common function of X
1

and X
2

[21] (see, also, [54]). Also, denote by mss(X
2

|X
1

) the minimum sufficient statistic for X
2

given X
1

, i.e.,

the minimal function g(X
1

) such that the Markov chain X
1

—g(X
1

)—X
2

holds. Specifically, mss(X
2

|X
1

)

is given by the function resulting from the following equivalence relation on X
1

(cf. [20], [29], [51]):

x
1

⇠ x0
1

, P

X2|X1
(x

2

|x
1

) = P

X2|X1

�
x
2

|x0
1

�
, for all x

2

2 X
2

.

A. Oblivious transfer

We present bounds on the efficiency of implementing information theoretically secure one-of-two OT

using correlated randomness. Formally, suppose the first party observes K
0

and K
1

, distributed uniformly

over {0, 1}l, and the second party observes a random bit B. The RVs K
0

,K
1

, and B are mutually

independent. Furthermore, party i observes the RV X
i

, i = 1, 2, where RVs (X
1

, X
2

) are independent

jointly of (K
0

,K
1

, B). The second party seeks to compute K
B

without giving away B to the first party.

At the same time, the first party does not want to give away K
B

to the second party.
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Definition 6. (Oblivious transfer) An (✏, �
1

, �
2

)-OT of length l consists of an interactive communication

protocol F and ˆK =

ˆK(X
2

, B,F) such that the following conditions hold18:

P

⇣
K

B

6= ˆK
⌘
 ✏, (27)

d
�
P

KBX2BF

,P
KB

⇥ P

X2BF

�
 �

1

, (28)

d (P
BK0K1X1F

,P
B

⇥ P

K0K1X1F
)  �

2

, (29)

where B = 1�B. The first condition above denotes the reliability of OT, while the second and the third

conditions ensure security for party 1 and 2, respectively. Denote by L
✏,�1,�2

(X
1

, X
2

) the largest length

l of an (✏, �
1

, �
2

)-OT.

When the underlying observations X
1

, X
2

consist of n-length IID sequences Xn

1

, Xn

2

with common

distribution P

X1X2
, it is known that L

✏,�1,�2
(Xn

1

, Xn

2

) may grow linearly with n (cf. [36], [2]); the largest

rate of growth is called the OT capacity.

Definition 7 (OT capacity). For 0 < ✏ < 1, the ✏-OT capacity of (X
1

, X
2

) is defined19 as

C
✏

(X
1

, X
2

) = lim inf

n

sup

�1n,�2n

1

n
L
✏,�1n,�2n

(Xn

1

, Xn

2

),

where the sup is over all �
1n

, �
2n

! 0 as n ! 1. The OT capacity is defined as

C(X
1

, X
2

) = inf

0<✏<1

C
✏

(X
1

, X
2

).

The main result of this section is an upper bound on L
✏,�1,�2

(X
1

, X
2

). Consequently, we recover the

upper bound on C(X
1

, X
2

) due to Ahlswede and Csiszár derived in [2]. In fact, we show that the upper

bound is “strong” and applies to C
✏

(X
1

, X
2

) for every 0 < ✏ < 1.

Theorem 12 (Single-shot bound for OT length). For RVs X
1

, X
2

, V
0

= mcf(X
1

, X
2

) and V
1

=

mss(X
2

|X
1

), the following inequalities hold:

L
✏,�1,�2

(X
1

, X
2

)  � log �
⌘

�
P

X1X2V0
,P

X1|V0
P

X2|V0
P

V0

�
+ 2 log(1/⇠), (30)

L
✏,�1,�2

(X
1

, X
2

)  � log �
⌘

�
P

V1V1X2
,P

V1|X2
P

V1|X2
P

X2

�
+ 2 log(1/⇠), (31)

18Strictly speaking, OT refers to the problem where the strings K0,K1 and the bit B are fixed. The randomized version here
is sometimes referred as oblivious key transfer (see [3], [63]) and is equivalent to OT.

19For brevity, we use the same notation for SK capacity and OT capacity; the meaning will be clear from the context. Similarly,
the notation L, used here to denote the optimal OT length, is also used to denote the optimal BC length in the next section.
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for all ⇠ > 0 with ⌘ = ✏+ �
1

+ 2�
2

+ ⇠ < 1.

Corollary 13 (Strong bound for OT capacity). For 0 < ✏ < 1, the ✏-OT capacity of (X
1

, X
2

) satisfies

C
✏

(X
1

, X
2

)  min{I(X
1

^X
2

|V
0

), H(V
1

|X
2

)},

where V
0

= mcf(X
1

, X
2

) and V
1

= mss(X
2

|X
1

).

The proof of Theorem 12 entails reducing two SK agreement problems to OT20. The bound (30) is

obtained by recovering K
B

as a SK, while (31) is obtained by recovering K
B

as a SK; we note these

two reductions as separate lemmas below.

Lemma 14 (Reduction 1 of SK agreement to OT). Consider SK agreement for two parties observing

X
1

and X
2

, respectively, with the eavesdropper observing V
0

= mcf(X
1

, X
2

). Given an (✏, �
1

, �
2

)-OT

of length l, there exists a protocol for generating an (✏+ �
1

+ 2�
2

)-SK of length l. In particular,

L
✏,�1,�2

(X
1

, X
2

)  S
✏+�1+2�2

(X
1

, X
2

|V
0

).

Lemma 15 (Reduction 2 of SK agreement to OT). Consider two party SK agreement where the

first party observes X
1

, the second party observes (V
1

, X
2

) = (mss(X
2

|X
1

), X
2

) and the eavesdropper

observes X
2

. Given an (✏, �
1

, �
2

)-OT of length l, there exists a protocol for generating an (✏+�
1

+2�
2

)-SK

of length l. In particular,

L
✏,�1,�2

(X
1

, X
2

)  S
✏+�1+2�2

(X
1

, (V
1

, X
2

)|X
2

).

Remarks. (i) Underlying the proof of C(X
1

, X
2

)  I(X
1

^X
2

) in [2] was a reduction of SK agreement to

OT, which is extended in our proof below to prove (30). In contrast, the proof of the bound C(X
1

, X
2

) 

H(X
1

|X
2

) in [2] relied on manipulations of entropy terms. Below we give an alternative reduction

argument to prove (31).

(ii) In general, our bounds are stronger than those presented in [61]. For instance, the latter is loose

when the observations consist of mixtures of IID RVs. Further, while both (31) and [61, Theorem 5]

(specialized to OT) suffice to obtain the second bound in Corollary 13, in contrast to (30), [61, Theorem

2] does not yield the first bound in Corollary 13.

(iii) For simplicity of presentation, we did not allow local randomization in the formulation above.

20A reduction of SK to OT in a computational security setup appeared in [22].
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However, it can be easily included as a part of X
1

and X
2

by replacing X
i

with (X
i

, U
i

), i = 1, 2, where

U
1

, U
2

, (X
1

, X
2

) are mutually independent. Since our proofs are based on reduction of SK agreement

to OT, by noting that mss(X
2

, U
2

|X
1

, U
1

) = mss(X
2

|X
1

) and that the availability of local randomness

does not change our upper bound on SK length in Theorem 3, the results above remain valid even when

local randomness is available.

(iv) An (✏, �
1

, �
2

)-OT capacity can be defined, without requiring �
1n

, �
2n

to go to 0 as in the definition

of C
✏

(X
1

, X
2

). The problem of characterizing (✏, �
1

, �
2

)-OT capacity for all 0 < ✏, �
1

, �
2

< 1 remains

open.

We prove Lemmas 14 and 15 next. The proof of Theorem 12 follows by Theorem 3, along with the

Markov relation X
1

—V
1

—X
2

and the data processing inequality (5); the corollary follows by Stein’s

Lemma (see Section II-B).

Proof. of Lemma 14. Let ˆK be the estimate of K
B

formed by the second party. The following protocol

generates an (✏+ �
1

+ 2�
2

)-SK of length l

(i) The first party generates two random strings K
0

and K
1

of length l, and the second party generates

a random bit B. Two parties run the OT protocol.

(ii) The second party sends B over the public channel.

(iii) Using B, the first party computes K
B

. The RVs K
B

, ˆK constitute an (✏+ �
1

+ 2�
2

)-SK.

Since both parties agree on K
B

with probability greater than 1 � ✏, by Proposition 1 and remark (iii)

following Theorem 3, it suffices to show that for some distribution Q
V0FB

(see Remark (iii) following

Theorem 3),

d (P
KBV0FB

,Punif ⇥Q

V0FB

)  �
1

+ 2�
2

.

Observe that condition (29) is the same as

d
�
P

K0K1X1F|B=0

,P
K0K1X1F|B=1

�
 2�

2

. (32)

July 9, 2014 DRAFT



26

Let Q
V0FB

(v, f, b) = P

V0F|B
�
v, f |b

�
P

B

(b). Then,

d (P
KBV0FB

,Punif ⇥Q

V0FB

)

=

1

2

X

b

d
�
P

KbV0F|B=b

,Punif ⇥Q

V0F|B=b

�

=

1

2

X

b

d
⇣
P

KbV0F|B=b

,Punif ⇥ P

V0F|B=b

⌘

 1

2

X

b

h
d
⇣
P

KbV0F|B=b

,Punif ⇥ P

V0F|B=b

⌘
+ d

⇣
P

KbV0F|B=b

,P
KbV0F|B=b

⌘i

= d
�
P

KBV0FB

,Punif ⇥ P

V0FB

�
+

1

2

X

b

d
⇣
P

KbV0F|B=b

,P
KbV0F|B=b

⌘

 �
1

+ 2�
2

,

where the last inequality uses (28) and (32), together with the fact that V
0

is a function of X
2

as well

as X
1

.

Proof. of Lemma 15. The following protocol generates an (✏+ �
1

+ 2�
2

)-SK of length l.

(i) The first party generates two random strings K
0

and K
1

of length l, and the second party generates

a random bit B. Two parties run the OT protocol.

(ii) Upon observing F, the second party samples ˜X
2

according to the distribution

P

X2|V1BF

�
· | V

1

, B,F
�
.

(iii) The second party sends B over the public channel.

(iv) The first party computes K
B

and the second party computes ˜K =

ˆK(

˜X
2

, B,F). The RVs K
B

, ˜K

constitute an (✏+ �
1

+ 2�
2

)-SK.

Heuristically, this protocol entails the second party emulating ˜X
2

, pretending that the protocol was

executed for B instead of B. Since the communication of the first party is oblivious of the value of

B, plugging ˜X
2

into ˆK will lead to an estimate of K
B

provided that the emulated ˜X
2

preserves the joint

distribution.

By Proposition 1 and (28), it suffices to show that

P

⇣
K

B

6= ˜K
⌘
 ✏+ 2�

2

. (33)
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To that end, note

P

⇣
K

B

6= ˜K
⌘

=

1

2

X

k, b, v,f

P

KbV1F|B (k, v, f |b) P
⇣
ˆK(X

2

, b, f) 6= k | V
1

= v,B = b,F = f
⌘

 1

2

X

k, b, v,f

P

KbV1F|B
�
k, v, f |b

�
P

⇣
ˆK(X

2

, b, f) 6= k | V
1

= v,B = b,F = f
⌘
+ 2�

2

=

1

2

X

k, b, v,f

P

KbV1F|B (k, v, f |b) P
⇣
ˆK(X

2

, b, f) 6= k | V
1

= v,B = b,F = f
⌘
+ 2�

2

= P

⇣
K

B

6= ˆK
⌘
+ 2�

2

.

where the inequality uses (32) and the last equality uses the Markov relation X
2

—V
1

BF—K
0

K
1

, which

holds in the view of the interactive communication property of Lemma 5; (33) follows by (27).

B. Bit commitment

Two parties observing correlated observations X
1

and X
2

want to implement information theoretically

secure BC using interactive public communication, i.e., the first party seeks to report to the second the

results of a series of coin tosses that it conducted at its end in such a manner that, at a later stage, the

second party can detect if the first party was lying [7]. Formally, a BC protocol consists of two phases:

the commit phase and the reveal phase. In the commit phase, the first party generates a random string

K, distributed uniformly over {0, 1}l and independent jointly of (X
1

, X
2

). Furthermore, the two parties

communicate interactively with each other. In the reveal phase, the first party “reveals” its data, i.e., it

sends X 0
1

and K 0, claiming these were its initial choices of X
1

and K, respectively. Subsequently, the

second party applies a (randomized) test function T = T (K 0, X 0
1

, X
2

,F), where T = 0 and T = 1,

respectively, indicate K 0
= K and K 0 6= K.

Definition 8 (Bit commitment). An (✏, �
1

, �
2

)-BC of length l consists of a secret K ⇠ unif{0, 1}l,

an interactive communication F (sent during the commit phase), and a {0, 1}-valued randomized test

function T = T (K 0, X 0
1

, X
2

,F) such that the following hold:

P (T (K,X
1

, X
2

,F) 6= 0)  ✏, (34)

d (P
KX2F

,P
K

⇥ P

X2F
)  �

1

, (35)

P

�
T (K 0, X 0

1

, X
2

,F) = 0,K 0 6= K
�
 �

2

, (36)
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where RVs X 0
1

,K 0 are arbitrary. The first condition above is the soundness condition, which captures the

reliability of BC. The next condition is the hiding condition, which ensures that the second party cannot

ascertain the secret in the commit phase. Finally, the binding condition in (36) restricts the probability

with which the first party can cheat in the reveal phase. Denote by L
✏,�1,�2

(X
1

, X
2

) the largest length l

of an (✏, �
1

, �
2

)-BC.

For n-length IID sequences Xn

1

, Xn

2

generated from P

X1X2
, the largest rate of L

✏,�1,�2
(X

1

, X
2

) is

called the BC capacity.

Definition 9 (BC capacity). For 0 < ✏, �
1

, �
2

< 1, the (✏, �
1

, �
2

)-BC capacity of (X
1

, X
2

) is defined as

C
✏,�1,�2

(X
1

, X
2

) = lim inf

n

1

n
L
✏,�1,�2

(Xn

1

, Xn

2

).

The BC capacity is defined as

C(X
1

, X
2

) = lim

✏,�1,�2!0

C
✏,�1,�2

(X
1

, X
2

).

The following result of Winters, Nascimento, and Imai [62] (see, also, [50, Chapter 8]) gives a simple

formula for C(X
1

, X
2

).

Theorem 16. [62] For RVs X
1

, X
2

, let V
1

= mss(X
2

|X
1

). The BC capacity is given by

C(X
1

, X
2

) = H(V
1

| X
2

).

In this section, we present an upper bound on L
✏,�1,�2

(X
1

, X
2

), which in turn leads to a strong converse

for BC capacity.

Theorem 17 (Single-shot bound for BC length). Given 0 < ✏, �
1

, �
2

, ✏+ �
1

+ �
2

< 1, for RVs X
1

, X
2

and V
1

= mss(X
1

|X
2

), the following inequality holds:

L
✏,�1,�2

(X
1

, X
2

)  � log �
⌘

�
P

V1V1X2
,P

V1|X2
P

V1|X2
P

X2

�
+ 2 log(1/⇠),

for all ⇠ with ⌘ = ✏+ �
1

+ �
2

+ ⇠.

Corollary 18 (Strong converse for BC capacity). For 0 < ✏, �
1

, �
2

, ✏ + �
1

+ �
2

< 1, the (✏, �
1

, �
2

)-BC

capacity satisfies

C
✏,�1,�2

(X
1

, X
2

)  H(V
1

| X
2

),
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where V
1

= mss(X
2

|X
1

).

Theorem 17 is obtained by a reduction of SK agreement to BC, which is along the lines of [62], [26],

[42]; the following lemma captures the resulting bound.

Lemma 19 (Reduction of SK to BC). For 0 < ✏, �
1

, �
2

, ✏+ �
1

+ �
2

< 1, it holds that

L
✏,�1,�2

(X
1

, X
2

)  S
✏+�1+�2

(X
1

, (V
1

, X
2

) | X
2

),

where V
1

= mss(X
2

|X
1

).

Remarks. (i) While local randomization was not allowed in the foregoing discussion, as before (see

Remark (iii) following Lemma 15) our results do not change with the availability of local randomness.

(ii) For ✏, �
1

, �
2

> 0, ✏ + �
1

+ �
2

< 1, the following bound on L
✏,�1,�2

(X
1

, X
2

) was derived in [42,

Lemma 4]:

L
✏,�1,�2

(X
1

, X
2

)  H(V
1

|X
2

) + h(�
1

) + h(✏+ �
2

)

1� ✏� �
1

� �
2

,

where h(·) is the binary entropy function. However, this bound is weaker than Theorem 17, in general,

and is not sufficient for deriving Corollary 18.

Theorem 17 follows by using Lemma 19 with Theorem 3, along with the Markov relation X
1

—V
1

—X
2

and the data processing inequality (5); the Corollary 18 follows by Stein’s Lemma (see Section II-B).

We prove Lemma 19 below.

Proof of Lemma 19. The reduction argument presented here is along the lines of [26, Proposition 9]

(see, also, [42, Lemma 4]). Given an (✏, �
1

, �
2

)-BC of length l, consider SK agreement by two parties

observing X
1

and (V
1

, X
2

), respectively, with the eavesdropper observing X
2

. To generate a SK, the

parties run the commit phase of the BC protocol, i.e., the first party generates K ⇠ unif{0, 1}l and

the parties send the interactive communication F. We show that the committed secret K constitues a

(✏+ �
2

, �
1

)-SK. Indeed, by the hiding condition (35), the SK K satisfies the security condition (2) with

� = �
1

. We complete the proof by showing that there exists ˆK =

ˆK(V
1

, X
2

,F) such that

P

⇣
ˆK 6= K

⌘
 ✏+ �

2

. (37)

July 9, 2014 DRAFT



30

To that end, let ( ˆK, ˆX
1

) be a function of (v, f) given by

(

ˆK, ˆX
1

) = argmax

ˆ

k,x̂1

P

⇣
T (ˆk, x̂

1

, X
2

,F) = 0 | V
1

= v,F = f
⌘

= argmax

ˆ

k,x̂1

X

x2

P

X2|V1F
(x

2

|v, f) P
⇣
T (ˆk, x̂

1

, x
2

, f) = 0

⌘
.

Note that while the estimated secret ˆK does not depend on X
2

, the latter is needed to facilitate the

communication F in the emulation of the commit phase. For ( ˆK, ˆX
1

) as above, we get

P

⇣
T ( ˆK, ˆX

1

, X
2

,F) = 0

⌘

=

X

v,f

P

V1F
(v, f)

X

x2

P

X2|V1F
(x

2

|v, f) P
⇣
T ( ˆK(v, f), ˆX

1

(v, f), x
2

, f) = 0

⌘

�
X

v,f

P

V1F
(v, f)

X

k,x1

P

K,X1|V1F
(k, x

1

|v, f)
X

x2

P

X2|V1F
(x

2

|v, f) P (T (k, x
1

, x
2

, f) = 0)

= P (T (K,X
1

, X
2

,F) = 0)

� 1� ✏,

where the first inequality uses the definition of ( ˆK, ˆX
1

) and the second equality uses the Markov relation

KX
1

—V
1

F—X
2

, which holds in the view of the interactive communication property of Lemma 5. The

inequality above, along with the binding condition (36), yields

1� ✏  P

⇣
ˆK = K

⌘
+ P

⇣
T ( ˆK, ˆX

1

, X
2

,F) = 0, ˆK 6= K
⌘

 P

⇣
ˆK = K

⌘
+ �

2

,

which completes the proof of (37).

We conclude this section by observing a simple application of Theorem 17 in bouding the efficiency

of reduction of BC to OT. For a detailed discussion, see [42].

Example 1 (Reduction of BC to OT). Suppose two parties have at their disposal an OT of length n.

Using this as a resource, what is the length l of (✏, �
1

, �
2

)-BC that can be constructed?

Denoting by K
0

,K
1

the OT strings, and by B the OT bit of second party, let X
1

= (K
0

,K
1

) and

X
2

= (B,K
B

). Note that (8) holds with P = P

X1X1X2
and Q = P

X1|X2
P

X1X2
, and

D(P

X1X1X2
kP

X1|X2
P

X1X2
) = n.
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Therefore, by Theorem 17 and (9), we get

l  n+ log(1/(1� ✏� �
1

� �
2

� ⌘)) + 2 log(1/⌘),

where 0 < ⌘ < 1� ✏� �
1

� �
2

. This bound on efficiency of reduction is stronger than the one derived in

[42, Corollary 2] (fixing n = n0
= 1 in that bound). In particular, it shows an additive loss of logarithmic

order in (1� ✏� �
1

� �
2

), while [42, Corollary 2] shows a multiplicative loss of linear order.

VI. IMPLICATIONS FOR SECURE COMPUTING WITH TRUSTED PARTIES

In this section, we present a connection of our result to a problem of secure function computation with

trusted parties, where the parties seek to compute a function of their observations using a communication

that does not reveal the value of the function by itself (without the observations at the terminals). This

is in contrast to the secure computing treated in Section V where the communication is secure but the

parties are required not to get any more information than the computed function value. This problem

was introduced in [53] where a matching necessary and sufficient condition was given for the feasibility

of secure computing in the asymptotic case with IID observations. Here, using Theorem 3, we derive a

necessary condition for the feasibility of such secure computing for general observations (not necessarily

IID).

Formally, consider m � 2 parties observing RVs X
1

, ..., X
m

taking values in finite sets X
1

, ...,X
m

,

respectively. Upon making these observations, the parties communicate interactively in order to securely

compute a function g : X
1

⇥ ...⇥ X
m

! G in the following sense: The ith party forms an estimate G
(i)

of the function based on its observation X
i

, local randomization U
i

and interactive communication F,

i.e., G
(i)

= G
(i)

(U
i

, X
i

,F). For 0  ✏, � < 1, a function g is (✏, �)-securely computable if there exists a

protocol satisfying

P

�
G = G

(1)

= ... = G
(m)

�
� 1� ✏, (38)

d (P
GF

,P
G

⇥ P

F

)  �, (39)

where G = g (XM). The first condition captures the reliability of computation and the second condition

ensures the security of the protocol. Heuristically, for security we require that an observer of (only) F

must not get to know the computed value of the function. We seek to characterize the (✏, �)-securely

computable functions g.

In [53], an asymptotic version of this problem was addressed. The parties observe Xn

1

, ..., Xn

m

and

seek to compute G
t

= g (X
1t

, ..., X
mt

) for each t 2 {1, ..., n}; consequently, the RVs {G
t

, 1  t  n}
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are IID. A function g is securely computable if the parties can form estimates G(n)

(1)

, ..., G(n)

(m)

such that

P

⇣
Gn

= G(n)

(1)

= ... = G(n)

(m)

⌘
� 1� ✏

n

, d (P
G

n
F

,P
G

n ⇥ P

F

)  ✏
n

,

where lim

n!1
✏
n

= 0. The following characterization of securely computable functions g is known.

Theorem 20. [53] For the asymptotic case described above, a function g is securely computable if

H(G) < C, where H(G) is the entropy of the RV G = g(XM) and C = C(XM) is the SK capacity

given in Theorem 10.

Conversely, if a function g is securely computable, then H(G)  C.

Heuristically, the necessary condition above follows upon observing that if the parties can securely

compute the function g, then they can extract a SK of rate H(G) from RVs Gn. Therefore, H(G) must

be necessarily less than the maximum rate of a SK that can be generated, namely the SK capacity C.

Using this heuristic, we present a necessary condition for a function g to be (✏, �)-securely computable.

Corollary 21. For 0  ✏, � < 1 with ✏+ � < 1, if a function g is (✏, �)-securely computable, then

H⇠

min

(P

G

)  1

|⇡|� 1


� log �

µ

�
P

XM ,Q⇡

XM

�
+ |⇡| log(1/⌘)

�
+ 2 log(1/2⇣) + 1,

8Q⇡

XM
2 Q(⇡), (40)

for every µ = ✏+ � + 2⇠ + ⇣ + ⌘ with ⇠, ⇣, ⌘ > 0 such that µ < 1, and for every partition ⇡ of M.

Proof. The proof is based on extracting an ✏-SK from the RV G that the parties share. Specifically,

Lemma 2 with X = G, Y = const, and condition (39) imply that there exists K = K(G) with

log |K| = bH⇠

min

(P

G

)� 2 log(1/2⇣)c and satisfying

d
�
P

K(G)F

,P
unif

⇥ P

F

�

 d
�
P

K(G)F

,P
K(G)

⇥ P

F

�
+ d

�
P

K(G)

⇥ P

F

,P
unif

⇥ P

F

�

 d (P
GF

,P
G

⇥ P

F

) + d
�
P

K(G)

,P
unif

�

 � + 2⇠ + ⇣.

Thus, in the view of Proposition 1, the RV K constitutes21 an (✏ + � + 2⇠ + ⇣)-SK. An application of

21Strictly speaking, the estimates K1, ...,Km of K formed by different parties constitute the (✏+ �+2⇠+ ⇣)-SK in the sense
of (3).
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Theorem 3 gives (40).

We conclude this section with two illustrative examples.

Example 2. (Computing functions of independent observations using a perfect SK). Suppose the ith

party observes U
i

, where the RVs U
1

, ..., U
m

are mutually independent. Furthermore, all parties share

a -bit perfect SK K which is independent of UM. How many bits  are required to (✏, �)-securely

compute a function g (U
1

, ..., U
m

)?

Note that the data observed by the ith party is given by X
i

= (U
i

,K). A simple calculation shows

that for every partition ⇡ of M,

�
✏

0

@
P

XM ,

|⇡|Y

i=1

P

X⇡i

1

A � (1� ✏)1�|⇡|,

and therefore, by Corollary 21 a necessary condition for g to be (✏, �)-securely computable is

H⇠

min

(P

G

)  +

1

|⇡|� 1

(|⇡| log(1/⌘) + log(1/(1� µ))) + 2 log(1/2⇣) + 1, (41)

for every ⇠, ⇣, ⌘ > 0 satisfying µ = ✏+ � + 2⇠ + ⇣ + ⌘ < 1.

For the special case when U
i

= Bn

i

, a sequence of independent, unbiased bits, and

g (Bn

1

, ..., Bn

m

) = B
11

� ...�B
m1

, ..., B
1n

� ...�B
mn

,

i.e., the parties seek to compute the (element-wise) parities of the bit sequences, it holds that H⇠

min

(P

G

) �

n. Therefore, (✏, �)-secure computing is feasible only if n   + O(1). We remark that this necessary

condition is also (almost) sufficient. Indeed, if n  , all but the mth party can reveal all their bits

Bn

1

, . . . , Bn

m�1

and the mth party can send back Bn

1

� . . .�Bn

m

�K
n

, where K
n

denotes any n out of

 bits of K. Clearly, this results in a secure computation of g.

Example 3. (Secure transmission). Two parties sharing a -bit perfect SK K seek to exchange a message

M securely.22 To this end, they communicate interactively using a communication F, and based on this

communication the second party forms an estimate ˆM of the first party’s message M . This protocol

accomplishes (✏, �)-secure transmission if

P

⇣
M =

ˆM
⌘

� 1� ✏, d (P
MF

,P
M

⇥ P

F

)  �.

The classic result of Shannon [47] implies that (0, 0)-secure transmission is feasible only if  is at

22A message M is a RV with known distribution PM .
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least log kMk, where kMk denotes the size of the message space.23 But, can we relax this constraint

for ✏, � > 0? In this example, we will give a necessary condition for the feasibility of (✏, �)-secure

transmission by relating it to the previous example.

Specifically, let the observations of the two parties consist of X
1

= (M,K), X
2

= K. Then, (✏, �)-

secure transmission of M is tantamount to securely computing the function g(X
1

, X
2

) = M . Therefore,

using (41), (✏, �)-secure transmission of M is feasible only if

H⇠

min

(P

M

)  + 2 log(1/⌘) + log(1/(1� µ)) + 2 log(1/2⇣) + 1, (42)

for every ⇠, ⇣, ⌘ > 0 satisfying µ = ✏+ � + 2⇠ + ⇣ + ⌘ < 1.

Condition (42) brings out a trade-off between  and ✏+ � (cf. [30, Problems 2.12 and 2.13]). For an

illustration, consider a message M consisting of a RV Y taking values in a set Y = {0, 1}n [ {0, 1}2n

and with the following distribution:

P

Y

(y) =

8
<

:

1

2

· 1

2

n y 2 {0, 1}n

1

2

· 1

2

2n y 2 {0, 1}2n
.

For ✏+ � = 0, we know that secure transmission will require  to be more than the worst-case message

length 2n. But perhaps by allowing ✏ + � to be greater than 0, we can make do with fewer SK bits;

for instance, perhaps  equal to H(M) = (3/2)n+ 1 will suffice (note that the average message length

equals (3/2)n). The necessary condition above says that this is not possible if ✏ + � < 1/2. Indeed,

since H⇠

min

(P

Y

) � 2n for ⇠ = 1/4, we get from (42) that the message M = Y can be (✏, �)-securely

transmitted only if 2n  +O(1), where the constant depends on ✏ and �.

VII. DISCUSSION

In this work, we focused on converse results and presented single-shot upper bounds on the efficiency

of using correlated randomness for SK agreement and secure computing protocols. When the underlying

observations are IID, the resulting upper bounds were shown to be tight in several cases. It is natural to ask

how tight are these bounds for IID observations of fixed, finite length. For the SK agreement problem, it

is possible to mimic the approach in [34], [1], [14], [45] to obtain protocols that first use communication

for information reconciliation and then extract SKs using privacy amplification. The challenge in the

multiparty setup is to identify the appropriate information to be reconciled. For the case of two parties

observing IID sequences, relying on Theorem 3, recently the second-order asymptotics of the maximum

23This is a slight generalization of Shannon’s original result; see [30, Theorem 2.7] for a proof.
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length of a SK was established in [25]. Coming up with finite-length schemes that match the converse

bounds for the various secure computing problems studied above is work in progress.

Finally, note that our converse results in Sections V and VI entail reducing SK agreement to the secure

computing task at hand, followed by an application of Theorem 3. It is foreseeable, and indeed tempting,

that this approach can lead to converse bounds for other problems in cryptography.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography–part i: Secret sharing,” IEEE

Trans. Inf. Theory, vol. 39, no. 4, pp. 1121–1132, July 1993.

[2] ——, “On oblivious transfer capacity,” Information Theory, Combinatorics, and Search Theory, pp. 145–166, 2013.

[3] D. Beaver, “Precomputing oblivious transfer,” in Advances in Cryptology - CRYPTO, 1995, pp. 97–109.

[4] A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz, “On the cryptographic complexity of the worst functions,” in In

TCC, 2014, pp. 317–342.
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