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Abstract—Explainability is one of the key elements for building
trust in AI systems. Among numerous attempts to make AI
explainable, quantifying the effect of explanations remains a
challenge in conducting human-AI collaborative tasks. Aside
from the ability to predict the overall behavior of AI, in many
applications, users need to understand an AI agent’s competency
in different aspects of the task domain. In this paper, we evaluate
the impact of explanations on the user’s mental model of AI
agent competency within the task of visual question answering
(VQA). We quantify users’ understanding of competency, based
on the correlation between the actual system performance and
user rankings. We introduce an explainable VQA system that uses
spatial and object features and is powered by the BERT language
model. Each group of users sees only one kind of explanation
to rank the competencies of the VQA model. The proposed
model is evaluated through between-subject experiments to probe
explanations’ impact on the user’s perception of competency.
The comparison between two VQA models shows BERT based
explanations and the use of object features improve the user’s
prediction of the model’s competencies.

I. INTRODUCTION

Recent developments in the field of AI and specifically deep
neural networks (DNN) have brought them into a broad range
of applications. DNNs have automated a wide range of human
activities resulting in reduced complexity of many tasks. Users
of AI systems, though, need to maintain at least a minimal
level of understanding and trust in the system, i.e., they need
a proper mental model of the system’s internal operations for
anticipating success and failure modes.
While accuracy is well-known as the primary metric for
AI efficiency, it cannot guarantee a collaborative human-
machine interaction in the absence of trust. If the users do
not trust a model or a prediction, they will not use it [1]. This
mistrust escalates in the presence of adversarial attacks where
imperceptible changes to the input lead to wrong outputs and
also the susceptibility of DNNs to non-intuitive errors.
Explainable AI aims to gain user’s trust on two major
steps of interpretability and explainability. Interpretable mod-
els provide a basic comprehension of their inner-processes
through visual or textual cues. On a higher level, explainable
models attempt to provide reason and causality behind their
decisions[2].
The appearance of various methods of explanations calls for a
parallel effort to evaluate and quantify their efficiency. While

previous works introduce nominal visualizations and textual
justifications on the inner features of DNN models, they do
not evaluate the impact of explanations on various aspects of
user’s understanding and trust.
Evaluation techniques for explanations include automatic and
human-based methods. Automatic approaches provide quan-
tifiable measures over relevant benchmarks, e.g., alignment
with human attention datasets[3], however they still cannot
propose a straight-forward metric for trust in actual human-
machine tasks.
Furthermore, human-based approaches attempt to quantify
explanation effectiveness through collecting user ratings [4],
[5]. Despite their insightful results, these methods do not
measure the user’s perception of AI competency in the entire
domain.
Users can benefit from AI systems more if they are familiar
with the AI agent’s competency in the operational domain.
The competency of AI can be impacted by the biases in the
training data or limited representation of crucial features. An
explanation system that provides case-by-case reasoning for
AI behavior does not automatically produce a higher view of
competency. Particularly, deep learning models are notoriously
opaque and difficult to interpret and often have unexpected
failure modes, making it hard to build trust.
As our prior work showed, explanations improve user predic-
tion of system accuracy [6]. In this new paper, we focus on the
user’s mental model of an AI system in terms of competency
understanding. Specifically, we evaluate the importance of ex-
planations to help users interpret how a VQA system performs
with different types of questions. We model the users’ learning
process under two different explanation systems to identify the
role of the attention-based explanations in the users’ prediction
of competency. For this purpose, we evaluate the impact of
explanations on user learning rate and also their ultimate score
on the task of competency prediction.

II. RELATED WORK

Visual question answering (VQA). Originally introduced
by [7], the VQA problem involves the task of answering
questions about the visual content of an image. The VQA
task is specifically challenging due to the complex interplay
between the language and visual modalities [8]. Limited



labeled data and the complex feature space complicate the
process of developing VQA models. These challenges result
in models with inconsistent outputs and serious logical
contradictions [9]. In such an environment, the choice of
hyper-parameters and architectural designs can have drastic
impacts on the performance of VQA models [10].
A common approach to VQA is to use DNNs with attention
layers that select specific regions of the image, guided by the
question for inferring an answer [10], [11], [12]. Herein, we
also study two attention based VQA models with different
attention structures. As a baseline, we use a model based on
the approaches of Kazemi and Elqursh [13] and Teney et al.
[10]. We propose a new VQA architecture by replacing the
attention mechanism with a BERT model [14] in the baseline
VQA model.
Previous work in VQA includes various attempts to optimize
the attention mechanism. To improve the attention to the
question, Lu et al. [15] utilize a co-attention model to jointly
reason about image and question on hierarchical levels.
Anderson et al. [16] propose a combined bottom-up and
top-down attention mechanism to calculate attention at the
level of objects. The model is further upgraded and fine-tuned
to win the VQA Challenge 2018 [17].
Despite all the advancements in the overall accuracy of VQA
models, their unbalanced performance in different aspects
of the task is overtly noticeable. Some prior approaches
address this issue by focusing on certain tasks such as
reading text in images [18] or counting objects [19]. Other
works introduce new datasets to reduce bias [20] or to
enforce the logical consistency of models through visual
commonsense reasoning (VCR) for challenging questions [21].

Explainable AI (XAI). The ever increasing complexity
of the modern AI machine demands a trustable source of
explanation for all AI users. Generating automated reasoning
and explanations dates back to very early work in the AI field
with direct applications from medicine [22] and education
[23], [24] to robotics [25]. In the field of computer vision,
several explanation systems focus on the importance of image
features in the decision-making process [26], [27], [28], [17].
AI explanations for the task of visual question answering
usually include image and language attention [4], [13].
Besides saliency/attention maps, other efforts investigated
different explanation modes like layered attention [29],
bounding boxes around important regions [30], textual
justifications [22], [31] or a combination of these modes [6].
We propose an explainable VQA system which produces
justifications for system answer in the form of an attention
map. Unlike previous post-hoc saliency approaches such as
GradCAM [32], our method seeks causal explanations by
providing attention as an inherent step of answer inference.
Our proposed model uses visual features on both spatial
and object level. For better performance in a VQA task, our
proposed model utilizes the BERT language model to process
question features along with the visual features.

Explanation evaluation. As AI enters our daily lives, a
new interest has surged among the AI community to make
AI algorithms more understandable to regular people without
knowledge of AI [33]. In this work, we choose the subjects
for explanation evaluation from a group of individuals with
minimum knowledge about AI and deep neural networks.
Evaluating the impact of explanations on user mental model
and human-machine performance is widely discussed in the
XAI literature. Some of the earlier work takes on quantifying
the efficacy of explanations through user studies to assess the
role of explanations in building a better mental model of AI
systems for their human users.
Some of the previous studies introduce metrics to measure
trust with users [34], [1], or the role of explanations to
achieve a goal [35], [36], [37]. Dodge et al. investigated
the fairness aspect of explanations through empirical studies
[38]. Lai and Tan [39] assessed the role of explanations in
user success within a spectrum from human agency to full
machine agency. Lage et al. proposed a method to evaluate
and optimize human-interpretability of explanations based on
measures such as size and repeated terms in explanations [40].
Other approaches measured the effectiveness of explanations
in improving the predictability of a VQA model [41], [6].
Unlike prior approaches, our work is focused on evaluating
human agents knowledge of AI competency. Specifically, we
are interested in user’s mental model of AI performance in
different aspects of the VQA task. We conduct a user study
to investigate the impact of explanations on the user’s mental
model of system competency. Within our study, subjects rank
system performance among different types of input questions.
The results indicate a positive influence on the accuracy of
the user’s mental model in the presence of explanations. We
show the overall and temporal effect of the explanations on
the user’s interpretation in two explainable VQA models.

III. METHODS

Our approach aims at evaluating the role of attentional
explanations in the user’s mental model of AI competency.
To accomplish this task, we compare two explainable VQA
models and test them through user studies.
In this section, we cover the architecture details for these VQA
models and the differences in their attention mechanisms.
The next section follows with sample cases from explanation
models and the differences between them.

A. Explainable VQA (XVQA) models

Our work compares two VQA agents: spatial attention VQA
(SVQA) and spatial-object attention BERT VQA (SOBERT).
Both agents are trained with the VQA 2.0 dataset. SVQA is
based on a 2017 SOTA VQA model with a ResNet [42] image
encoder (Figure 2). The agent uses an attention mechanism to
select visual features generated by an image encoder and an
answer classifier that predicts an answer from 3000 candidates.
As shown in Figure 2, SVQA takes as input a 224×224 RGB
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Fig. 1. The workflow for user study groups: on the left is the baseline group where the users only view the top five answers from the model along with the
probability of the answers. Shown on the right: users inside the explanation group also view the attention maps generated by the model. Each group views
blocks of trials. At the end of each block, the users are asked to rank the question-images based on how well they seem to be understood by the model.

image and questions with at most 15 words. A ResNet subnet
encodes the image into a 14×14×2048 feature representation.
An LSTM model (GloVe [43]) encodes the input question
word embeddings into a feature vector of 512 dimensions.
The attention layer in the SVQA model transfers the question
and image features to a set of attention weights on the image
features. The model convolves the concatenation of weighted
image features and question features to produce the attention
layer with 14 × 14 × 1024 dimensions. The model predicts
the probability of the final answer from a set of 3000 answer
choices using a multilayer perceptron (MLP). The attention
layer also goes through a convolution block to generate the
spatial attention map.
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Fig. 2. The architecture of our explainable SVQA model.

On the other hand, the SOBERT agent uses a combination
of visual embeddings of the image from ResNet and Faster
RCNN (FRCNN) [44] alongside question embeddings (Figure
3). SOBERT accepts questions with a maximum length of 30
words. The input question embeddings contain location and
token information of words. The location features are encoded
in both ResNet and question embeddings.
The SOBERT agent uses a BERT model with 4 layers and 12
attention heads. BERT transfers the hidden features (115×768)
into spatial attention heads (12 × 7 × 7) and an output layer.
An MLP maps the output layer to the final answer prediction
out of 3129 candidates.
Based on their training process and their characteristics, VQA

agents can reach certain levels of accuracy in each type of
question. For our tests, we limit the cases into a subset of a
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Fig. 3. The architecture of the explainable SOBERT model. This model passes
the combination of visual features from ResNet and FRCNN and question
embeddings into a BERT model to produce answers and spatial attention.

VQA 2.0 validation set with questions about action, attribute,
object and count. We classify the questions using a set of
automated methods including word matching in questions and
also their answers.
Questions about activity inside an image are labeled as ”Ac-
tion”. Questions about objects inside the image are labeled
as ”Object”. Questions that are specific about attributes of
entities in the image (e.g., color) are labeled as ”Attribute”.
Finally, questions about counting entities in the image are
categorized as ”Count”. Table I shows the accuracy of SVQA
and SOBERT agents in these four categories. The accuracy
of the models is computed over the four categories within the
VQA validation dataset.
As Table I shows, the two models produce a similar ranking
between the four types of questions, while the SOBERT model
can reach a higher accuracy in all of them compared to the
SVQA model.

B. Explanations

The VQA agents can produce a spatial attention map to
visualize the areas of focus while producing the answer. The
SVQA model convolves the attention tensor into a 14 × 14
spatial map. In the SOBERT model, the attention tensor is
averaged over the 12 attention heads into a 7 × 7 spatial
attention map.



Action: Is the animal sitting or standing?
SVQA SOBERT

Ans: Sitting Ans: Standing

Object: What is on the shelf?
SVQA SOBERT

Ans: Cat Ans: Books

Attribute: What color is the cat?
SVQA SOBERT
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Fig. 4. Attention maps generated by the AI agents for questions in different question type categories. As illustrated by the results, the SOBERT model
produces attention maps with more focus on the areas related to the question.

Action Attribute Object Count

SVQA 81.21% 70.83% 64.46% 45.78%

SOBERT 88.35% 86.63% 71.84% 60.14%

TABLE I
THE ACCURACY OF VQA AGENTS IN FOUR SELECTED TYPES OF

QUESTIONS.

The attention maps generated by the VQA agents provide
a causal explanation to the users as they illustrate AI spa-
tial/object attentions as an inherent step in answer inference.
Both models use spatial features from the images while
gaining a general representation of the images’ content. The
SOBERT model also incorporates object-level F-RCNN fea-
tures into the process.
One major impact of including object-level attention emerges
in the attention map outputs of the model. As can be seen
in Figure 4, the attention numbers from the SOBERT model
cover broader areas that are associated with objects in the
scene. Also, the averaging layer that generates attention pro-
duces smoother attention distributions in the SOBERT model
compared to more localized and scattered attention in SVQA.

IV. EXPERIMENTS

We designed an interface for an in-person user study to
evaluate the impact of explanations on the user’s understanding
of AI agent competency among different question types. At
the introductory section of each study session, subjects are
reminded that the model competency and accuracy of the AI
model is unknown to minimize their prior knowledge and
judgment of the AI agent competency.
In this user study, subjects go through a set of trial blocks
where the AI agent answers questions about images. Each
block consists of four trials with one image-question of each
type: object, attribute, action, and count. In each trial, subjects
first see the input image and question and then they proceed
to see the outputs of the AI agents.
For each model, the study is divided into two groups of
baseline and explanation. Each study group contains 10 sub-
jects and each subject goes through 100 trials (25 blocks).
In all groups, users see the agent’s top five answers, their
probabilities, and agents’ Shannon confidence in each trial. In
the explanation group, subjects first view the attention map
from the model and then see the top answers and confidence
value. The subjects are asked to rank the helpfulness of the
attention maps for understanding the AI’s performance in that
trial.
At the end of each block, subjects rank the trials within the
block based on system performance for each question type.
These rankings reflect subject’s opinion of AI competency.



Model Condition Final ranking corr. Max. user learning rate (corr. / blocks)

SVQA
Baseline 0.757 0.0105

Explanation 0.805 0.0769

SOBERT
Baseline 0.611 0.0253

Explanation 0.921 0.0468

TABLE II
THE MAXIMUM LEARNING RATE OF THE USERS AND THE FINAL VALUE OF CORRELATION IN THE COMPETENCY RANKING TASK. BOTH EXPLANATION

MODELS SHOW AN IMPROVEMENT IN EARLY LEARNING RATES. WHILE EXPLANATIONS FROM THE SOBERT MODEL INCREASE THE LEARNING RATE AS
MUCH AS SVQA, SOBERT REACHES A HIGHER FINAL LEARNING RATE.

Comparing rankings between baseline and explanation groups
measures the impact of explanations on subjects’ mental model
(Figure 5).

In each block of trials, four question-images show up in

Fig. 5. The average of all rankings entered by the subjects at the end of every
block of trials (Top: SVQA model, Bottom: SOBERT model).

randomized order. The AI agent’s success ratio in each block
is also randomized. In the baseline group, users can only
rely on the top answers and their probabilities to understand
system performance for that question and image. On the other
hand, subjects from the explanation groups have the extra
information provided by the attention maps (Figure 1).

A. Explanation helpfulness

In the explanation group, the subjects view the attention
explanations before they see the final answers and accuracy of

AI. At this stage, the subjects rate the explanations based on
their helpfulness towards understanding the AI’s performance.
The helpfulness rankings are specifically interesting for action
and count question types within which the VQA agents show
their highest and lowest competencies. The helpfulness rank-
ings within these categories on SOBERT explanations show
an increase compared to SVQA (Figure 6). While subjects
ranked 17% of SVQA explanations as ”not helpful” in count
questions, this number is reduced to 7% when SOBERT
explanations were used. In action questions, SOBERT also
reduced unhelpful explanations from 8% to 3%.

B. Competency ranking
We assess the accuracy of subjects ranking by measuring

the correlation between that and the ground truth competency
ranking of AI agents (Figure I) and the collected rankings
at the end of each block. Figure 6 illustrates this correlation
between the starting and finishing blocks of each study group.
The start and finish values of correlation are the average of
1-5 and 20-25 blocks respectively.

Fig. 6. Histogram of ratings of how “helpful” explanations are for the
subjects. These helpfulness ratings are given by the subjects as they view
the explanations, and before they see the system’s top 5 answers. So these
ratings are not confounded by the accuracy of the AI.

Overall, the ranking correlation shows an increase in both
models with a slightly higher slope in the presence of expla-
nations (Figure 8). To better picture the temporal impact of



Fig. 7. Temporal impact of attention maps on user rankings. Left: the growth of correlation in baseline and explanation groups is compared between baseline
(blue) and explanation (orange) groups for two models SVQA (left) and SOBERT (right). T-test p-values for SVQA and SOBERT data are 0.07 and 3.7e− 8
respectively.

explanations on the users’ mental models, Figure 7 presents
the progress of ranking correlation throughout the study. In the
early blocks of both models, the explanation groups increase
their ranking correlation with a higher rate than baseline.

Fig. 8. The overall correlation between the users’ rankings and the system’s
actual competencies. Comparing the results from the SVQA model (left) and
our SOBERT model (right) suggests a better improvement of correlations in
the presence of SOBERT attention maps.

C. Competency learning curves

We also investigate the temporal pattern of temporal ranking
correlation by fitting curves into the data in baseline and
explanation groups. This problem, in general, can be viewed
as modeling a user learning curve for a certain task.
The modeling of a user learning curve is widely discussed
in cognitive science. In previous work, researchers analyti-
cally derived exponential learning equations to describe user
improvement in the task [45], [46]. The assumption of a
monotonically decreasing improvement is the main foundation
beneath the exponential learning curves.
Here, in the context of learning AI competency rankings,
subjects start the study with no prior knowledge of the AI
agent’s rankings. Also, the correlation metric cannot exceed a
value of 1.0.
Considering these similarities to the general learning model,
we also assumed an exponential curve with an upper bound

as blocks grow to infinity. With this analogy, we considered
the following curve to fit the ranking correlation trends:

c = α · e−β·b + δ

where b and c are the block count and ranking correlation
respectively. In this setting, the ranking correlation approaches
δ as the subjects continue the study. The value of δ is penalized
for curves fitting to satisfy the condition δ ≤ 1.0.
The slope of the curves in Figure 7 represents the growth rate
of ranking correlations with respect to the number of blocks.
Higher rates of correlation growth show faster learning by
the subjects. To compare the learning rates, we consider the
maximum slope of each curve (Table II).
The results indicate a higher rate of learning for users in
the presence of an explanation. The explanation from the
SVQA agent causes a higher increase in the learning rate
compared to SOBERT. However, the ultimate value of ranking
correlation in the SVQA model is bound to δ = 0.808 while
the SOBERT model approaches the maximum correlation at
δ = 1.0 (Figure 7).

V. DISCUSSION

In our user studies, the overall progress of ranking corre-
lations is measured as a metric to evaluate the users’ mental
model of system competency. We test the users’ mental model
after they saw only 100 instances (trials) of the AI agent’s
performance. However, the results strongly suggest that even
with this limited view of system performance, the subjects
learn the overall competency of AI agents throughout these
tests.
Adding the attentional explanations for both models results in
a significant improvement over competency rankings. Compar-
ing the early learning rates between baseline and explanation
groups suggests a significant improvement by attention map



explanations especially for the SVQA model. However, the
SVQA learning curve suggests an upper bound to the corre-
lation in the presence of explanations. On the other hand, the
SOBERT model shows a higher learning rate with explanations
compared to the baseline while still reaching the maximum
value of correlation.
These results highlight the effect of input features on the
information that the explanations can carry. The SOBERT
model uses object and spatial features vs. the spatial features
in the SVQA model. The SOBERT model also uses BERT
to transfer the features into attention maps. These changes
with respect to the SVQA has raised the upper bound on the
maximum reachable competency prediction by the subjects.
In our study, we control two factors: presence or absence of
explanation, and source of explanation. The comparison be-
tween control groups and explanation groups show the impact
of explanations in general. On the other hand, the comparison
between the two models investigates the role of explanation
quality on user predictions. The quality of explanations can
impact the user’s mental model in various ways. For instance,
the scattered/smooth attention maps may be construed as a
sign of lower/higher competency in the eyes of lay users. To
limit down the effect of such preconceptions and comparisons,
each subject in our study can take the study only once and is
exposed only to one AI agent. However, discovering the chain-
of-thought and decision process can be investigated in future
research to identify the explanation qualities that play a role
in the subject’s prediction.

VI. CONCLUSIONS

In this paper, we evaluate the role of attention map
explanations on the user’s mental model of AI competency.
We designed an experiment where subjects rank the
performance of the VQA model among four different types
of questions. To quantify the subjects’ mental model, we
compute the correlation between user rankings and the AI’s
actual ranking among the question types.
We propose a new XVQA model that produces answers and
attention maps from spatial and object features of the image.
This explainable model uses a BERT language module to
better process the visual and textual embeddings of the input.
The proposed model is compared with a baseline model to
show the effect of input object features and also the BERT
attention module.
Overall results from the experiment suggest an improvement
in the user’s mental model when exposed to the attention
map explanations. The progress of the user’s mental model
(ranking correlations) throughout the experiments indicates
a higher learning rate in the presence of explanations.
Furthermore, the subject group interacting with the newly
proposed model shows a higher rate of ranking correlation
compared to the baseline model. This improvement suggests
a positive impact on the explanations by including the object
feature and the BERT language model.
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