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Abstract 
Wildfires are critical for ecosystems in many geographical regions. However, our current urbanized 
existence in these environments is inducing the ecological balance to evolve into a different dynamic 
leading to the biggest fires in history. Wildfire wind speeds and directions change in an instant, and 
first responders can only be effective if they take action as quickly as the conditions change. What is 
lacking in disaster management today is a system integration of real-time sensor networks, satellite 
imagery, near-real time data management tools, wildfire simulation tools, and connectivity to 
emergency command centers before, during and after a wildfire. As a first time example of such an 
integrated system, the WIFIRE project is building an end-to-end cyberinfrastructure for real-time and 
data-driven simulation, prediction and visualization of wildfire behavior. This paper summarizes the 
approach and early results of the WIFIRE project to integrate networked observations, e.g., 
heterogeneous satellite data and real-time remote sensor data with computational techniques in signal 
processing, visualization, modeling and data assimilation to provide a scalable, technological, and 
educational solution to monitor weather patterns to predict a wildfire’s Rate of Spread. 
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1 Introduction 
Fire is critical for healthy ecosystems in much of the world. However, our current urbanized 

existence in these environments, in conjunction with exotic vegetation growth, imported water 
resources, and global climate changes, is inducing the ecological balance to evolve into a different 
dynamic; a different climatological system of rainfall, wind, seasons, and thus fire seasons. In the 21st 
century California, Arizona and Texas have seen their biggest fires in recorded history. In October 
2003, a series of massive Santa Ana-driven wildfires erupted in Southern California. In San Diego 
(SD) County the Cedar fire [1] burned 280,278 acres, 2,820 buildings and killed 15 people, including 
one firefighter. In 2007, Santa Ana winds created an even larger set of wildfires, leading to the 
evacuation of over half a million people in SD County, the largest fire evacuation in U.S. history, and 
causing damages over $1 billion [2]. The Wallow Fire in 2011 was the largest in Arizona's history [3]. 
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Wind speeds and directions affecting the spread of a fire can change instantly, and first responders 
can only be effective if they take action as quickly as the conditions change. To deliver information 
needed, we must capture the details of these conditions to understand environmental processes. SD 
County is uniquely positioned to monitor and analyze these dynamics through our research sensor 
networks, namely, the High Performance Wireless Research and Education Network (HPWREN) [4]. 
It was not until the last decade that we have the capacity to feed field measurements into simulations 
and visualizations at high resolutions, and it is rarely available in real-time to those that need it, in this 
case environmental modeling efforts. 

Significant measurement instrumentation at the HPWREN and partner sites facilitates the 
collection of large dimensional heterogeneous data of disparate environmental sensors that include 
meteorology, vision, audio and hydrology. Integration of real-time sensor telemetry data can provide 
better situational awareness integral to decision making processes for emergency response situations.  
However, it is critical to provide only relevant data for environmental awareness to the recipient to 
avoid “data-overload” and “sensor failure”. As the quantity of sensors in wide-area multiple-domain 
environments increase, it is imperative to provide a systematic and easy-to-maintain programming 
environment for data analysis in which large dimensional heterogeneous sensor data can be reduced in 
real-time to a lower dimensional representation. In particular, data assimilation and parameter 
estimation techniques can be used to address the need to reduce large dimensional data sets to a 
parametric lower dimension suitable for analysis, interpretation and alert purposes. Such systematic 
data reduction to a lower dimensional representation allows a more efficient (mobile) communication 
of events for decision-making and crisis management, but the following questions need to be 
addressed for effective environmental data analysis: 

• How can large dimensional heterogeneous sensor data of the natural environment be analyzed 
systematically to a (lower dimensional) format useful for information processing, real-time 
monitoring and visualization? 

• How can such data be combined with existing scientific models to allow for prediction of 
propagating wildfires and potential future events to prepare within regions of highest risk? 

• What quality and density of real-time sensors is necessary to improve both the predictive and 
preventive capabilities of current fire models? 

• How can such information processing be easily configured, programmed and computed by 
users with various skill levels to formulate actual real-time data-driven environmental alerts? 

In particular, what is lacking in disaster management today is a system integration of real-time 
sensor networks, satellite imagery, near-real time data management tools, wildfire simulation tools, 
and connectivity to emergency command centers before, during and after a firestorm.  

Contributions. This paper describes the initial design of our end-to-end integrated 
cyberinfrastructure, called WIFIRE, to catalyze new thinking paradigms and practices for wildfire 
research and response. The presented near real-time WIFIRE software infrastructure integrates 
networked observations, e.g., heterogeneous satellite data and real-time remote sensor data with 
computational techniques in signal processing, visualization, modeling and data assimilation to 
provide a scalable, technological, and educational solution to monitor weather patterns to predict a 
wildfire’s Rate of Spread. We also present our early efforts and findings on data management, 
programmability, scalability and visualization of wildfire data and workflows.  

2 WIFIRE System Architecture 
WIFIRE cyberinfrastructure is architected for solutions with pathways that enable joint innovation 

for wildfire management and collaboration between its diverse users. WIFIRE software products 
integrate wide-area multiple-domain sensor telemetry data. New data assimilation and parameter 
estimation techniques reduce these large telemetry data sets to parametric lower dimension models to 
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predict the Rate of Spread (ROS) of wildfires in a constantly changing environment. Scientific 
workflows are used for integration of developed techniques and as a distributed programming and 
execution model that supports interfacing to different components of the cyberinfrastructure and 
heterogeneous computing platforms. 
 

 
Figure 1. Integrated real-time data processing and programming environment in WIFIRE. 

Improving the data processing functionality for the monitoring, modeling and prediction of 
wildfire spread is accomplished in WIFIRE by integrating three main components as indicated in 
Figure 1: (i) a central organization of Scientific and Engineering modules within the open-source 
Kepler scientific workflow system [5] that coordinate the execution of real-time data processing and 
fire propagation tools on distributed computing environments, (ii) a data communication layer with 
links to archives, experimental data, modeling products and heterogeneous sensor data from a diverse 
set of data sources, and (iii) portals for dissemination of data to different end users that include 
scientists, first responders and public notification of user-defined real-time alerts via various receivers 
and Web 2.0-based public systems. The scientific workflow component includes all real-time data 
processing tools for data assimilation of different wildfire spread models, recursive parameter 
estimation, and real-time prediction of wildfire spread. Visualization interfaces include the Optiportal 
Tiled Display, i.e., HIPerspace Wall, and STAR CAVE currently placed at Calit2 Qualcomm Institute. 

Due to the central organization around scientific and engineering modules within the open-source 
Kepler scientific workflow system, the WIFIRE cyberinfrastructure is built inherently scalable to 
handle both large sets of heterogeneous sensor data [6] and execute computations in parallel on 
distributed computing environments [7], e.g., XSEDE. The Data Communication Layer can be 
extended to include different kind of data sets without altering these Kepler modules. 

3 WIFIRE Subsystems 

3.1 Data Communication 
WIFIRE’s Data Communication Subsystem provides a layer above all data sources needed for 

wildfire modeling. It handles the ingestion and integration of a diverse set of ground-based and 
airborne sensor data and satellite imagery along with other experimental, modeling and geopolitical 
datasets.  The use of low-latency sensor data delivery mechanisms for field-deployed sensors supports 
scalability and rapid availability of raw or pre-processed data. This scalable approach allows for the 
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simultaneous availability of such data to many processing modules, without creating an excessive load 
on the networking or computing substrates. The three sensed dataset sources that are integrated and 
streamed via the data communication subsystem can be summarized as follows: 

• Meteorology Stations: Meteorology, a.k.a. weather stations, are collections of sensors that 
record and transmit multiple environmental metrics, including wind speed and direction, air 
temperature, barometric pressure, and relative humidity. WIFIRE receives near real-time data 
from HPWREN’s nineteen stations and receives updates every ten minutes from over 150 
stations operated by San Diego Gas & Electric (SDG&E). In addition, WIFIRE collects 
smaller datasets from providers including the National Park Service, and San Diego State 
University’s Field Stations Program. 

• Still-Image Cameras: 110 individual cameras collect color and grayscale images from 35 
separate locations throughout SD County. Still-images are valuable for remotely observing 
fire, smoke, and other phenomena; moreover, the locations of these phenomena can be 
triangulated using multiple cameras and detection algorithms. Geospatial view sheds on the 
collected camera images are being built for near-real time smoke detection and querying of the 
fire location. 

• Satellite and Aerial Data Products: Data taken from the Terra and Aqua units of the MODIS 
satellites are used to generate one-kilometer resolution fire and smoke detection maps of the 
SD County region four times a day. The WIFIRE project has modeled this data, and is 
extending its software to serve it. In the future, WIFIRE will incorporate data from additional 
satellites such as AVHRR, VIIRS, GOES, Landsat, and aerial data from multiple sources. 

The data communication layer includes REST-based services for ingesting sensor data and derived 
time-dependent parameters into geospatial databases and archives so that the data can be extracted into 
any Open Geospatial Consortium compatible data format. The ingestion process connects to the 
HPWREN sensor multicast streams and tests for conditional ETL rules and routes to appropriate 
databases for sub-processing. Doing all the processing for incoming satellite data in RAM keeps the 
processing time very low, and the data is written to permanent archives after processing. 

3.2 Wildfire Behavior Modeling and Data Assimilation 
For modeling wildfire growth and computing the Rate of Spread (ROS) of a wildfire, one may 

distinguish between studies that focus on computational fluid dynamics (CFD) of flame-wind 
interactions and the semi-empirical Rothermel model  [8] or it’s equivalent. CFD studies of flame-
wind interactions typically feature a problem size of several hundred meters and a spatial resolution on 
the order of one meter. The CFD studies provide a description of the fire-driven modifications of 
atmospheric conditions. Although powerful in describing wildfire dynamics and ROS, their 
computational cost is high, limiting flame-scale CFD to off-line analysis of wildfire events. 

Examples of operational wildfire spread models used in the US include BehavePlus [9] and 
FARSITE [10]. Operational semi-empirical models can also be found in the McArthur Fire Danger 
Meter in Australia [11] and the Fire Behavior Prediction System (FBPS) in Canada [12]. Spatial 
information on topography, fuel content and moisture along with regional weather and wind input is 
used to drive the semi-empirical models. This allows the fire spread model to adopt a regional scale 
perspective and simulate a wildfire as a propagating front for long time periods under heterogeneous 
conditions of terrain, fuel parameters, and weather conditions. It is clear that spatial information on 
terrain, fuel parameters and weather conditions provide the a priori information needed to drive the 
operational wildfire spread models. However, the dense weather sensors and remote Internet 
connectivity available in WIFIRE provides a big asset to update the a posteriori information during 
the computation of wildfire behavior by virtue of Data Assimilation (DA). Real-time measurements to 
correct simulation errors by DA techniques have been explored in wildfire and building fire 
applications [13-14] along with oceanographic and geophysical fluid flow applications [15-16].  
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The DA system of WIFIRE is integrated with an operational semi-empirical fire model and allows 
the implementation of parameter and state estimation techniques that can serve two purposes. First, a 
DA technique can be used to implement a recursive parameter estimation technique that adjusts the a 
priori fuel parameters and measured or predicted a priori wind conditions. Such parameter estimation 
techniques only make adjustments to the (input) parameters of the operational wildfire spread model. 
Secondly, a DA technique can be used to implement a recursive state estimation technique that adjusts 
the simulated fire front location with an a posteriori update/measurement of the actual fire front 
location. The recursive state estimation updates the initial conditions (e.g. the states) of the operational 
wildfire spread model, to provide a simulation of the fire front that is closer to the measured fire front 
location. Recent examples of wild fire DA techniques for (input) parameter estimation can be found in 
[14] where a spatially-uniform correction of biomass fuel and wind parameters is used. State 
estimation to sequentially update the two-dimensional coordinates of markers along a discretized fire 
front can be found in [17]. Input and state estimation can also be combined in a single DA technique 
as developed in [18] with applications to flow field estimation.  

 
Figure 2. Illustration of prediction and update steps via separation in models for operational wild fire 

modeling with fire front/ ROS simulation and Data Assimilation algorithm. 
The DA system used in WIFIRE builds upon existing and well-established recursive algorithms 

formulated by the Extended Kalman Filter (EKF) and the Ensemble Kalman Filter (EnKF). In 
addition, extensions are made via a Bayesian framework to formulate recursive algorithms to jointly 
estimate a perturbation  to the simulated state  and a perturbation  to the input  
for the operational semi-empirical wild fire model. To allow the implementation of a DA via (Kepler) 
workflow components that run sequentially in time, the algorithms for the DA system in WIFIRE will 
be separated in two parts, as illustrated in Figure 2. The first part is a prediction step, in which a 
previous estimate of the state is evolved forward in time to the time of a new observation of the fire 
front using the perturbation  and modified input . The second step is an update step, where 
the evolved estimate  of the state is updated using information from the fire front observations. 

The separation between a prediction and update step is standard in the EKF and EnKF, and allows 
an existing operational fire model such as FARSITE to be implemented as a separate workflow 
component for the prediction step. Explicit expressions for the evolution of the error covariance (as 
done in the EKF) or statistical approximation of the error covariance (as done in the EnKF) can be 
implemented as separate workflow components. In addition, the update step involving the error 
covariance and measurement covariance matrix based on an EKF, EnKF or Bayesian joint input and 
state estimation algorithm can also be implemented as separate workflow components. In the update 
step, workflow components in Kepler must pull sensor measurements to allow for real-time updates 
for the operational fire model. More details on the workflow management and components in WIFIRE 
will be given in the following section. 
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3.3 Workflow Management 
A workflow is comprised of steps or tasks linked together by data dependencies. Workflows are an 

integral part of the overall WIFIRE architecture to ensure system integration and programmability, 
computational scalability and reproducibility of the developed data access and modeling tools. 

We have chosen the Kepler Scientific Workflow System [5] and APIs to build our workflow 
design and execution specific extensions. Kepler provides a graphical user interface for designing 
workflows composed of a linked set of extensible and configurable components called Actors that may 
execute under a rich set of different Models of Computations (MoCs). Actors are the implementation 
of specific functions that need to be performed and communication between actors takes place via 
tokens that contain both data and messages. The MoCs are implemented by Directors, which specify 
how the communication between the actors is achieved, when actors execute, and when the overall 
workflow execution stops. The designed workflows can then be run through the user interface or in 
batch mode from other applications. In addition, Kepler provides a provenance framework [20] that 
keeps a record of chain of custody for data and process products within a workflow design and run. 

 

3.4 Data Mining 
Data mining is an interdisciplinary field concerned with analyzing large amounts of data to 

discover patterns. Data mining techniques are being applied to WIFIRE data to gain insight into 
environmental conditions affecting fire behavior, e.g., analysis of data from weather stations can 
determine patterns of weather data associated with Santa Ana conditions. This information can then be 
used to alert firefighters of specific regions experiencing conditions susceptible to wildfires.  Alerts of 
changing weather conditions can be especially useful for areas surrounding an existing wildfire.  
Results from data mining tasks can also feed into the fire models to provide specific data about current 
environmental conditions for more accurate modeling of fire behavior. 

New Kepler components for data mining are being implemented.  Existing machine learning tools 
and libraries such as R and MLlib [20] will be leveraged, as well as Kepler’s Distributed Data Parallel 
(DDP) capability to provide a framework for scalable processing of WIFIRE data. 

3.5 Visualization and Communication of Results 
The WIFIRE research in visualization is building products in virtual reality, mobile data 

acquisition, and web mapping.  Each of these addresses important needs for fire research and response.   

  
(a)  (b) 

Figure 3. (a) osgEarth screenshot of a preserved vegetation patch of young chaparral (red) near Ramona, CA. The 
burned landscape is in dark gray-green. Data resolution: 0.5-m for imagery and 2-m for topography. Flagpoles 
represent weather sensor showing wind direction, wind velocity (flag length) and local air temperature (color). (b) 
Geolocated Twitter images and fire perimeters are drawn to provide near real-time awareness of fire progression. 

Virtual Scientific Visualization. Immersive visualizations are important for understanding 
complex processes in fire behavior and for testing best practices for visualizing fire event data [21]. 
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Our prototype uses the osgEarth, an open source geospatial graphics platform that is part of 
OpenSceneGraph (OSG).  The OSG is capable of being run on multi-screen tile display walls in mono 
and in stereo.  Its architecture is also optimized to ingest real-time data and tile hierarchies for fast 
serving and consumption over the web, and can natively read standard GIS and volumetric model file 
formats [22]. Using tile display walls, the resolution of the data viewed is scalable from megapixels to 
tens of megapixels.  The accessibility of this high-resolution display with the data has proven useful 
when working with fire agencies in Southern California to understand the effects of past fires on the 
landscape (see Figure 3). The high-resolution imagery and topography highlights the intricate 
influence of topography on fire behavior in historic events. Taking the highest resolution imagery and 
topography freely available, we used the osgEarth platform to display SD County burn scars from the 
2003 Cedar fire. Figure 3 shows screenshots of the data in the Calit2 NexCAVE immersive 
environment, focused in on the burned wildland-urban interface where the fire hazards remain high. 

The prototype immersive virtual environment is being expanded to view multiple new datasets.  To 
test the ingestion of mobile photos, we have tested with twitter images taken during the most recent 
firestorms in San Diego. Figure 3(b) shows three twitter images posted as billboards on the San Diego 
landscape.  Red lines on the ground indicate fire perimeters. 

Mobile Data Acquisition. We are developing a mobile app that allows users to take and upload 
pictures of active fires. The app uses the phone orientation and geographic location to accurately place 
a collected image so as to recreate the view perspective of the photographer if the photo is placed in a 
virtual 3D environment. We can then use those photos to plot in 3D and see the active fire in the 
virtual environment. Further development will use computer vision techniques to identify the horizon 
if it appears in the picture, which can then be used to geolocate the flames or smoke. If enough images 
are taken, we can create dynamic estimates of a fire perimeter as a fire is traveling. 

Web Maps. Web maps have been developed to make the environmental data accessible and 
interactive. Users can now monitor environmental conditions and view workflow results. Although 
much of the data is publicly available, they have not previously been integrated in the same interface, 
e.g., HPWREN cameras can be located by the map interface and the user can correlate the location 
with what the cameras can see. Model outputs (see Section 3.2) can also be viewed in this interface. 

4 Early Results 

4.1 WIFIRE Data Model 
Management of information heterogeneity is the focal theme in the design of the data architecture 

of the WIFIRE system. Weather stations produce a time-series of vector of measurements together 
with the metadata of the sensors themselves; satellite data providers like NASA produce time-
sequences of arrays of multi-band rasters, where some of the processed data may have their own data 
dictionary; ground topography, an important factor in fire simulation is often represented as digital 
elevation maps; fire simulation models like FARSITE produce temporally evolving fire perimeters 
(temporal polygons); wind simulators like WindNinja produce time and space-varying vector fields; 
human observers and monitoring cameras produce geolocated images of fire. The data modeling task 
in WIFIRE is to capture all metadata, observed data and computed data assimilated by the system into 
a single common framework. To this end, we have developed a semantic semistructured data model 
that covers both data and metadata. The structure of the model follows from the observation that 
regardless of the source and nature of the data, all data elements are essentially spatiotemporal and can 
be semantically associated with an ontology of observables. We list the primary elements of our model 
through the following exposition. 

• The data model assumes the existence of an ontology which itself may be constructed from 
terms and relationships from several contributing ontologies. An observable is defined as an 
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ontological element that corresponds to an entity observed by a sensor. It is possible to have a 
more complex observable like wind, whose properties are sensed and stored as data. In this 
case the metadata system models the entity as well as its properties. 

• For all measured entities or entity properties, the data model captures their spatial and 
temporal resolutions.  

• For some data sources, the data model is associated with a data dictionary that specifies the 
domain of a variable captured by the model, e.g., NASA’s Aqua MODIS satellite creates a 
thermal anomaly model that identifies regions that have fire. Our data model recognizes 
geolocated arrays as a basic data type, where a cell of the array may contain a vector of values. 

• Since our essential data model is spatiotemporal, we capture data sources that do not output 
the actual data but rather produces an aggregate of the data over a window of observations. 

A novel aspect of our metadata model stems from the requirement for enabling simulation engines 
with data and capturing the output of these engines. In such cases, we treat a simulation engine as a 
function that accepts a complex semistructured object and returns another semistructured object. 

REST Service Interface to the Wildfire Data Model. WIFIRE currently exposes its metadata 
catalog through an industry-standard REST-based interface. We provide data at minute-level 
resolution from close to 170 stations around San Diego County. The interface returns data and 
metadata in XML, incorporating ontologies from NASA SWEET and OGC. In addition to XML, 
WIFIRE supplies selected data in additional formats such as GeoJSON, Comma-Separated-Values 
(CSV), and WindNinja’s native input format. Our objective is to make it easier and faster to search for 
and push data directly to software from the fire-modeling and other communities. 

4.2 Workflow Use Cases 
To facilitate access to geospatial data and usage of the accessed data in scientific analysis tools, 

WIFIRE has implemented new Kepler GIS actors to read and write GIS files such as Shapefile, KML, 
and GeoJSON. These actors can read, write, transform, and perform various operations on both vector 
and raster data, and are built using GeoTools (geotools.org), an open-source Java GIS Toolkit. 
Additionally, two example data-driven use case applications have been created as Kepler workflows. 

4.2.1. Use Case 1: Detection of Areas Affected by Santa Ana Conditions 
A use case application was created to determine areas within SD County experiencing severe fire-

weather conditions called Santa Ana winds, which can lead to very dangerous fire conditions. A Santa 
Ana wind can be defined as a combination of values for the wind direction, wind speed, and relative 
humidity. The HPWREN system currently monitors these values measured by HPWREN and SDG&E 
weather stations, and sends an email alert when a station experiences Santa Ana conditions. However, 
this alert only denotes that a specific point source (the weather station) is experiencing Santa Ana 
conditions, and not the size of the area. It would be useful to know how large the area is surrounding 
the station experiencing Santa Ana winds, e.g., how many homes are affected. 

A Kepler workflow was created to determine the area around each station experiencing Santa Ana 
winds by running WindNinja [23] to calculate the wind field and perform post-processing to find 
Santa Ana winds. WindNinja is open-source software that computes spatially-varying wind fields. 
WindNinja reads the topography, vegetation, and weather station measurements to produce a vector 
field of wind speeds and directions over the input domain. The workflow queries the WIFIRE REST 
interface described in Section 4.1 to download the weather station measurements. Since WindNinja 
runs on domain sizes of up to 50 km by 50 km, the workflow partitions SD County into smaller tiles to 
calculate the winds over the entire county. For each tile, the workflow executes a separate WindNinja 
and all the WindNinja instances can run in parallel. The workflow uses Kepler’s DDP framework [7] 
for executing WindNinja in parallel using either Hadoop or Spark. Note that this workflow currently is 
being updated to take into account the errors in the boundaries of the tiles by including a buffering 
technique for the overlaps.  
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Figure 4. GIS post-processing workflow that filters and extracts the wind fields matching Santa Ana winds. 

The output from WindNinja is a vector field of wind speed and direction over SD County. The 
workflow then performs post-processing on this field to find the areas with parameters defining Santa 
Ana wind conditions. We have implemented several reusable Kepler actors that perform these 
operations, some of which are shown in the post-processing sub-workflow in Figure 4.  

 
(a) 

 
(b) 

Figure 5. (a) Output from Santa Ana Workflow shows weather stations (placemarks) and regions (red 
polygons) experiencing Santa Ana winds; (b) FARSITE simulator output executed by a Kepler workflow.  

Figure 5(a) shows the results for a small region in SD County: the green points are the weather 
stations and the red polygons are the areas experiencing Santa Ana winds.  As can be seen from the 
figure, these polygons show many large areas surrounding the stations in addition to areas that do not 
surround the stations. In the next version of this workflow, we plan to run WRF for more accurate 
wind calculations and provide a comparison of WRF and WindNinja results. 

4.2.2. Use Case 2: Run Fire Growth Model Workflows 
The second use case simulates fires in SD County. For this application, we created a Kepler 

workflow to run FARSITE, an open-source fire growth simulator [10]. The inputs are the topography, 
fuels, weather conditions, and fire ignition site(s), and the outputs are fire perimeters and intensity, 
flame length, and spread rate. As in the previous use case, the workflow uses the REST interface to 
download the weather station measurements. Figure 5(b) shows the perimeters of two fires with the 
same ignition location. The fire with white perimeters had “normal” weather conditions, while the fire 
with red perimeters had wind speeds and relative humidity similar to Santa Ana Winds.  

The first version of this workflow runs a single FARSITE instance. In a future version, we plan to 
run FARSITE in parallel for different starting ignition locations and weather conditions. We are also 
extending this workflow with data assimilation based on our new parameter and state estimation 
techniques as described in Section 3.2. 

5 Conclusions 
We presented our approach and early results from the multi-disciplinary dynamic data-driven 

WIFIRE project. Although some of this is work in progress, the reaction of the wildfire research 
community to the project architecture and early results has been very encouraging. We believe that 
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sharing these early results with the DDDAS community will enhance our understanding of the existing 
data assimilation efforts and similar work in other disciplines.  
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