
High Resolution Video Playback in Immersive Virtual Environments

Han Suk Kim∗

Computer Science and Engineering
University of California San Diego

Jürgen P. Schulze†

California Institute for Telecommunications and
Information Technology

University of California San Diego

ABSTRACT

High-resolution video playback (> 1 megapixel) has become a
commodity in homes (Blu-Ray players, internet streaming) and
movie theaters (digital HD technology). Immersive virtual reality
systems can display tens of millions of pixels today, for instance
CAVE-like environments driven by 4k projectors. However, when
video is displayed in virtual environments (VEs), where the video
screen is part of the virtual world, the resolution of the video is
fairly low, and so is its frame rate, typically much lower than stan-
dard TV. Allowing high-resolution video playback in VEs can add
more realism to the virtual world (e.g., a virtual movie theater), and
it can enable a new class of applications which were not possible
before (e.g., virtual video surveillance centers).

In this paper, we propose an algorithm based on mipmapped
video frames, where each image of the video stream is stored at
multiple levels of resolutions, to interactively play high-resolution
video in VEs. In addition, we propose an approach to maintain a
constant video playback rate, as well as optimizations for the algo-
rithm, such as a memory management mechanism and predictive
prefetching of data. Finally, we analyze the playback of three dif-
ferent types of high-resolution video clips in an immersive VE.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality H.5.1
[Information Interfaces and Presentation (e.g., HCI)]: Multimedia
Information Systems—Video

1 INTRODUCTION

Today, most new feature films, TV shows and documentaries, and
a rapidly growing number of home and professional videos are
shot, edited, and released at high resolution. Typical resolutions are
HD, which is usually defined as resolutions between 1280x720 and
1920x1080 pixels, and the new digital movie standard 4K, which
features 4096 pixel wide images with 2160-2400 lines. Real-time
graphics applications, such as computer games and virtual reality
applications, often embed video in their virtual worlds, for instance
to visualize a place like Times Square in New York City with its
video screens, a virtual movie theater with a movie playing on the
big screen in a virtual environment (VE), or a virtual stadium with
its video screen. Integrating video into 3D applications can increase
the level of realism, and it can bring important information into the
virtual world.

However, due to the large volume of data in high-resolution
video, which easily exceeds hundreds of gigabytes, it is not an easy
task to playback video in real-time. Playing back high-resolution
video is already CPU and GPU intensive for today’s computers,
even when it is displayed in a 2D window on the screen, namely,
all traditional video playback tools like Windows Media Player,
QuickTime, or VLC. Constant I/O operations are required to load

∗e-mail: hskim@cs.ucsd.edu
†e-mail: jschulze@ucsd.edu

data in a timely manner, and video rendering systems need to man-
age the limited memory resources. While in the 2D domain the
GPUs provide techniques to help speed up playback such as over-
laying, playing back video in a VE is even harder. The video is
not displayed on a rectangle aligned with the screen, but as its pro-
jection on the screens, which is a general quadrangle in an arbitrary
orientation. This plays a role, for instance, if a 3D model of a virtual
movie theater were displayed with a movie playing on the screen of
the screening room. In this publication, we do not cover real-time
video sources like video conferencing or video surveillance sys-
tems, but some of our algorithms can be applied to those kinds of
applications as well.

In this paper, we present an efficient algorithm and its implemen-
tation to display high-resolution video in VEs. Our concept is based
on using mipmapping [30] for the video frames, on top of which we
add various optimizations to allow for constant frame rates under
varying viewing conditions and rendering rates determined by the
rest of the 3D virtual world, assuming that the video is not the only
thing being displayed by the graphics hardware, but that it is em-
bedded in a 3D model the user can move around in (e.g., a virtual
movie theater) or look at from all directions (e.g., the visualization
of a cell phone with video playback on its display). In our approach,
we pre-process the image frames of the video to create frames of
successively lower resolution (mipmapping). We also tile these im-
ages so that they can be loaded from disk more efficiently. By ren-
dering the lowest resolution tiles which match or slightly exceed the
physical display resolution, we can optimize memory usage during
playback. Predictive prefetching of data further enhances the per-
formance of our system. All of these approaches and algorithms
are software-based and only require a graphics card with a reason-
able amount of texture memory, which allows existing VE software
applications to easily embed video through graphics libraries, such
as OpenSceneGraph [3]. Our algorithm supports the simultaneous
rendering of multiple video streams, located in different places of
the virtual world.

Digital projectors and DVD players are designed to play video
at a constant frame rate. The frame rate for digital cinema is de-
fined as a constant 24 frames per second, which we refer to as the
video frame rate. However, in interactive computer graphic appli-
cations, each frame takes a different time to render, depending on
many different factors, such as the amount of data to be loaded, the
size of the rendered screen, and cache effect in various places of a
computer system. If rendering an image frame is faster enough than
1/(video frame rate), then the image frame should be played more
than once. On the other hand, if the rendering speed is below video
frame rate, then a few images after the current image frame should
be skipped. Therefore, the speed of rendering one image frame, the
image frame rate, should be constantly compared with the video
frame rate to play a sequence of images as smoothly as in normal
video players.

This paper is organized as follows: Section 2 discusses similar
approaches proposed for other problems and Section 3 describes
the main goals of this work and provides an overview of the video
playback system. Section 4 presents implementation of the system
and the experiment of our implementation and its results are shown
in Section 5. Finally, Section 6 discusses future work and concludes



this paper.

2 RELATED WORK

Memory has been the most scarce resource in computer systems
and also in graphics processors. In order to overcome the limited
resources, graphics communities have developed many algorithms
and technologies. The most widely used approaches are level-of-
detail and tiling (or bricking, when used with volume data).

Level-of-detail (LOD), often called mipmaps, was first intro-
duced by Williams et al. [30]. Precomputed texture data at multiple
resolutions, downsampled from the original image, greatly eased
the tight texture memory resource budget and the antialiasing prob-
lem. The concept of Clipmaps [23], which are virtual mipmaps,
extended the mipmap concept to load arbitrarily large images into
graphics memory by splitting the images up into smaller pieces.
The essential observation that led to Clipmapping was that normally
only a small portion of the entire mipmap pyramid is used to render
a texture. Thus, Clipmapping loads only the portion that is needed
to render the current image frame. Clipmapping is very close to our
work, except for the fact that it only considers a set of 2D textures
of one image frame, not a sequence of frames.

Tiling is a technique that divides an image into smaller, rectan-
gular pieces, called tiles (brick). This concept has been employed
in the interaction between main memory and texture memory in
graphic processors, and is very similar to paging algorithms of
memory management units. The main advantage of the tiling mech-
anism is that it can help overcome the limit of texture memory size.
When rendering images larger than texture memory, which are to be
displayed at a size larger than the screen, the renderer will render
only those tiles which actually contribute to the visible image.

Tiling and multi-resolution level-of-detail techniques are often
combined [13, 4, 10, 27, 5, 19]. There are two different ap-
proaches for the level-of-detail selection process: area-and-distance
and point-of-interest. LaMar et al. [13] constructed a spatial data
structure, a quadtree, to store multi-resolution data sets. The gener-
ation of a proper level-of-detail is determined by two factors: 1) the
distance from view point p to a tile and 2) the area a tile covers in
projected space. Given point p, a tile is selected if the distance from
the center of the tile to p is greater than the length of the diagonal of
the tile. As the projection transformation matrix transforms objects
closer to p to appear larger and those further from p smaller, data
points closest to the view point have the finest resolution. Weiler et
al. [27] approached the same problem, the selection process of tiles,
with a different solution from [13]. Instead of selecting the finest
resolution for closest tiles, users can define a focus point. The dis-
tance from the focus point to a tile determines the level-of-detail.

Blockbuster [1] is a movie player for high resolution videos,
which can run on tiled display walls under DMX (Distributed Xin-
erama). It plays movies in Lawrence Livermore National Labs’ SM
format, which supports tiled images, multiple levels of detail and
several types of intra-frame image compression. The major differ-
ence to our approach is that Blockbuster cannot render to images
in a VR environment, where the video image is not rectangular and
parallel to the screen.

OpenGL Volumizer [4] is a volume rendering library developed
by SGI, but it could potentially be used to render images as well. It
supports multiple time steps but it was mainly designed for a sin-
gle time step and most optimizations, such as caching algorithms, a
roaming window and toroidal mapping, focus on volume data with
a single time step. These optimizations, however, are irrelevant for
video playback, because the image content changes constantly. In
addition, OpenGL Volumizer does not have a mechanism to main-
tain a constant video frame rate, which is critical for video play-
back.

Preloading algorithms in rendering large scale data sets have
been studied with various applications. iWalk [7] and iRun [25]

proposed predictive prefetching in walkthrough applications. They
enhanced the predictive prefetching by using from-point visibil-
ity instead of from-region visibility in [9]. From-point visibility
exploits the current camera’s position, linear speed, and angular
speed, and from the information gathered, it predicts the future
camera location and direction.

Octreemizer [18] and its extension [17] provide a more sophis-
ticated paging and prefetching algorithm in volume rendering. The
key idea for paging here is that it limits the number of tiles that can
be loaded at a given point. Although it may not render with the
best possible resolution, it can always guarantee that the time spent
on data loading is bounded and that therefore the renderer provides
interactivity even when the observer moves fast. Our algorithm is
very similar, but Plate et al. load a fixed number of tiles. In contrast,
we adjust the limit of tiles to automatically find the best value for
the number of tiles to load. The prefetching algorithm in Octreem-
izer uses a similar approach as in iWalk and iRun, predicting the
observer’s motion by linear extrapolation from the previous image
frame and the current image frame. Through the prediction of the
future location, the tiles that may be needed in the near future are
loaded in advance.

Another topic related to the subject of this article is video con-
ferencing. The goal of video conferencing is to build an interactive
environment enabling face-to-face communication. Typical sys-
tems consist of a camera and a computer display at both ends of the
data link and display the camera image at the other end [8, 24, 12].
More sophisticated video conferencing systems can display mul-
tiple video streams on the same monitor, or on multiple displays.
The SAGE system [11, 20] can be used to display multiple video
streams on a tiled display wall. However, in all of the above ap-
proaches, the video is always played back in a rectangular window
which is parallel to the physical displays. In virtual environments,
however, the video image needs to be projected onto arbitrarily ori-
ented displays, and projected image is not rectangular anymore, but
a general quadrangle.

3 SYSTEM OVERVIEW

In this section, we describe our software system, and we propose a
new rendering algorithm for super high resolution video streams.

3.1 Design Goals

Our approach to render super high resolution video in VR environ-
ments has three goals: to render large videos (both in image size
and duration), optimize frame rate and image quality, and allow for
the rendering of multiple concurrently playing videos.

Large Scale Video Texture In order to create a video texture
in a virtual environment, we need to change the texture at least 24
times per second. We want the movie to be of very high resolu-
tion, typically exceeding the size of main memory. The resolution
of a typical 4k video clip is 4096 x 2160 pixels, which means that
a 10 minute video clip at 24 frames per second is 300 Gigabytes
of uncompressed data. This is a lot of data to stream into memory
from disk and on to the graphics card, and reaches the performance
limit of even the highest end machines. Parallelization of loading
and rendering has been an approach to achieve the goal of render-
ing such high resolution videos, but in existing implementations the
video is split up into equally sized rectangular pieces which are then
processed independently by the nodes of the parallel visualization
system. In our case, we need the video to be displayed in a 3D vir-
tual environment, where the location and shape of the video image
changes constantly.

Performance vs. Image Quality In video playback, espe-
cially with sound, it is very important to keep a constant video
frame rate. In our tests, it turned out that disk I/O is the most
time-consuming part of video playback and our goal is to correctly



Figure 1: System Overview of Video Playback Rendering.

predict disk I/O requests and to evenly distribute the disk I/O op-
erations over the available rendering time. In the case that a burst
of I/O operations has to be processed (e.g., when the viewer moves
quickly), a constant video frame rate should be guaranteed even if it
leads to a drop in image quality, so that the video stays in synchro-
nization with the audio. This goal can be assessed in two different
ways: qualitatively, i.e., the viewer should not see any slowdown
during playback, and quantitatively, i.e., the video frame rate should
be both as stable and high as possible.

Multiple Instances The third goal is the ability to display mul-
tiple videos concurrently, and also display 3D geometry along with
the videos. For instance, we want to be able to display a virtual
surveillance center with a control room which displays a multitude
of videos. This requires that our algorithm uses minimal memory
resources for each video stream, so it can co-exist with the other
video streams, as well as the rendering of the 3D geometry.

3.2 Software Design

One core approach to achieve the goals we described in Section 3.1
is mipmapping. Instead of rendering the entire high resolution
video, we calcualte the best possible resolution for the screen. Be-
cause mipmapping reduces data by factors of two, this method re-
duces the footprint of memory significantly. In addition, although
changing the level-of-detail may reduce the image quality, control-
ling the image quality can greatly lower the amount of disk I/O
operations.

Figure 1 shows the main components of our system. The Video
Playback Renderer cooperates with three other components: Frame
Manager, Mipmapped Tile Manager, and LOD Mesh Generator.
Frame Manager controls which image frame has to be rendered at
a given time to synchronize with the video frame rate. Mipmapped
Tile Manager manages a large number of tiles. It first loads meta
information for all tiles and whenever the renderer requests a tile
for meta data or texel data, it returns all the necessary data to the
renderer. Due to the large size of the video, it is impossible to load
all data into main memory at once. Thus, Mipmapped Tile Man-
ager swaps requested tiles into main memory and texture memory
and removes unnecessary tiles. The decision about cache eviction is
also made here. Mesh Generator computes the best possible LOD
for each region of the playback screen so that the smallest possi-
ble amount of data is copied into the texture, which utilizes mem-
ory resources and bandwidth more efficiently. The renderer and its

Algorithm 1 Rendering Algorithm

1: Mesh Generation
2: for all tile to be rendered do
3: Data Load(tile)
4: end for
5: Prefetching
6: for all tile to be rendered do
7: Render(tile)
8: end for

accompanying three components are all integrated into an Open-
SceneGraph [3] plugin.

3.3 Rendering Algorithm

The rendering algorithm for a video stream consists of four major
steps as shown in Algorithm 1: 1) mesh generation, 2) data loading,
3) prefetching, and 4) rendering tiles. This routine is called for ev-
ery image frame and it gets as input the image frame to render from
the frame manager. The mesh generation algorithm is presented in
Section 4.2 and data loading and prefetching are discussed in Sec-
tion 4.3. Once Algorithm 1 completes mesh generation and data
loading, all the necessary data such as texture coordinates and texel
data, is ready for rendering each tile. Then the final step is to iterate
over the tiles that have to be rendered at the current image frame to
draw them with their corresponding texture data.

4 IMPLEMENTATION

In this section, we discuss several implementation issues to achieve
high performance rendering even with large data sets, and our solu-
tions. The common goal of the solutions discussed in this Section is
to maximize I/O performance and, thus, to stably stream video data.
One important issue is the trade-off between resolution and image
frame rate. In many cases, sustaining a stable frame rate requires
the system to sacrifice some of the resolution of the video stream.

4.1 Mipmap Generation and Tiling

Mipmaps have been widely used in computer graphics since the
concept was first introduced in Williams et al. [30]. The main idea
is to downsample the original data or texture recursively by factors
of two. We utilize mipmaps for the sake of saving resources: when
large images are rendered but from a far distance, several texels
(texture elements, similar to pixels) may be mapped to one pixel on
screen and by using an appropriate mipmap texture the renderer can
avoid wasting resources.

In our approach, we need to pre-process the video frames in an
off-line step. First, the image files are extracted from the video clip.
Each image file corresponds to one frame in the video stream. In
typical cinematic movies, 24 images will be extracted for one sec-
ond of the video. The downsampling process runs on each image
file to produce multiple levels of resolution. Since our downsam-
pling process decreases the image size recursively by a factor of
two, until the downsampled image is smaller or equal to the tile
size (we use 1282 pixels), the number of recursions depends on the
original image size.

For each level of the mipmap images, the preprocessing step di-
vides the image into multiple smaller squares, called a tile [26, 6,
28, 14, 29]. A tile is later on used as the atomic unit to read and
write between the different levels of the memory hierarchy. Fig-
ure 2 describes the layout of the tiles, which are stored in separate
TIFF files. An image is divided into a 2D grid and the origin of the
grid is shown at the bottom-left. Tiles at the rightmost column and
at the topmost row are padded with zeros so that all tiles have a uni-
form size. Using a uniform size simplifies the rendering process, so
there is no need to distinguish boundary tiles. Each tile is stored as
a single multi-page block in the TIFF file so that it can be viewed



Figure 2: Layout of tiles at multiple mipmap levels. The image is from
NASA’s Blue Marble data set [21].

Algorithm 2 Mesh Generation

1: PriorityQueue aQueue← Tile(0, 0, 0)
2: List output
3:

4: while aQueue.empty() or output.length() > tileLimit do
5: Tile parent← aQueue.pop()
6: if parent is shown too small on screen to be subdivided then
7: output.insert(parent)
8: else
9: for all aChild← parent.child() do

10: if aChild is inside screen then
11: aQueue.enqueue(aChild)
12: end if
13: end for
14: end if
15: end while

by normal image viewers (useful for debugging, etc). However, the
format itself is not restricted only to the TIFF specification and it
can be easily converted to any other image format. Although the
TIFF multi-page block specification is flexible enough to put the
data block in any location in the file and locate each page using a
pointer, we store the tiles sequentially. The tile at (0,0) is followed
by (0,1) and so on, to optimize the disk read buffer in secondary
storage or the networked disk buffer.

4.2 Mesh Generation

The first step of rendering is to subdivide the playback screen into a
set of tiles, which we call the mesh. The mesh is comprised of mul-
tiple tiles of different mipmap levels. The goal of subdividing the
screen is to allocate the best possible mipmap level to each region
with a limited number of tiles.

Algorithm 2 describes how to generate a mesh. The main idea of
Algorithm 2 is to render areas closer to the viewer at higher resolu-
tion and those farther away at lower resolution. Rendering at lower
resolution does not hurt the overall image quality because, after
perspective projection in the VE, the tiles farther from the viewer
are rendered smaller and the downsampled mipmap texture is still
detailed enough to render this tile correctly without a noticeable

change of the image quality. Figure 3 shows an example of the out-
put of Algorithm 2. Depending on the location and rotation of the
plane, the playback plane has several levels of detail.

Algorithm 2 is based on quadtree traversal. Starting from the root
node, which is the maximum mipmap level of the image, the algo-
rithm checks whether or not the tile visited can be subdivided fur-
ther. The area, area(b), of tile b after transformations, i.e., model-
view, perspective projection and viewport transformation, is used
in the decision rule for the subdivision. Let tileSize denote the size
of a tile. Then, if one tile of a certain mipmap level occupies about
tileSize× tileSize pixels on viewport screen, the subdivision of this
tile cannot further improve the image quality of the region. In VEs,
the decision rule can be relaxed by adding a constant value α as
follows:

area(b) > α× tileSize× tileSize (1)

where α can be any float value larger than 1. Algorithm 2 subdi-
vides one tile if Predicate 1 is true and stops if false. The constant α

controls how detailed the image is rendered. If α is one, the texel to
pixel ratio of the rendered tiles is near one. On the other hand, large
α makes the mesh algorithm stop the subdivision even if one texel
of each tile maps to more than one pixel, which creates an image
of lower resolution. α is introduced to control the system between
high frame rate and the best image quality. In case of not having
enough frame rate on low end machines, the system is designed to
keep up with the desired frame rate, sacrificing image quality.

Another variable, tileLimit, controls the number of tiles to be
rendered on a physical display screen. Tiles in the output list
grow exponentially along the traversal of the quadtree. However,
tileLimit guarantees that the rendering system does not have ex-
cessively many tiles on the rendering list. The ideal number for
tileLimit is different from hardware configurations and a realistic
number often used is around 40 1282 tiles. That is, 40 tiles on one
display screen corresponds to 40×128×128 texels, which is about
640K texels.

With tileLimit, not all tiles can have the most desired mipmap
level. Some tiles still can be subdivided into four smaller tiles to
have higher resolution. Algorithm 2, therefore, has to rank all tiles
so that it can choose one tile among multiple possible choices of
tiles given the bounded tileLimit value. In order to give priorities
to each tile, a cost function is employed as follows:

cost(b) =
area(b)

distance(e,b)
(2)

cost(b) denotes the cost for tile b and distance(e,b) measures
the distance between the viewer’s location and the center of tile b.
The viewer’s location is given by the tracking position in the VE.
Intuitively, tiles occupying a large area on screen have higher prior-
ities so that no large tiles of low resolution are left on the list. The
denominator, distance(e,b), gives higher priority to tiles closer to
the viewer. Namely, this term provides a point-of-interest mecha-
nism; as the viewer walks toward to a specific part of the playback
screen, the region around the viewer is set to higher resolution.

Figure 3 shows an example of a mesh generated by Algorithm 2.
The image plane is tilted in such a way that the bottom right corner
of the plane is set closer to the viewer and the top left corner of
the plane is farthest from the viewer. As shown in Figure 3, tiles
around the bottom right corner have a smaller size, which results in
a higher resolution.

Due to the viewer’s constant movement, distance(e,b) returns
updated values at every frame and that makes it impossible to reuse
the mesh generated during the rendering of the previous frame.
Thus, this process has to be called when rendering every frame.



Figure 3: Dynamically generated multi-resolution tiled 2D volume.

This slows the rendering process because tiles that need to be vis-
ited may grow exponentially in a quadtree. The view frustum
culling test, however, reduces the cost of quadtree traversal by sig-
nificantly pruning unnecessary nodes. One simple rule is that if a
parent node is culled from the view frustum, all the child nodes are
also outside of the view frustum. Therefore, when the playback
screen is zoomed in, i.e., when the traversal has to go all the way
down to the leaf nodes, a large portion of the octree is pruned at the
earlier stage of the traversal. As the video moves away from the
viewer, the traversal does not need to go down as much anymore as
the video frame can be rendered with a smaller number of tiles.

4.3 Data Loading and Prefetching

The mesh generation algorithm described in Section 4.2 produces
a set of tiles covering the region of the playback canvas shown on
one display screen. The next step is to load the texture data from
secondary storage. For small videos, it may be possible to preload
all the texture data either in memory or even in texture memory in
the GPU. However, high resolution video streams require hundreds
of gigabytes of data and even short clips can consist of more than a
few gigabytes of uncompressed data. Therefore, it is often impossi-
ble to load all the texture data into memory before playing. Instead,
the image data is loaded right before rendering.

Loading a few megabytes of data from secondary storage as well
as copying data from main memory to texture memory for every
frame slows down the rendering process as the bandwidth for data
read from secondary storage is much lower than other interfaces,
like memory bus, memory-GPU interface, etc. Thus, we imple-
mented three optimization methods.

Prefetching Although a variety of prefetching algorithms has
been proposed in the past [18], [25], [7], [9], which are based on a
prediction of what is to be displayed next, it is difficult in a VE to
correctly predict the viewer’s motion and to load the predicted data
for the next frame. Moreover, a sophisticated prediction scheme
generates a large computational overhead and thus we decided to
minimize the computation time for the prediction. The key obser-
vation we made was that often times, once viewers in the VE zoom
in to the displayed video, they stop to watch the video clip. In
VEs, there is always a slight change of the viewer position due to
head tracking, but the movement does not affect the mesh genera-
tion algorithm as much as when the viewer walks around: in our
experience, the difference between the tile meshes of two succes-
sive frames is at most four tiles when viewers are stationary.

Another issue is to predict the video frame from which the tiles
are to be prefetched. After rendering the n-th video frame, due to
the synchronization described in Section 4.4, the next video frame
is the (n+ k)-th frame, where k can be any positive number, which
means that we skip frames (n + 1) to (n + k− 1). At every ren-
dering step, k has to be estimated as correctly as possible, other-

wise it causes the system to prefetch unnecessary tiles. Again, we
adopted a simple, computationally light scheme based on reinforce-
ment learning [22]. We estimate the next frame by looking at the
history of frame rates. If the system has been skipping, for instance,
every other video frame, we estimate that in the next image frame
we are going to skip a video frame again. More formally, let An

denote the current estimate of how many frames the system will
skip and an be the current observation of the skip. Then, the next
estimation of An+1 is the weighted average between An and an.

An+1 = αan +(1−α)An

where α is a parameter representing how fast the algorithm adapts
to new information an as opposed to the history An. We use the
rounded values of An for the estimation of how many steps to skip.
In order to further improve the accuracy, the (n + k− 1)-th and
(n + k + 1)-th frames are also prefetched. The number of tiles
prefetched is conservatively kept low, from one to four tiles, to
prevent prefetching from generating too much load for the entire
system and to utilize only the idle time of the I/O thread without
delaying immediate requests from the rendering process even in the
case of misprediction.

Asynchronous I/O In order to accelerate data transfers be-
tween main memory and texture memory, a separate thread is
spawned and dedicated to asynchronous disk I/O operations. Ev-
ery disk read request is sent to the I/O thread via a message queue
and the I/O thread reads data whenever it finds a message in the
queue. There are two queues: a tile request queue and a prefetch
request queue. The tile request queue contains the request from the
main thread, which is for texture data of a tile that is needed to ren-
der the current frame. The prefetch request queue contains requests
for texture data of a tile which will be needed in the near future.
To provide texture data to the main thread in a timely manner, the
messages from the tile request queue always have a priority over
the messages from the prefetch request queue. In addition, the re-
quest for data loading is made as soon as the main thread finds a tile
which will be needed for rendering. By posting disk I/O requests
as early as possible, the overlap between the rendering process and
disk operations can be maximized. Another message used for com-
munication between the main thread and the disk I/O thread for-
wards the current frame number. Synchronization makes the main
thread skip one or two image frames to keep the correct video frame
rate and the I/O thread should not spend time on prefetching tiles
of the skipped frames.

Memory Pool and Cache The third optimization we imple-
mented is to pre-allocate a pool of memory blocks so data loading
can save time for allocating memory blocks. The pool of mem-
ory blocks consists of a list of blocks, each of which can store the
texture data of one tile. And the pool is initialized both in main
memory and in texture memory. Whenever a new tile needs to load
its data into the GPU, it finds an available memory block in main
memory and texture memory and binds them. As video streams
keep playing and as more memory blocks are requested, the pool
runs out of free blocks at some point. Then, the two pools remove
the least-recently-used blocks. For videos about the size of main
memory, this means that most blocks end up staying in the pool af-
ter the first playback and the pool mechanism works as a cache and
improves the data loading process when a video stream is played
multiple times.

4.4 Synchronization

The time for rendering an image frame varies between frames,
mostly depending on the number of tiles loaded for each frame.
This causes two types of synchronization problems: synchroniza-
tion 1) between frames and 2) between CAVE nodes. The first prob-
lem is that, without a synchronization scheme, the video frame rate



changes depending on how many tiles are rendered for the frame,
which varies depending on the viewer’s location. Therefore, if one
image frame is rendered quickly and the time spent on the frame
is shorter than that of the video frame rate, e.g., 1/24th second, the
video frame needs to be rendered again until the sum of the ren-
dering times reaches 1/24th second. On the other hand, rendering
one image frame may take longer than 1/24th second. For exam-
ple, when the total time to render a frame is, for instance, 3/24th
seconds, the next two video frames have to be skipped.

The second synchronization problem occurs because in a multi-
node VE all nodes usually have different workloads and cause an
imbalance in rendering times. For those display nodes that do not
render much data, the rendering time is short, whereas other nodes
might need more time for an image frame update than the video
frame rate allows for, so that video frames have to be skipped. In
our CAVE system, which is based on 17 computers and 34 pas-
sive stereo screens with head tracking, we update the images on all
nodes at the same time, so that the update rate is equal to the frame
rate of the slowest node.

Our software provides a synchronized time which is the same
on all nodes. Using this clock, we measure the time passed since
the start of rendering the first frame, telapsed . Then, the desired
video frame number, d, can be easily computed with the following
formula for a 24 frames per second video clip:

d = dbase +

⌊

telapsed

1/24

⌋

dbase denotes the frame number of the first frame. dbase will change
when a video stream is paused and later unpaused. This approach
solves the two problems because the above formula enforces frames
to change neither too fast nor too slow, which solves the first prob-
lem, and because telapsed is measured from the globally synchro-
nized clock, which is the solution for the second synchronization
problem.

5 RESULTS

We have implemented the above described video playback algo-
rithm for virtual environments running on PC clusters by writing a
C++ plug-in for the COVISE software framework. In this section,
we describe the hardware environment we used for the experiment
and the data sets we used. Then, we evaluate the algorithm by pre-
senting frame rates for three different resolution settings.

5.1 Experiment Environment

We tested three different videos in our StarCAVE virtual environ-
ment. Our VE consists of five walls, each of which has three rear
projected screens, and a top projected floor. Each screen is pro-
jected on by a pair of JVC HD2K projectors (1920 x 1080 pixels
each), which are connected to an Intel quad core Dell XPS com-
puter running ROCKS [16], with 4GB of main memory and dual
Nvidia Quadro 5600 graphic cards. We copied the video data to the
hard drives of each of the nodes.

5.2 Data Sets

In our experiment we used three different video clips: 1) one was
a 4k (3840 x 2160 pixels) clip showing the result of a tornado sim-
ulation created by the National Center for Supercomputing Appli-
cations (NCSA) [2], 2) the same tornado clip at 2k (1920 x 1080)
resolution, and 3) a series of light microscopy images (14914 x
10341 pixels) from the National Center for Microscpy and Imaging
Research (NCMIR) [15] showing a mouse hippocampus cell. We
preprocessed each of the video clips with our tiling and mipmap-
ping tool. All three clips have 24 bit RGB colors and each image
from three clips is divided into 512 x 512 pixel tiles. Only 1200
frames out of 3000 frames of the original tornado simulation video

Figure 4: The video playback plugin embedded into a virtual theater
VR application. Users can navigate into the theater and watch high
resolution videos. The virtual theater application renders 201,688
polygons.

were used for experiments due to storage limitations, and the light
microscopy clip consists of 24 frames.

5.3 Results

Table 1 shows the frame rates for various settings. Because our
VE displays stereoscopic images, the frame rate here is defined as
a reciprocal of the time to render two images, one for the left and
the other for the right eye. We could double the numbers in the
table to show an update rate, the interval between two buffer swaps.
However, we decided not to due to the fact that right eye images are
rendered faster than left eye images. This is because, once texture
data is loaded into memory for rendering a left eye image, it can
be reused for rendering a right eye image for the video frame. All
measurements were averaged over a full playback cycle of each
clip.

We set the size of the playback canvas in two ways. One is the
size of one display panel of our CAVE, which displays about 2M
pixels (1920 x 1080 pixels). All three video clips were set to read
2M texels for a frame. With this size, the 2K video is played at
its original resolution, whereas the 4K video is rendered at half its
resolution (1/4 the number of pixels).

The second setting is for the 4K video. We zoomed in so that
it occupied the area of 2x2 display screens in the CAVE. In this
setting, the 4K video is displayed at its full resolution, reading 8M
texels every frame. 2K video is streamed at the highest resolution -
2M texels - but it does not add more detail as the size of the play-
back canvas exceeds the size of the video frame. The video of the
microscopic data set was displayed with 12M texels, and the result
shows that our system is useful for scientists who want to visualize
and examine ultra-high resolution time-series of images in a VE.

In addition to different screen sizes, we compared the frame rates
of our optimized system (first column) to those of an unoptimized
system (second column). The optimization includes asynchronous
I/O, prefetching, and DXT compression while the unoptimized sys-
tem loads uncompressed texture tiles at the time they are requested
for rendering. The system with optimizations shows a 3 to 4 times
speedup in all cases, compared to the one without these optimiza-
tions.

The third column for each video source shows the frame rate
when the video is played at a lower resolution, i.e., 1/4 of the num-
ber of texels used for the first and second column. This is imple-
mented in such a way that the quad tree traversal stops at an earlier
stage than the original algorithm so that it produces lower resolu-
tion images. This functionality provides a preference between im-
age quality and frame rate. If one wants to watch a video clip as fast



Video Clip 2K Video 4K Video Microscopy

1920 x 1080 3840 x 2160 12941 x 10341

Configuration opt no opt LOD opt no opt LOD opt no opt LOD

2 x 2 walls 23.7 7.5 44.2 9.4 2.7 26.0 8.9 2.8 26.7

single wall 20.4 5.0 59.6 18.0 4.9 45.1 21.8 6.1 58.4

Table 1: Frame rates from three different video sources. Frame rate (frames per second) is the reciprocal of the time to render two images
(stereoscopic image for left and right eye) and is averaged over a full playback cycle of each clip. Optimizations enhance the overall performance
by a factor of 3 to 4.

Prefetching hit ratio 98.5 %

Percentage of preloaded tile 90.3 %

Co-executed with virtual theater 12.0 % slower

Table 2: Prefetching hit ratio is the ratio of how many times
the prefetching algorithm successfully prefetched video frames.
Prefetching and asynchronous I/O hide the latency of loading. The
percentage of preloaded tiles tells us how many tiles were able to be
loaded before rendering of the tile begins. The rest were stalled until
the I/O process finished loading texture data from disk.

as possible, e.g., at 24 fps or more, not wanting to skip any video
frames, then by using a lower LOD, the system achieves high frame
rates. However, in some case, especially when investigating large
scale scientific data sets, the full detail of the images is what scien-
tists are the most interested in, as long as it is played at a reasonable
frame rate to convey motion.

Table 2 shows how our optimization works and how our sys-
tem can co-exist with other 3D geometry. The first row reports
the prefetching hit ratio. The prefetching algorithm predicts the
next frame and loads one to four tiles depending on the availability
of system resources. The ratio indicates that it predicted correctly
98.5% of the time. The second row describes the percentage of tiles
that are already in the main memory before the copying from mem-
ory to GPU begins. If a tile is not ready by the time of GPU offload-
ing, the system stalls and waits. Both prefetching and asynchronous
I/O work to prepare all the data needed before rendering, running
parallel to the rendering process. Only about 10% of the tiles were
unable to be prepared. The last row shows the performance differ-
ence when it runs with a VR application. We used a virtual building
application and put our video playback canvas on the big movie the-
ater screen inside the building. Figure 4 is the screen shot for this
experiment. The 3D model of the virtual movie theater consists of
201,688 polygons. Compared to the original frame rate we mea-
sured without the plugin, the framerate decreased by only 12.0%.

6 CONCLUSION AND FUTURE WORK

We showed and discussed the design and implementation of high
resolution video textures in VEs. In order to achieve a constant
video frame rate, we created multiple levels of detail and dynam-
ically subdivide the video into a set of tiles with different LODs.
For efficient disk I/O operations, we assume that the plane will not
change too much between image frames and prefetch tiles for the
next frame. This helps overlap rendering with texture copying. In
addition, synchronization was considered to sync the speed of ren-
dering image frames and the video frame rate. Our experiments
have shown that our system provides constant frame rates and us-
able video playback performance.

The main disadvantage of the current implementation is that data
has to be preprocessed to generate multiple resolutions. Down-
sampling increases the disk space requirement, and real-time video
streams cannot be displayed. Since the downsampling process,
however, is highly parallelizable and modern GPUs provide hard-

ware supported parallel computing (e.g., CUDA), real-time down-
sampling might allow us to render real-time video streams in VEs
in the future. In addition, real-time processing is possible to down-
sample only the regions actually rendered by the respective node,
which will further reduce the overall computational cost of down-
sampling.

The current system needs to convert video clip data to a series
of TIFF images and the downsampling process runs on the TIFF
images. Supporting more image formats or even generating down-
sampled data from compressed video clips will significantly im-
prove the usability of this video playback system.

ACKNOWLEDGEMENTS

This publication was made possible by Grant Number (NCRR
P41-RR004050) from the National Center for Research Resources
(NCRR), a part of the National Institutes of Health (NIH). Its con-
tents are solely the responsibility of the authors and do not neces-
sarily represent the official views of the NIH.

REFERENCES

[1] Lawrence Livermore National Laboratory Blockbuster.

https://computing.llnl.gov/vis/blockbuster.shtml.

[2] National Center for Supercomputing Applications.

http://www.ncsa.uiuc.edu.

[3] OpenSceneGraph. http://www.openscenegraph.org.

[4] P. Bhaniramka and Y. Demange. OpenGL volumizer: a toolkit for high

quality volume rendering of large data sets. Proceedings of the 2002

IEEE symposium on Volume Visualization and Graphics, Jan 2002.

[5] I. Boada, I. Navazo, and R. Scopigno. Multiresolution volume visual-

ization with a texture-based octree. The Visual Computer, 17(3):185–

197, May 2001.

[6] S. Bruckner and M. Gröller. VolumeShop: An interactive system for

direct volume illustration. Proceedings of IEEE Visualization, Jan

2005.

[7] W. Correa, J. Klosowski, and C. Silva. iWalk: Interactive out-of-core

rendering of large models. Technical Report TR-653-02, Princeton

University, 2002.

[8] Y. Ebara, N. Kukimoto, J. Leigh, and K. Koyamada. Tele-immersive

collaboration using high-resolution video in tiled displays environ-

ment. ainaw, 2:953–958, 2007.

[9] T. Funkhouser, C. Séquin, and S. Teller. Management of large amounts

of data in interactive building walkthroughs. Proceedings of the 1992

symposium on Interactive 3D graphics, Jan 1992.

[10] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering

of large volume data sets. Visualization, Jan 2002.

[11] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. John-

son, and J. Leigh. High-performance dynamic graphics streaming for

scalable adaptive graphics environment. Supercomputing, 2006. SC

’06. Proceedings of the ACM/IEEE SC 2006 Conference, pages 24–

24, Nov. 2006.

[12] Z. Jiang, Y. Mao, B. Qin, and B. Zang. A high resolution video display

system by seamlessly tiling multiple projectors. Multimedia and Expo,

2007 IEEE International Conference on, pages 2070–2073, July 2007.

[13] E. LaMar, B. Hamann, and K. I. Joy. Multiresolution techniques

for interactive texture-based volume visualization. In VIS ’99: Pro-



ceedings of the conference on Visualization ’99, pages 355–361, Los

Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[14] M. Meißner, U. Hoffmann, and W. Straser. Enabling classification and

shading for 3D texture mapping based volume rendering. vis, 00:32,

1999.

[15] National Center for Microscopy and Imaging Research.

http://ncmir.ucsd.edu.

[16] P. Papadopoulos, M. Katz, and G. Bruno. NPACI: rocks: tools and

techniques for easily deploying manageable Linux clusters. In Cluster

Computing, 2001. Proceedings. 2001 IEEE International Conference

on, pages 258–267, 2001.

[17] J. Plate, T. Holtkaemper, and B. Froehlich. A flexible multi-

volume shader framework for arbitrarily intersecting multi-resolution

datasets. IEEE Transactions on Visualization and Computer Graphics,

13(6):1584–1591, 2007.

[18] J. Plate, M. Tirtasana, R. Carmona, and B. Fröhlich. Octreemizer: a

hierarchical approach for interactive roaming through very large vol-

umes. In VISSYM ’02: Proceedings of the symposium on Data Visu-

alisation 2002, pages 53–ff, Aire-la-Ville, Switzerland, Switzerland,

2002. Eurographics Association.

[19] S. Prohaska, A. Hutanu, R. Kahler, and H.-C. Hege. Interactive ex-

ploration of large remote micro-ct scans. In VIS ’04: Proceedings of

the conference on Visualization ’04, pages 345–352, Washington, DC,

USA, 2004. IEEE Computer Society.

[20] R. Singh, B. Jeong, L. Renambot, A. Johnson, and J. Leigh. Terav-

ision: a distributed, scalable, high resolution graphics streaming sys-

tem. Cluster Computing, 2004 IEEE International Conference on,

pages 391–400, Sept. 2004.

[21] R. Stockli, E. Vermote, N. Saleous, R. Simmon, and D. Herring. The

blue marble next generation – a true color earth dataset including sea-

sonal dynamics from modis. Published by the NASA Earth Observa-

tory, 2005.

[22] R. Sutton and A. Barto. Reinforcement Learning. The MIT Press, first

edition, 1998.

[23] C. C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap: a vir-

tual mipmap. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages

151–158, New York, NY, USA, 1998. ACM.

[24] H. Towles, W. chao Chen, R. Yang, S. uok Kum, H. Fuchs, C. C. Hill,

N. K. J. Mulligan, L. Holden, B. Zeleznik, A. Sadagic, and J. Lanier.

3d tele-collaboration over internet 2. In International Workshop on

Immersive Telepresence, Juan Les Pins, 2002.

[25] H. Vo, S. Callahan, N. Smith, C. Silva, and W. Martin. iRun: Interac-

tive rendering of large unstructured grids. Eurographics Symposium

on Parallel Graphics and Visualization, Jan 2007.

[26] W. Volz. Gigabyte volume viewing using split software/hardware in-

terpolation. Proceedings of the 2000 IEEE symposium on Volume Vi-

sualization, January 2000.

[27] M. Weiler, R. Westermann, C. Hansen, and K. Zimmermann. Level-

of-detail volume rendering via 3D textures. Proceedings of the 2000

IEEE symposium on Volume Visualization, Jan 2000.

[28] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining constant frame rates

in 3D texture-based volume rendering. Computer Graphics Interna-

tional, Jan 2004.

[29] R. Westermann and T. Ertl. Efficiently using graphics hardware in vol-

ume rendering applications. In SIGGRAPH ’98: Proceedings of the

25th annual conference on Computer graphics and interactive tech-

niques, pages 169–177, New York, NY, USA, 1998. ACM.

[30] L. Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph.,

17(3):1–11, 1983.


