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ABSTRACT

Creating effective transfer functions for high dynamic range scalar volume data is a challenging task. For data sets with limited
information about their content, deriving transfer functions using mathematical properties (gradient, curvature, etc.) is a difficult
trial and error process. Traditional methods use linear binning to map data to integer space for creating the transfer functions.
In current methods the transfer functions are typically stored in integer look-up tables, which do not work well when the data
range is large. We show how a process of opacity guidance with simple user interface can be used as the basis for transfer
function design. Our technique which uses opacity weighted histogram equalization lets users derive transfer functions for
HDR floating point easily and quickly. We also present how to adopt these techniques for real-time interactive visualization
with minimal pre-processing. We compare our techniques with traditional methods and show examples.
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1 INTRODUCTION

Volumetric visualization lets users present complex, 3D
data sets in visual form. An important part of this is
the design of transfer functions for color and opacity, to
be mapped on the data values. Using a better transfer
function is analogous to increasing signal to noise ra-
tio, where the signal is the information desired by the
user. As the notion of signal is not defined for volume
datasets, there is a need to do this task in a convenient
and often exploratory manner. This is where the design
of transfer functions plays an important role. Unfortu-
nately, this process is often time consuming and cum-
bersome.

Transfer function design for medical datasets has
been the focus of many studies. In general, this type
of data consists of various layers of biological materials
(flesh, bone, tissue, etc.). These materials can often be
segmented by algorithmically identifying their bound-
aries.

But what about non-medical datasets, like datasets
resulting from computational simulations, like com-
putational fluid dynamics, weather, or simulations of
physical processes? With faster processor speeds and
the widespread adoption of clustering technology, the
use of computational simulation to model physical phe-
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nomena is widespread. These simulations can generate
enormous amounts of data. The characteristics of these
datasets are very difficult to categorize but they often
show some common traits like a high dynamic range
(HDR), and subtle details in high fidelity. Our work is
focused on HDR floating point data sets.

For HDR floating point data sets, transfer function
design becomes an increasingly difficult task, primarily
because the data range by far exceeds the usual 8 bits
of color resolution on the monitor. It is unlikely that a
single classifier will provide the desired results. In ad-
dition, there is often limited a priori information about
the data content which compounds the problem for cre-
ating good visualizations.

Data distribution directly affects opacity and color
mappings. If interesting data is clustered within small
data ranges, then color and opacity need to be tuned
specifically for each such range to show it at the maxi-
mum possible detail in the visualization result.

In this paper, we present a method which lets users
design transfer functions without using derived and
hard to comprehend mathematical properties like gra-
dient, curvature, tensor, etc. In our method, we use an
extension of histogram equalization, along with opacity
guidance provided by the user. Our new algorithms al-
lows the user to minimize the effort of tuning the trans-
fer functions. We show how to utilize data distribution
as a basis for transfer function design and how it can
be done in a real-time software application. In addi-
tion, we compare our results to the popular technique of
mapping a color gradient linearly to a data range. The
transfer functions our algorithms generates can also be
generated manually, but it would take the user consider-
ably more time to do so from the start. Our algorithms



are intended to provide a fast way to generate reason-
able transfer functions which can then be refined man-
ually.

The main contributions of this paper are:

1. Opacity Weighted Histogram Equalization (OWHE)
as the basis for transfer function design.

2. Efficient utilization of the available color space, thus
yielding a more detailed visualization of structures
in data sets.

3. Real-time interaction with a simple and intuitive
user interface to access the algorithm’s parameters.

The paper is structured as follows. In Section 2 we
review related work. In Section 3 we discuss the un-
derlying theoretical background. Section 4 describes
the algorithms we have developed. Our user interface
is presented in Section 5. We present the application
of our method to three typical high-dynamic range data
sets in Section 6. Section 7 concludes the paper and
Section 8 suggests areas for future work.

2 RELATED WORK
A multitude of methods have been proposed to gener-
ate transfer functions. They can be broadly classified
into four categories which are described in detail by
Pfister et al. [11]. The first are trial and error meth-
ods where the user tweaks parameters to achieve the
desired result. Second, data centric approaches work
without assuming a data model [1]: the contour spec-
trum which computes metrics of the data and integrates
the results with the user interface used to set iso-values.
Third, a data centric approach which assumes an under-
lying data model [5, 6]: this method semi-automatically
generates the transfer function by utilizing the com-
plex relationship between data and its optical proper-
ties, the assumption being that the features of interest
are boundaries between materials; our approach is not
based on material boundaries, gradient values, or multi-
dimensional transfer functions. Fourth, an image cen-
tric method based on organized samples; this is similar
to the Design Galleries concept [9].

Other approaches, related to the ones presented in
this paper are volume visualization using approaches
from high dynamic range imaging (HDRI) [16]. The
HDR method performs volume rendering in floating-
point space, thus preserving precision, and then uses
tone mapping to display the result. Practically, insuffi-
cient HDR display hardware [4] and difficult interpre-
tation of tone mapped results are remaining problems
with this technique. Furthermore, the trial and error ef-
fort now moves to tone mapping [3] and exposure se-
lection instead of transfer function design.

Potts and Moeller [12] propose to use transfer func-
tions on a logarithmic data scale. This method provides

a mechanism for the user interface for transfer function
design. We think that for many users it is more intu-
itive to see the transfer function on a linear scale and
interactively zoom in and out where necessary.

Tzeng and Ma [13] use the floating-point data space
during segmentation to identify the various materials
present in a data set. However, their approach does
not work well if the data set contains continuous densi-
ties which do not occur as clusters. Also, defining and
searching clusters is a cumbersome task. Lundstorm et.
al. [8] use spatial coherence for transfer function design
for medical datasets.

For data sets without distinguishable materials and
highly inhomogeneous data distribution, none of the
above methods sufficiently addresses the dynamic
range of the data and its implications. Our method
aims to semi-automatically maximize the use of color
space for regions of interest, while still allowing the vi-
sualization of the entire data set. Most existing volume
rendering algorithms can seamlessly incorporate our
method into their classification and rendering pipeline
as an additional option for transfer function design.

3 HIGH DYNAMIC RANGE TRANS-
FER FUNCTIONS

This paper addresses the rendering of single-valued
floating-point volume data sets. The challenge is that it
is often unknown to the user which parts of the floating-
point range are of interest, i.e., what data ranges col-
ors and opacities should be mapped to. Many tradi-
tional methods allow the user to specify minimum and
maximum values to constrain the data range, and then
specify color and opacity mappings for the selected
range. Histograms can facilitate the process of finding
the range of interest to visualize, but they do not help
much when the data values are spread out over a very
large range. Often, the user wants a quick overview of
what is in a data set before making fine adjustments to
pull out part of it. A simple way that can achieve this
is an opacity function of constant, low opacity. Or a
transfer function based on the histogram can be created
by mapping higher opacity to higher histogram values,
or vice-versa. All these methods pose significant lim-
itations like limited control over the opacity mapping,
or a cumbersome trial and error process.

A simple, but frequently used approach to map float-
ing point values in volume data sets to colors is to lin-
early map the values between minimum and maximum
value to a user specified color gradient. This approach
is referred to as Linear Binning in the upper half of the
box of Existing Techniques in Figure 1. In the recent
past, more sophisticated methods have been developed.
Some approaches retain the high dynamic data range
during the volume rendering step by using a floating-
point image buffer. Then, tone mapping is used to con-
vert the HDR image to the color space today’s graphics



hardware uses, which is usually 24 bits per pixel. Fig-
ure 1 illustrates this approach in the lower half of the
Existing Techniques box.

Figure 1: Flowchart showing the Opacity Weighted
Histogram Equalization algorithm with the existing
techniques of linear binning and HDR with tone map-
ping. Our approach is shown in the box labeled OWHE,
the existing techniques are shown in the dotted box be-
low.

The latest graphics cards support floating-point tex-
tures and even floating-point frame buffers. Texture
hardware-based volume rendering benefits from these
by allowing it to use much higher precision when vol-
ume slices are blended with the frame buffer, so that
more features of the data set can be preserved during
rendering. However, the problem of mapping color and
opacity to data over a large data range still persists.
Many floating-point volume data sets have sections of
high data activity, as well as large sparsely used data
ranges. This paper presents an approach to support the
user in creating meaningful transfer functions for these
kinds of data sets with minimal manual intervention.

3.1 Histogram Equalization

The transfer function generation method we are pre-
senting in this paper is an extension of histogram equal-
ization (HE). In image processing, histogram equaliza-
tion is used to improve the contrast of images. The idea
is that the brightness values in the image are increased
or decreased such that the histogram becomes flat. The
formula for histogram equalization is:

sk = T(rk) =
k

∑
j=0

n j

m
k = 0,1,2, ...,L−1

sk are the equalized histogram values,rk are the orig-
inal histogram values,L is the number of gray levels in
the image,n j is the number of times each gray level ap-
pears in the image, andm is the total number of pixels
in the image.

3.2 Opacity Weighted Histogram Equal-
ization

Histogram equalization has been used quite success-
fully in image processing to improve the image quality
by improving contrast. In volume rendering, HE alone
can provide a quick way to considerably improve the
color mapping; we will show this in Section 6. How-
ever, HE alone does not help with the creation of the
opacity transfer function. Our transfer function genera-
tion approach is a two-step approach. In the first step,
the user uses HE to create a first approximation of a use-
ful color mapping for the data set. At this point, a con-
stant, low opacity function or maximum intensity pro-
jection is used to show the entire data set. In the second
step, the user places a few simple transfer function wid-
gets on the transfer function to pull out specific parts of
the data set. Then we apply our Opacity Weighted His-
togram Equalization (OWHE) algorithm to refine the
color mapping, using the additional hints the software
gets from user defined opacity widgets. Our approach
is depicted in the upper half of Figure 1.

The basic idea of OWHE is to modulate the num-
ber of times a voxel value occurs in the data set by the
opacity the user assigned to it. Thus, higher color res-
olution is created in areas of high opacity, whereas in
low opacity regions, fewer colors are used. In our tests,
we found that this approach can achieve very good vi-
sualization results with much less effort than if the user
tried to create the same transfer function manually.

Our modification of the Histogram Equalization
function is indicated below.opj is the user specified
opacity of the data value.

sk = T(rk) =
k

∑
j=0

opj ×n j

m
k = 0,1,2, ...,L−1

Figure 2 compares linear color mapping to OWHE.
In OWHE, the colors are more compressed the higher
the data frequencies in the histogram, and the higher
the desired opacity. In areas with fewer data points in
the histogram or lower opacity, larger data ranges get
mapped to the same color. We use the same color map
in both sample images.

For rendering, we are using a standard light emis-
sion model for the volume, along with back-to-front
alpha blending. We target standard graphics and dis-
play hardware, based on a precision of 24 bits per pixel.
Our algorithm can potentially improve the visualization
results even on true HDR displays which can display
more than 24 bits per color.

4 IMPLEMENTATION DETAILS

We implemented the HE algorithm, as well as the
OWHE algorithm and integrated them with the
DeskVOX [2] volume rendering software. Both



(a)

(b)
Figure 2: (a) linear binning, (b) OWHE. The data val-
ues are located along the horizontal axis. The bars at
the top of each image show, from top to bottom: color
only, color and opacity, opacity only, bin boundaries.
Shown below is the histogram, overlaid by the opacity
function.

algorithms have various parameters which can be
changed by the user from within the volume rendering
application. We implemented these parameters because
they turned out to be useful when using the algorithms
on real data sets.

Cull Skip regions:This parameter specifies whether
regions with transfer function widgets which map zero
opacity to a data range (Skip widgets) should be ex-
cluded from the binning process. This impacts espe-
cially the HE algorithm, because it, by default, uses the
entire data range.

Cull Duplicate Values:By default the HE process
uses all data values in the volume and distributes them
evenly into bins. With this option enabled, the user
can specify that duplicate values be removed, so as
to evenly distribute different values only. This makes
a difference if the data set contains disproportionately
large amounts of certain values, which are not of par-
ticular interest but should not entirely be excluded from
the binning process.

Trim to Range:The data range the algorithm operates
on can be constrained to be within a minimum and max-
imum value. These minimum and maximum values can
be the absolute min/max values in the data set, or they
can be values in-between. If this option is disabled, all
data values are used for the HE algorithm.

Fast Sampling:Using all data values of the volume in
the algorithms can be slow if the volume is large. The
Fast Sampling option uses only the specified number of
samples for the binning process, which speeds up the
algorithm, but also makes it less accurate. As Tzeng
and Ma have stated in [13], sampling about 1% of the
data values often achieves satisfactory results.

5 USER INTERFACE

We developed a user interface for the transfer function
editor which integrates our transfer function generation
methods with traditional approaches to transfer func-
tion design. Figure 3 shows a screen shot of the editor.
In the upper half of the window the transfer function
is displayed. At the top of it are three colored bars: the
upper one shows just the color mapping, the next shows
the combined mapping of color and opacity, and the
third shows opacity only. The data values are located
on the horizontal axis of the graph. The black, vertical
lines can be grabbed with the mouse and moved to left
and right, so as to place a particular color control point
in the color bar. In the same manner the user can use
multiple widgets to create the opacity mapping.

Below the color bars is the opacity function. The gray
area is the opacity mapping. The opacity function can
be created from four different elements (widgets): pyra-
mids, Gaussians, custom functions with control points,
and Skip widgets. As with the colors, each opacity wid-
get can be grabbed and moved with the mouse by click-
ing on a black, vertical line. The user can composite
the transfer function with multiple widgets; at overlap-
ping areas of widgets the opacity is determined by the
maximum value in one of the widget.

The horizontal axis represents linear data values.
Both color and opacity transfer functions are displayed
in linear data range. When our algorithms are active,
it is more difficult to manipulate the color widgets
because the control lines can be much closer together.
It is easier to use the control lines when the user zooms
in to them. To zoom, the user can use numeric range or
use the mouse wheel where the mouse location acts as
the center for the region to be zoomed. In pressed state
the mouse wheel enters pan mode, where the user can
move the transfer function to the left and right.

5.1 Parameter Window

Figure 4 shows the dialog window with the parameters
available for our algorithms. When the button labeled
Distribution based data range mappingis off, the trans-
fer function uses a linear distribution of colors over the
range specified byStart valueandEnd value, and our
algorithms are disabled. We used this setting to com-
pare our algorithms to the linear binning approach in
Section 6. WhenDistribution based data range map-
ping is checked, the algorithms described in this pa-
per are applied. The user can choose between HE and
OWHE, which have been described in Section 3.

6 RESULTS AND DISCUSSIONS

We have applied our technique to three different scalar
floating-point data sets. The data sets have different
dynamic range and properties. We chose a representa-
tive single time step from the following three temporal



Figure 3: Our widget-based transfer function editor.

Figure 4: The dialog window to set the new data range
mapping parameters.

datasets, all of which are results from simulations on
supercomputers.

1) TeraShake is an earthquake simulation [10, 15],
done to study seismic wave propagation based on kine-
matic and dynamic rupture models. We use the X com-
ponent of velocity with a data set size of 750×350×
100 voxels. The data covers a small range but has subtle
details in very narrow regions.

Figure 5: Histogram (logarithmic scale) and opacity
function of the TeraShake earthquake simulation data
set.

2) Isabel is the result of the simulation of a hurri-
cane [14]. We use the snow data with a data set size of
500×500×100 voxels.

Figure 6: Histogram (logarithmic scale) and opacity
function of the hurricane Isabel data set.

3) Enzo is a simulation [7] of supersonic compress-
ible turbulence at Mach 6 performed with the Enzo code
for cosmology and astrophysics, using 512 CPUs of the
DataStar supercomputer at the San Diego Supercom-
puter Center. It was designed to model a sub-volume
(linear size: 5 pc = 1.5·1017 m) within a star forming a
molecular cloud. We use a sub-sampled matter density
data set with a size of 512×512×128 voxels.

Figure 7: Histogram (logarithmic scale) and opacity
function of the cosmology data set Enzo.

More detailed properties of the above data sets are
listed in Table 1, and the data histograms are shown
in Figures 5, 6, and 7. Figures 8a-c show rendering
results of different datasets, generated with our OWHE
algorithm.

6.1 Comparison of Linear Color Mapping
with HE and OWHE

We compare our HE and OWHE methods to the popu-
lar linear color mapping method henceforth referred to
as standard method. For the comparisons, we created
appropriate opacity transfer functions for each dataset.
The opacity functions are shown in figures 5, 6, 7, along
with the data histogram.

In the standard method, color map and opacity are ap-
plied to a linearly data range. The renderings achieved
with the standard method are shown in Figures 8(a),(d)
& (g). For HE and OWHE, we use the same opacity
transfer functions as for the standard method, but the
color mapping gets modified by the algorithms. The
processing time for HE and OWHE depends on the
number of voxels in the data set and is on the order
of several seconds. The corresponding renderings for
HE and OWHE are shown in Figures 8(b),(e),(h) &
(c),(f),(i).

In the TeraShake data set, most of the data is located
around the value 0.0 (see histogram in Figure 5), which
represents no ground motion. In the images, the opacity



for the data is set such that wave features are visible. A
color map has been created to show positive velocity as
red-orange-yellow, and negative velocity as blue-cyan-
green. Black has been chosen to show a velocity of 0.0
with no opacity. A desirable visualization for this is to
show the wave propagation structure in low, mid, and
high range all together. With the standard method (see
Figure 8(a)) it is difficult to observe the wave propaga-
tion features. The HE method (see Figure 8(b)) shows
only a minor improvement over the standard method,
but our OWHE method (see Figure 8(c)) is able to bring
out subtle details of the wave form and its location,
which takes a great deal of effort if done manually.

The Isabel data set we chose for this comparison is
snow mixing ratio. We created a visualization which
lets us see the entire volume, and in addition the coast-
line of Florida is visible for orientation. The opac-
ity function 6 has been chosen such that higher snow
mixing ratio is more opaque. As can be seen in Fig-
ure 8(d), visualization with the standard method pro-
vides information just for a relatively small region. The
HE method is of not much help in this instance but the
OWHE method (see Figure 8(e)) is able to show much
more detail of the data value distribution by more effec-
tively using the available color space (see Figure 8(f)).

The Enzo volume shows "‘matter density"’ during a
star formation process. We chose an opacity function
similar to that used for the Isabel data set, where higher
density is completely opaque and lowest is transparent.
The standard method (see Figure 8(g)) provides little
distinction in features of interest. The HE method (see
Figure 8(h)) shows some detail. The OWHE method
(see Figure 8(i)) brings out more details in the data,
even thin filaments can be seen in high fidelity. The
V- and U-shaped shocklets or "‘Mach cones"’, charac-
teristic of the supersonic turbulence found in interstellar
gas, can clearly be seen.

Enzo Isabel TeraShake

# Voxels 33.6·10
6

25.0·10
6

28.1·10
6

% Unique 73.2 86.5 71.5
Min 8.52·10−3 0.00 −6.68·10−1

Max 2.23·102 1.35·10−2 5.97·10−1

Mean 9.28·10−1 2.23·10−6
−1.43·10−4

Std dev 1.58 1.54·10−5 8.50·10−3

Table 1: Data statistic for Enzo (512×512×128), Is-
abel (500× 500× 100) and TeraShake (750× 375×
100). % unique is the percentage of duplicate values,
removed with our Cull Duplicates parameter. Min/Max
are the minimum and maximum data values. Mean is
the mean value of all data values, including duplicates.
Std dev is the standard deviation over all data values,
including duplicates.

6.2 Limitations
Our methods works well for HDR floating point data,
but they have some limitations. The methods are not
suitable to all datasets. For example in medical datasets
with little variation in the data our method will not work
well. Additionally, in cases where high color fidelity is
not of much importance for visualization our method
will not be beneficial.

7 CONCLUDING REMARKS
We presented techniques to facilitate the creation of
transfer functions for high dynamic range floating point
data sets by taking data distribution and user input
into account. We compared our techniques to standard
methods and demonstrated how our techniques can be
used to create useful transfer functions faster and with
less effort. Our experience with this technique indicates
that time required to get meaningful images is signifi-
cantly reduced but a survey would be needed to quan-
tify and test this hypothesis. The color space utilization
with our method is efficient leading to high fidelity de-
tail in renderings.

8 FUTURE WORK
In the future, we want to improve our rendering method
by supporting higher precision frame buffers (e.g., with
Nvidia’s GL_NV_float_buffer extension). We would
also like to utilize HDRI color space for transfer func-
tions with our technique. Other existing histogram
equalization techniques could be added as comparative
exploration methods. In addition, we want to extend the
application of this technique to temporal data sets.
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