
 http://ivi.sagepub.com/
Information Visualization

 http://ivi.sagepub.com/content/12/3-4/240
The online version of this article can be found at:

DOI: 10.1177/1473871612467631
 2013 12: 240 originally published online 25 February 2013Information Visualization

Han Suk Kim, Didem Unat, Scott B Baden and Jürgen P Schulze
A new approach to interactive viewpoint selection for volume data sets

Published by:

 http://www.sagepublications.com

 can be found at:Information VisualizationAdditional services and information for

 http://ivi.sagepub.com/cgi/alertsEmail Alerts:

 http://ivi.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ivi.sagepub.com/content/12/3-4/240.refs.htmlCitations:

 What is This?

- Feb 25, 2013OnlineFirst Version of Record

- Jul 29, 2013Version of Record >>

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/
http://ivi.sagepub.com/content/12/3-4/240
http://www.sagepublications.com
http://ivi.sagepub.com/cgi/alerts
http://ivi.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ivi.sagepub.com/content/12/3-4/240.refs.html
http://ivi.sagepub.com/content/12/3-4/240.full.pdf
http://ivi.sagepub.com/content/early/2013/02/24/1473871612467631.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ivi.sagepub.com/
http://ivi.sagepub.com/

Article

Information Visualization
12(3-4) 240–256
� The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1473871612467631
ivi.sagepub.com

A new approach to interactive viewpoint
selection for volume data sets

Han Suk Kim1, Didem Unat2, Scott B Baden1 and Jürgen P
Schulze1

Abstract
Automatic viewpoint selection algorithms try to optimize the view of a data set to best show its features. They
are often based on information theoretic frameworks. Although many algorithms have shown useful results,
they often take several seconds to produce a result because they render the scene from a variety of view-
points and analyze the result. In this article, we propose a new algorithm for volume data sets that dramati-
cally reduces the running time. Our entire algorithm takes less than a second, which allows it to be
integrated into real-time volume-rendering applications. The interactive performance is achieved by solving a
maximization problem with a small sample of the data set, instead of rendering it from a variety of directions.
We compare performance results of our algorithm to state-of-the-art approaches and show that our algo-
rithm achieves comparable results for the resulting viewpoints. Furthermore, we apply our algorithm to mul-
tichannel volume data sets.

Keywords
Viewpoint selection, Harris interest point detection, principal component analysis

Introduction

Optimal viewpoint selection is a method that finds a

two-dimensional (2D) projection of a three-

dimensional (3D) data set that best depicts its main

features. A good viewpoint selection algorithm

increases the amount of information a viewer perceives

of a data set and can save time when exploring the fea-

tures of a new data set. Although the definition of

‘‘optimal viewpoint’’ is somewhat subjective, previous

approaches1–6 agree that a viewpoint is better if the

projected image contains more information. In prior

work, how much information an image conveys is

determined by entropy functions. The best viewpoint

is chosen as the one that has the maximum entropy.

While previous approaches have shown promising

results for various data sets, the major limitation of

information theoretic frameworks is the fact that they

rely on exhaustive search over a large set of samples.

This method has to find a balance between accuracy

and computation time. Trying out more viewpoints

yields better results. This is computationally expensive,

especially because volume rendering is rather slow.

Reducing the number of samples will improve perfor-

mance, but the optimal viewpoint might be missed.

For example, suppose we take 400 uniform samples

on the viewing sphere. This is, on average, 20 samples

around one circumference. Then, the granularity of

the sample is p/10. If the real solution is in a small

peak not captured by the granularity, increasing the

number of samples is the only way to correctly locate

the solution. The execution time then increases in pro-

portion to the sample size because the framework

requires rendering for each sample. Even if we exclude

1University of California San Diego, La Jolla, CA, USA
2Lawrence Berkeley Laboratory, Berkeley, CA, USA

Corresponding author:
Han Suk Kim, University of California, San Diego, 9500 Gilman
Drive, La Jolla, CA 92093, USA.
Email: hskim@cs.ucsd.edu

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

feature computation time and the time for reading

back the rendered image from graphics processing unit

(GPU), rendering itself takes at least 8 s for 400 sam-

ples, assuming that the rendering speed is 50 frames

per second. The performance aspect of algorithms has

rarely been studied in previous viewpoint selection fra-

meworks, except by Vázquez and Sbert7 and Lee et al.8

In this article, we propose a new, very fast interactive

viewpoint selection algorithm. To achieve this goal, we

first define what the ‘‘best’’ viewpoint is. When volume

data sets are viewed, areas with greater variation in the

data are often the users’ focus because users try to cre-

ate a greater variation with transfer function on the area

of interest to see the data variance around the area

highlighted. Commonly, the transfer function provides

the primary way to visually pull out these features. We

call these features ‘‘visually interesting’’ features. The

best viewpoint is found when the 2D projection of the

3D data set shows all the visually interesting features of

a volume data set with the smallest possible amount of

occlusion. With this definition, we aim to answer three

questions: (1) How to identify visually interesting fea-

tures? (2) How to find the viewpoint with the least

amount of occlusion among these features? (3) How do

we efficiently compute this viewpoint?

We answer the first question with an extension of the

Harris interest point detection algorithm9 to find

visually interesting features in a 3D volume data set.

The algorithm finds corners of an object and areas with

high contrast. To answer the second question, we for-

mulate the problem as an optimization problem, and

the objective of the optimization is to maximize the var-

iance of projected feature points. This approach tries to

lay out the visually interesting features without over-

laps. By finding a plane in which the variance of feature

points is maximized, we can minimize the overlap

between feature points. This optimization is formulated

as a principal component analysis (PCA) problem.

Our algorithm runs at interactive speed (\1 s)

mainly because of two key features: the simplicity of it

and an efficient implementation on the graphics card

(GPU). These two strengths address the third prob-

lem regarding the efficiency of our approach. Our

algorithm computes one feature value for each voxel

point (section ‘‘Extension to 3D’’), and the optimiza-

tion problem takes only a small set of points as its

input, which avoids actually rendering the volume to

analyze the result (section ‘‘PCA’’). We further reduce

the computational cost through hardware acceleration

by implementing the core parts of our algorithm in

Compute Unified Device Architecture (CUDA), to

run in parallel on the GPU.

Our interactive viewpoint selection algorithm can

help users understand volume data sets better and

faster while they explore different transfer functions.

Today, direct volume-rendering algorithms are fast

enough for interactive frame rates, and the transfer

function is crucial for the appearance of the volume.10

We envision that our viewpoint selection algorithm

could be (optionally) automatically triggered after

every change of the transfer function, so that users can

immediately see the effectiveness of changes of the

transfer function during the explorative phase when

they do not yet know what a data set contains.

This type of operation, which combines transfer

function exploration and automatic viewpoint selec-

tion, becomes crucial in investigating multichannel

data. Multichannel data have multiple values per

voxel, usually three or four. Scientists start their inves-

tigation with all channels on. After figuring out the

overall appearance, a deeper investigation requires

only a small number of channels: individual channel to

see each channel closely or two channels to find corre-

lation between the two channels. Because viewers of

multichannel data frequently turn on/off channels and

try many different combinations, the effective view-

points for many different views change accordingly. As

our viewpoint selection algorithm finds the best view

interactively, it helps viewers understand their data

better and faster. A previous study11 proposed this

algorithm and compared the results with the state-of-

the-art algorithms, and we continue extending the idea

with a new result from multichannel data, as well as

additional single-channel data sets.

The remainder of this article is organized as follows:

section ‘‘Related work’’ reviews previous work on view-

point selection algorithms. In section ‘‘Feature selec-

tion,’’ we introduce our feature selection algorithm.

Section ‘‘View selection’’ describes in detail how we

compute the best view direction from the features.

Section ‘‘Implementation’’ discusses issues in imple-

menting and optimizing our algorithm in order to run

in real time. Section ‘‘Evaluation’’ presents performance

results for several typical data sets and compares the

results with two state-of-the-art approaches in terms of

performance and visual quality. We also discuss possible

applications and limitations of our real-time viewpoint

selection algorithm in section ‘‘Discussion.’’ Finally, we

conclude this article and suggest future work in section

‘‘Conclusion and future work.’’

Related work

The definition of a good view is subjective depending

on the purpose of rendering, and it has a long history

across many different disciplines.12–16 The aspect

graph14,15 considers a general view as a node of a graph

and a visual event as an edge of the graph. The general

views are a region of views where small changes in the

Suk Kim et al. 241

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

view direction incur large changes in the geometry of

the rendered image. The concept of a viewing sphere

here is used in almost all view selection algorithms,

and there have been many studies on this topic.13 The

canonical view12,16 is another concept for defining

good views. Palmer et al.16 did experiments to rate the

quality of viewpoints, and Blanz et al.12 further studied

this with psychophysical experiments. There have been

many attempts to solve the viewpoint selection prob-

lem with information theoretical frameworks and

through sampling from a viewing sphere.1,7,17 These

approaches consider a set of viewpoints in a viewing

sphere. Then, for each candidate view, they evaluate

how good the view is based on the measure they

define. These approaches differ in how they capture all

the important information in the scene and incorpo-

rate the amount of information into their definition of

measure. Vázquez et al.1 propose an entropy-based

framework for 3D mesh data. The probability distribu-

tion function (PDF) for the entropy is defined with the

relative area of the projected faces. This entropy defini-

tion prefers a view in which all faces are rendered with

the same relative projected area. Vázquez and Sbert7

extend the work of Vázquez et al.1 by accelerating the

exploration path in entropy calculation. Instead of a

brute force search of samples in the viewing sphere,

Vázquez and Sbert use an adaptive method to narrow

down the search space. This approach has a common

goal with our algorithm, achieving an interactive ren-

dering rate, but the algorithm still depends on the size

of the scene which the entropy values are computed

for and the number of triangles in the 3D mesh. In vol-

ume rendering, each frame takes much longer to ren-

der than comparable 3D mesh data, but the objects in

volume rendering have more detail than the ones used

in this article. Polonsky et al.17 also discuss the best

viewpoint selection in the context of 3D mesh render-

ing. They define multiple view descriptors, such as sur-

face area entropy, visibility ratio, curvature entropy,

silhouette length, silhouette entropy, topological com-

plexity, and surface entropy of semantic parts. Finally,

Lee et al.8 define mesh saliency to find visually interest-

ing regions.

The information theoretic framework has more

recently been applied to volume-rendered data sets.

Bordoloi and Shen2 define a new measure for volume

data sets, called noteworthiness. The measure is a

function of opacity and frequency in the histogram of

data sets. In addition to the new measure, they also

propose view similarity that measures the Jensen–

Shannon divergence between samples. This allows us

to compare view samples and to determine how two

views are similar to each other. The idea of comparing

samples with the measure is similar to the study by

Sbert et al.,3 where the Kullback–Leibler distance is

used. Takahashi et al.4 propose another method for

viewpoint selection. In this approach, they decompose

the entire volume into multiple interval volumes (IV).

Each IV is weighted by the sum of opacity values in the

IV, so that it can incorporate the information defined

in the transfer function. Ji and Shen5 further investi-

gate different measures for volume rendering. They

utilize opacity, color, and curvature, which are all

important information in volume rendering. The final

viewpoint is computed by summing up three measures

with predefined weights. Prior knowledge about the

data helps to effectively determine the weights for spe-

cific data sets. More recently, Tao et al.6 introduce two

view descriptors: shape view descriptor and detail view

descriptor. The shape view descriptor favors a scene in

which visible boundary structures face the viewing

direction. The detail view descriptor captures the local

features in the data set.

Feature selection

The goal of our feature selection algorithm is to find all

the features in a data set that would help the viewer

understand the data. Corners of an object and high-

intensity points are important features that can help

the viewer understand the object. In order to find these

features, our algorithm uses two steps: feature selection

and filtering. The feature selection algorithm computes

a score for each voxel, while filtering picks up only a

small set of voxels, the interest points.

Feature selection algorithm

Our feature selection algorithm is based on the Harris

interest point detection algorithm.9 Next, we briefly

review the Harris interest point detection algorithm

and then present how we apply it to our problem.

Background. The Harris interest point detection algo-

rithm9 produces a score for each pixel in 2D images.

Positive score values correspond to interest points in

the image. A pixel is selected as a point of interest if

there is a large change in both the X-axis and the

Y-axis. For example, the algorithm gives a large posi-

tive score to a corner of a shape or a point that has a

high intensity. On the other hand, the algorithm maps

points in a flat area to zero and edges of an object to

negative values. Corner points are important features

for capturing the geometry of an object. If all the cor-

ners of an object are exposed when viewed from a

viewpoint, the number of degenerate surfaces is mini-

mized, and therefore, users can understand the overall

geometry of the object. High-opacity points, which are

also captured as the Harris interest points, are also

242 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

crucial features because users usually set the opacity of

important areas high so that they can see the objects

clearly.

The algorithm measures the change E(x, y) in inten-

sity at pixel (x, y)

E(x, y)=
X
u, v

g(u, v)jI(x+u, y+v)� I(x, y)j2 ð1Þ

where I(x, y) is the intensity value at image coordinate

(x, y) and g(u, v) is defined as a Gaussian weight

around (x, y). If a point (x, y) is in an area that has less

change in intensity, E(x, y) will be close to 0. On the

other hand, around the area that has a large change,

E(x, y) is also large.

The computation of E(x, y) is done using the Taylor

expansion

E(x,y)=
X
u,v

g(u,v)jI(x,y)+xIx(x,y)+yIy(x,y)�I(x,y)j2

=
X
u,v

g(u,v)½xIx(x,y)+yIy(x,y)�2

=Ax2+2Cxy+By2 ð2Þ

where A, B, and C are Gaussian convolutions of I2
x , I2

y ,

and IxIy, respectively

A= g � I2
x

B= g � I2
y

C = g � (IxIy)

Then, E(x, y) can be written in matrix form

E = x y½ � A C

C B

� �
x

y

� �
ð3Þ

Therefore, the intensity change in E is characterized

by the 2 3 2 matrix in equation (3), which we refer as

M, and if the change is large in both directions, the

two eigenvalues of M should be large. The eigenvalues

of M can be computed by singular value decomposi-

tion (SVD), but it needs a long computation. In order

to avoid the SVD computation to find eigenvalues for

each point, Harris and Stephens9 proposed a response

function as follows

R= det(M)� kTrace(M) ð4Þ

where k is an empirical constant, usually set between

0.04 and 0.06 for 2D images. Points that have large

changes in both directions have two large eigenvalues

of M. If the eigenvalues are significantly large, det(M)

impacts more on the value of R than Trace(M). If only

one eigenvalue is significant, R becomes negative as

Trace(M) is greater in the equation. In this case, the

points represent edges because the change is significant

in only one direction. We refer to R as ‘‘Harris score’’

hereafter.

Extension to 3D. In direct volume visualization, data

are stored on a regular 3D grid. Thus, in order to use

our approach with such data, we need to extend the

Harris corner detection algorithm to the 3D spatial

domain. Previously, Laptev and Lindeberg18 extended

the algorithm to the spatiotemporal domain, and

Sipiran and Bustos19 explored how the algorithm can

be extended for 3D mesh data. We adopt the same

structure as in Laptev and Lindeberg, but, in our case,

the third domain is also a spatial domain. The change

function E(x, y, z) is defined as

E(x,y,z)=
X
u,v,w

g(u,v,w)jI(x+u,y+v,z+w)� I(x,y,z)j2

ð5Þ

and the Taylor expansion for I(x + u, y + v, z + w) is

approximated as follows

I(x+u, y+v, z+w)’I(x, y, z)

+xIx+yIy+zIz+O(x2, y2, z2) ð6Þ

Following the same logic as in section ‘‘Background’’

yields the matrix M to be defined as follows

M = g �
I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z

2
4

3
5 ð7Þ

This involves 3D convolution for each voxel, which

is computationally expensive. By using GPU accelera-

tion techniques, we were able to significantly improve

the performance of this algorithm. We further discuss

the performance of this algorithm in section

‘‘Implementation.’’

In our algorithm, the width of the Gaussian convo-

lution kernel is set to 5; the convolution is a weighted

sum of 5 3 5 3 5 patch around a point (x, y, z). The

variance of the Gaussian kernel is set to 1.5. The sen-

sitivity constant k is set to 0.004.

Filtering

The extended Harris interest point detection algorithm

produces a score for each voxel. The large score points

are either at corners of the geometry or in bright areas.

Because we are only interested in the largest score points,

we need to filter out points that represent flat regions or

edges. The algorithm for selecting interest points scans

the entire score data, picking the largest N values.

The set of large score points can be reorganized as a

matrix X 2 R
N33, where each row represents the coor-

dinate of the points selected as interest points in the

Suk Kim et al. 243

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

previous step. N is set to 2048 in our algorithm, which

is empirically determined. If we select too few points,

we fail to capture all the important points in the data

set. On the other hand, if we include too many points,

we may end up adding noisy data points, for instance,

points in flat areas or at edges. In addition, having

many points in X increases the computational cost (1)

in the filtering because the size of the buffer during the

search increases and (2) in the optimization solver dis-

cussed in section ‘‘View selection’’ because X impacts

the performance of the solver.

Figure 1 shows the Harris score distribution of the

tooth data set. The maximum Harris score for this

data set is 2.5 3 1011 and the minimum is 24.6 3

1010. The distribution has a peak around 0, which is

typical for many volume data sets because empty

regions have scores around 0. Note that, however, hav-

ing both positive and negative Harris scores is not typi-

cal. Depending on the characteristics of the data, it

may not have many corner points, for instance, when

an object has a very smooth surface. The constant k

plays an important role in determining the shape of

distribution.

Figure 1 also shows the threshold for the largest N

values. All the points that have a Harris score greater

than the threshold are included in X, and there are 2048

such points in this example. The position of the thresh-

old shows that if we include more points, the line moves

to the left, which will include some points that may not

be interest points. The number of elements N in X is

empirically determined by checking the distributions

of R. If we select too few points, we fail to capture all the

important points in the data set. On the other hand, if

we include too many points, we may end up adding

noisy data points, for instance, points in flat areas or at

edges. In addition, having many points in X increases

the computational cost (1) in the filtering because the

size of the priority queue increases and (2) in the optimi-

zation solver discussed in section ‘‘View selection’’

because X impacts the performance of the solver.

Figure 2(a) and (b) shows examples of interest

points. We applied the interest point detection algo-

rithm and selected only large score points as described

in this section. Each green rectangle denotes an inter-

est point detected by our algorithm. The engine block

0 5 10 15 20

x 10
10

10
0

10
2

10
4

10
6

Harris Score

F
re

qu
en

cy

Harris Score Distribution

Figure 1. Harris score distribution of the tooth data. The
solid line shows the histogram of the Harris score of the
tooth data set. Positive values are considered interest
points or corner points, near zero points are flat areas,
and negative values indicate edges. The dotted line shows
the threshold for X. All the points on the right-hand side of
the dotted line are added to X.

(a) (b) (c) (d)

Figure 2. Examples of Harris interest points. Results for the engine block CT scan data from General Electric, USA.
(a and b) The result of the 3D Harris interest point detection for the engine block CT scan data from General Electric,
USA. We highlighted interest points with green squares. In (a), four corners of the cylinder are selected as interest
points. (b) The outermost slice of the engine block and six corners are detected as interest corners. The interest points
of the orange in (c), highlighted in green, include the center of the orange pieces and a small seed. The data are from
the Information and Computing Sciences Division, Lawrence Berkeley Laboratory, USA. The lobster data shown in (d) are
from the VolVis distribution of SUNY Stony Brook, NY, USA. The claws and the joints of the lobster have interest points.
CT: computed tomography; SUNY: State University of New York; 3D: three-dimensional.

244 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

computed tomography (CT) scan data set has two

cylinders in the block, and Figure 2(a) shows that the

top and bottom of the cylinders are selected as interest

points. Figure 2(b) shows that the algorithm success-

fully identifies most corners in the last slice for the

block. If we add more points in X by finding more

large values, additional corners will be eventually

added, but we did not see any improvement in the

viewpoint selection.

Figure 2(c) and (d) shows two other data sets. A

magnetic resonance imaging (MRI) scan of an orange

is from the Information and Computing Sciences

Division, Lawrence Berkeley Laboratory, USA.

Figure 2(c) shows one slice of the data set with the

interest points highlighted. Points on the edges of the

orange pieces and one seed are selected as interest

points. Two bigger seeds are too big to be captured as

features by our algorithm. The second data are a CT

scan of a lobster. The data are from the VolVis distri-

bution of State University of New York (SUNY) Stony

Brook, NY, USA. The interest points include two

claws and joints as highlighted in Figure 2(d). The legs

are not selected as interest points because the opacity

of the legs is small so the difference in the adjacent vox-

els is not as big as for other points.

View selection

The previous steps generate a set of feature points.

Those points are clustered around the corners of high-

opacity region. Those points are important in view-

point selection (1) because we do not want the corners

of an object to overlap each other and (2) because we

want to minimize the case when high-opacity points

are occluded by each other. Corner points capture the

geometry of the objects in the data. If the corner points

have minimum occlusion, there is a higher chance that

users can see the data from the canonical view of the

data, revealing more details of the data. If the data

have outstanding features, which are captured in the

Harris interest points, and if those features have mini-

mum occlusion, we can still see important objects in

the data. Because the Harris interest point algorithm

favors high-opacity values, high-intensity points, that

is, opaque objects, are more likely to be selected as the

Harris interest points. If our view selection algorithm

can minimize the occlusion between the points, the

occlusion between opaque objects in the data is also

minimized.

Therefore, in the next step of finding the best view-

point, we need to minimize the occlusion between the

feature points. Minimizing the occlusion can be

thought as maximizing the distance between the

feature points, that is, spreading out far apart from

each other. The direction that minimizes the occlusion

can be computed by solving an optimization problem,

which has the same formulation as PCA.20

PCA

We employ PCA to find the best view direction from

the matrix X. The main idea of PCA is to find the

direction û that maximizes the variance of the pro-

jected points of X when projected to û. The optimiza-

tion formulation is

maximizeVar(uX)

subject tojj~ujj2 = 1
ð8Þ

Without loss of generality, we can assume that X is

centered, that is, the mean of points in X is (0, 0, 0).

Then

Var(uX)=
1

N

XN
i = 1

(Xi � u)2 ð9Þ

The detail of how to find the solution for the optimi-

zation problem in equation (8 can be found in the liter-

ature,20 but the solution is derived from the Lagrange

dual function21 and is the eigenvector with the largest

eigenvalue of the covariance matrix of X. That is, the

best viewpoint is the solution of XT Xu= lu. Note also

that the solution is the global maximum, and therefore,

it always gives the best possible direction out of all pos-

sible choices of u. This means that our algorithm does

not trade accuracy for performance. In addition, there

is no trial-and-error parameter tuning process to find

the solution.

By maximizing the variance of projected points, we

expect that we minimize the overlap between the selected

interest points. By placing interest points far apart, we

can see all the interest points in the data set with little—

or ideally, no—occlusion. For example, suppose the data

are just a 2D rectangle in 3D space. The corner detection

algorithm picks up the four corners of the rectangle.

Maximizing the variance of the four points produces the

direction parallel to the normal vector of the plane, which

is the best viewpoint. Degenerative plane or a single line

is achieved when the variance is minimized, that is, when

the viewpoint is set to perpendicular to the normal vector.

Therefore, our best viewpoint guarantees that one can

see as many details of the volume as possible, although

we project 3D data onto a 2D plane.

We use SVD22 for the actual computation. SVD

decomposes the input matrix X into USV T , and the

right singular vector Vs are the eigenvectors of XT X .

Suppose SVD produced V as ½v1jv2jv3�, then the

Suk Kim et al. 245

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

interest points yield the maximum variance along

direction v1. In order to see the largest variance in the

rendered image, the camera’s view direction should

be v3, looking at the center of the volume, because v3

is orthogonal to two directions v1 and v2, the two axes

in which the points achieve maximum variance. On

the other hand, if the points are projected along direc-

tion v3, the variance of the projected points are the

minimum among all possible choices of u in equation

(8). Thus, the ‘‘worst viewing’’ direction is from v1,

orthogonal to v3 and v2.

We also considered using the Harris score values as

weights for uX in equation (8), so that larger weight

points should be placed far apart even if small weight

points are close to each other. This is because if two

points that have large weights and are placed close to

one another, the variance is penalized heavily.

However, the Harris score values do not proportion-

ally correspond to the likelihood of being interest

points, that is, a point having twice as large a score as

another does not mean the point is twice more likely

to be an interest point. Moreover, the percentage of

points we select is relatively small and those points are

all important features in the data. Thus, we do not

leverage the Harris score values themselves in the

optimization.

Note the viewpoint direction is determined by the

two principal components, and the eigenvalues indi-

cate how much variance is generated by each eigenvec-

tor. Thus, by checking the eigenvalues of a data set,

one can figure out how much symmetry the data have.

The following two data sets show an example of how

an eigenvalue spectrum indicates the symmetry of a

data set.

Figure 3 shows the results for two different data

sets. One is the cross data set and the other is the box

data set, both from the Computer Graphics Group,

University of Erlangen, Germany. We set the transfer

function, so that the cross data set shows only the three

rods and two balls attached at the end of two rods and

the box looks like a cube. The interest points for the

cross data are six ends of the three rods and points in

the balls. Therefore, the best view is realized as in

Figure 3(a). Here, we can see the two balls placed far

apart although one rod perpendicular to the two rods

having balls has to be perpendicular to the view direc-

tion. For this data set, one can tell the difference

between the best and worst views very easily. However,

for the second data set, the box, it is not clear which

image shows more information than the other due to

the symmetric shape.

As mentioned, this can be explained by the spec-

trum of eigenvalues, and this spectrum is one way of

evaluating the quality of the PCA. From the SVD

computation, we get three eigenvalues and each eigen-

value is proportional to the variance in that direction.

Therefore, if the largest eigenvalue dominates the

other two, it means that the variance of the points is

mostly captured on the axis defined by the first eigen-

vector. In contrast, if three eigenvalues are more or

less the same, the rendered images from three different

directions produce similar results in terms of

variances.

This difference is verified by the eigenvalue spec-

trum in Figure 4. For the cross data set, the first and

second eigenvalues occupy 95.6% of the sum of the

three eigenvalues. This indicates that the plane per-

pendicular to the third eigenvector, that is, the view

direction, holds 95.6% of the variance of the interest

points. On the other hand, the box data set produces

three almost identical eigenvalues. This means that the

variance of the interest points is equally explained by

each axis. No matter where the data are viewed from,

it produces equally good images. Three (almost) iden-

tical eigenvectors tell us that the variance of interest

points in Figure 3(c) and (d), as well as a view from

(a) (b) (c) (d)

Figure 3. The results for the cross and box data from the Computer Graphics Group, University of Erlangen, Germany.
The transfer function is set to show only the inner part of the cross data, leaving out outer faces. (a and b) While the
cross data set shows big difference between best and worst views, (c and d) it is hard to tell which view works better for
box data. The eigenvalue spectrum (shown in Figure 4) of these two data sets explains the reason why.

246 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

the side or any random direction, is identical. This

comes from the symmetry of the shape, and regardless

of the position, one-third of the total variation is lost

during the rendering projection. This example is the

worst possible case for PCA in maximizing the var-

iance. However, this perfect symmetry rarely happens

in real data sets, and even in this worst case, the algo-

rithm correctly suggests a viewpoint that human per-

ceives as the best.

Implementation

We implemented the algorithm described in sections

‘‘Feature selection’’ and ‘‘View selection.’’ There are

three main kernels to compute the best viewpoint:

(1) 3D Harris corner point, (2) filtering, and (3) PCA.

Figure 5 shows the pipeline of the algorithm. The

input to the algorithm is the opacity data modified by

the transfer function. The output of the algorithm is

the best direction for displaying the volume given the

settings of the transfer function.

The 3D Harris interest point algorithm (section

‘‘Feature selection algorithm’’) takes the opacity data

and produces a Harris score for each voxel. This kernel

is the most computationally challenging part of the

three kernels, as it requires convolution, which per-

forms many memory accesses and arithmetic opera-

tions per voxel. Since our goal is to make the entire

Figure 4. Eigenvalue spectrum for two different data sets. First and second eigenvalues of cross data occupy 95.6% of
the three eigenvalues, which means the variance of projected points on the plane created by the first and second
eigenvectors explains 95.6% of the entire variance in the original 3D space. Therefore, the projection does not lose much
information. On the other hand, the box data set is symmetrical and there is little difference between best and worst
views as shown in Figure 3. This is because the first and second eigenvalues add up to only 66.74% and the three
eigenvalues equally split the entire 100%. This eigenvalue spectrum tells us how well the best view shows the volume
data, and the spectrum gives a quantitative measure for the quality.
3D: three-dimensional.

Figure 5. The computational pipeline for our viewpoint selection algorithm. The input to the algorithm is 3D opacity data
stored in a structured grid. The value ranges from 0 to 255 (8 bits). The 3D Harris interest point detection algorithm
produces the Harris score values for all voxels. The filtering step searches the largest values of the score and the
(x, y, z) coordinates for the values. Finally, the last step executes the SVD of X and computes the eigenvectors of X. Note
that the ‘‘3D Harris Interesting Point’’ and ‘‘SVD Algorithm’’ steps run on the GPU, whereas the filtering step is done on a
multi-core CPU with OpenMP.
CPU: central processing unit; CUDA: Compute Unified Device Architecture; SVD: singular value decomposition; 3D: three-dimensional.

Suk Kim et al. 247

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

algorithm run in real time, an implementation on a tra-

ditional multicore architecture would not have met our

goal. However, the algorithm is a good candidate for

GPU acceleration because it is highly data parallel and

can benefit from the high bandwidth to GPU memory.

Therefore, we ported the algorithm to the GPU. We

use the Mint source-to-source translator23 to automat-

ically generate the CUDA24 code for the 3D Harris

interest point algorithm. The Mint translator takes C

code with simple annotations and generates optimized

CUDA code. The automatic optimizations in the

translator include shared memory optimization to

reduce memory access operations, boundary condition

optimization, loop unrolling, and constant folding.

The Mint-generated CUDA implementation allowed

us to achieve a substantial performance improvement

over the single central processing unit (CPU) imple-

mentation, delivering a 453 speedup. More details

about the parallelization and the implementation on

GPU are described in the study by Unat et al.25

The second kernel is filtering (section ‘‘Filtering’’).

The input to this kernel is the Harris score computed

in the previous step and the output is a matrix X, that

is, the list of coordinates for largest Harris scores.

Because the Harris score is stored in GPU memory

and we compute the filtering step on the CPU, we per-

form memory transfer from GPU memory to CPU

memory. The asymptotical running time of this step is

linear in the number of voxels. In order to further

improve the performance, we parallelized this kernel

with OpenMP.26 The parallelization algorithm works

as follows: multiple threads equally divide the entire

Harris score data and each thread searches the largest

N values. After the parallel section is done, a single

thread merges the results into one. We set N to 2048

for all our results. This is just one of many possible

implementation methods, and it is feasible to imple-

ment the filtering step on GPU because filtering is just

a reduction operation.27 Furthermore, the transfer

time is already included in the running time reported

in Table 2, and the bandwidth between the GPU and

CPU memory via PCI-Express is large enough to

quickly transfer any reasonable volume data.

Regarding the PCI-Express transfer time, it has been

reported in other works extensively.28

The last step is to compute the eigenvectors of X.

The output of this step is a vector in 3D, which is the

best viewpoint determined by our algorithm. Because

the size of X is a constant, 2048 3 3 in our case, the

computational overhead for this step is trivial com-

pared to the previous steps. We used the Compute

Unified Linear Algebra (CULA) library,29 a linear

algebra package in CUDA. Thus, the only part not

implemented in CUDA is the second kernel: filtering.

We are also in the process of off-loading the second

kernel to the GPU, although the cost of the memory

transfers between CPU and GPU memory for the ker-

nel is not as high. In terms of memory transfer between

CPU and GPU, if rendering takes place in GPU, the

entire intensity value needs to be transferred into GPU

texture memory. Our algorithm can access the data

directly.

Impact of parallelization

Table 1 reports the speedup of the Harris interest

point detection algorithm among our three implemen-

tations in three different methods: single CPU, multi-

core with OpenMP (quad-core Intel Xeon CPU 2.0

GHz), and CUDA (Tesla C1060 GPU). The running

time column shows the running time measured for the

Harris interest point detection algorithm. The serial

Table 1. Performance comparison of the Harris interest point detection algorithm among different architectures.

Data set Data size Running time (s) Speedup

Serial OpenMP Mint-generated CUDA Serial OpenMP

CT knee 379 3 229 3 305 24.474 6.392 0.797 30.71 7.58
Foot 256 3 256 3 256 15.580 3.933 0.340 45.82 11.57
Engine 256 3 256 3 256 15.375 3.927 0.340 45.22 11.55
Lobster 301 3 324 3 56 5.012 1.466 0.132 37.97 11.11
Orange 256 3 256 3 64 3.882 0.986 0.099 39.21 9.96
Tooth 94 3 103 3 161 1.427 0.426 0.044 32.43 9.68
Cross 66 3 66 3 66 0.264 0.072 0.0106 24.91 6.79
Box 64 3 64 3 64 0.244 0.062 0.010 24.40 6.20

CPU: central processing unit; CT: computed tomography; CUDA: Compute Unified Device Architecture.
The serial version is run on a single CPU, the OpenMP version is run on a quad-core, and the Mint-generated CUDA version is
implemented in Mint-generated CUDA. The first three columns show the running time of the Harris interest point detection algorithm
in seconds. The last two columns show the speedup of Mint-generated CUDA against the serial version and the OpenMP version. The
CUDA version achieved huge speedups ranging from 24 to 45 against the serial version. Even compared with the OpenMP version, the
CUDA version ran more than six times faster.

248 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

version computes the values with a single CPU,

whereas the OpenMP version utilizes all four cores

available. The Mint-generated CUDA version uses

one of the available GPUs for the main computation.

The last two columns, Speedup, show the speedup of

the Mint-generated CUDA version against the serial

and OpenMP version. The largest speedup achieved is

with the foot and engine data, 453 speedup against

the serial version and 113 speedup against the

OpenMP version. The benefit of parallelism decreases

as the size of the volume data set decreases (note a

453 speedup for foot data set and a 243 speedup for

box data set). The overhead of transferring the data

back and forth between the GPU memory and the

main memory and the latency for launching the com-

putational kernel on GPU caused the decrease.

However, even with the smallest data set, the speedup

and the running time itself indicate that we achieved a

substantial performance improvement against other

implementations.

Figure 6 shows the results of our algorithm with

the tooth data set. We applied two different transfer

functions to highlight different parts of the data.

Figure 6(a) and (b) shows the best and worst results

for the entire tooth shape. The best direction sets the

view from the side allowing viewers to see the entire

root of the tooth. The worst direction projects the data

upward. This occludes many interesting parts of the

data set, for example, the shape of the root. The sec-

ond setting of the transfer function kills the signal in

the root, leaving only the crown area of the tooth.

Then the interesting part of the data is the shape of

the enamel. The best view from our algorithm success-

fully shows that area in Figure 6(c). The worst view in

Figure 6(d) fails to capture the interesting part of the

data. This example illustrates an important point;

transfer function design and the viewpoint selection

algorithm should be tightly integrated with each other.

Transfer functions can change the visual representa-

tion of the data set significantly as shown in Figure 6,

(a) (b) (c) (d)

Figure 6. Results for the tooth data sets with two different transfer function settings. (a and b) The best and worst
images of the tooth data set. (a) Shows the entire shape of the tooth by looking at it from the side, while (b) renders the
tooth from the top and it fails to spread out interest points. On the other hand, we modify the volume with a 1D transfer
function and render only (c) the crown area without the root of the tooth. In this case, looking from the side does not
reveal any particularly interesting information, which is shown in (d). The most interesting information is the shape of
the enamel, and thus, viewing from the top shows the interest points more effectively.
1D: one-dimensional.

Table 2. Performance comparison for various volume data sets.

Data set Data size Our approach Ji and Shen Tao et al.

Running time (s) Rating Running time (s) Rating Running time (s) Rating

CT knee 379 3 229 3 305 0.8128 4.30 6.8281 4.30 18.2919 5.15
Foot 256 3 256 3 256 0.5906 5.20 8.4182 5.90 14.0245 4.85
Engine 256 3 256 3 256 0.5036 4.60 8.6340 5.60 13.9101 6.00
Lobster 301 3 324 3 56 0.2619 5.27 5.6118 2.23 8.2253 5.82
Tooth 94 3 103 3 161 0.1345 4.42 5.0289 5.60 6.5794 5.40

CT: computed tomography.
We show the running times and user study rating for various data sets. Entropy-based approaches, Ji and Shen5 and Tao et al.,6 are
significantly slower than our approach. Our approach runs in less than a second in all data sets, which makes it feasible to be used
along with transfer function exploration. The average ratings from our pilot study show that our algorithm achieves comparable image
qualities to the previous approaches.

Suk Kim et al. 249

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

and depending on the setting of the transfer function,

the area of interest changes as well. Therefore, the

result of the viewpoint selection algorithm can change

dramatically with the transfer function. Updating the

results in real time based on the transfer function is

critical for understanding the volume data sets.

Evaluation

In this section, we compare our algorithm to two state-

of-the-art algorithms in terms of running time and

visual quality. We measured the running time under

the same conditions and conducted a small survey to

rate the quality of the images.

Other approaches

We compare our algorithm with two previous

approaches.5,6 The approaches based on information

theory evaluate the amount of information contained

in each view. Bordoloi and Shen2 define the PDF on

voxels of the data. At each viewpoint, the PDF

changes. Ji and Shen5 and Tao et al.6 define the PDF

on the pixels of the rendered image. Therefore, the

evaluation of entropy value requires a rendering pro-

cess for each view. Because none of the three

approaches considers any acceleration method for the

search for best viewpoints, the basic mechanism for

search is brute force; it evaluates as many points as

possible and chooses the best one, which is the one

that achieves the largest entropy. Then, there is a

trade-off between the computation time and the cor-

rectness of the result. If one increases the number of

samples, it is possible to find a viewpoint close to the

optimal viewpoint. However, this presses the compu-

tation time because the running time of the algorithm

is proportional to the number of renderings, which is

very expensive. On the other hand, if one wants to find

a solution in a reasonably short time, the only way is

to reduce the number of samples. Then, the average

distance between samples increases, and it is very

likely to miss the optimal solution.

For the sake of comparison, we implemented two

state-of-the-art approaches, one by Ji and Shen5 and

the other by Tao et al.6 Ji and Shen use opacity of the

rendered image as their quality metric. If there are

more pixels with a high opacity in an image, they con-

sider the image to be more important. Therefore, they

render the volume with opacity data and measure the

entropy value of the opacity distribution. The rendered

image with the highest entropy value is considered the

one with the best viewpoint. Although color and cur-

vature information are used to measure the quality of a

view, it requires multiple rendering processes to get

entropy values from each measurement. This

significantly slows down the running time, but we were

able to get very good results with only opacity, which

we discuss in detail in section ‘‘Result comparison.’’

The algorithm by Tao et al. is based on the same

framework, but they measure a shape descriptor and a

detail descriptor. Their shape descriptor measures the

information that represents the overall structure of a vol-

ume data set, while the detail descriptor measures the

small details of the data. The former is computed from

the data created by bilateral filtering.30 The algorithm

filters the original volume, which smoothes out noisy

information. After the filtering, the resulting volume

contains only the overall structure. Then, if a majority

of surfaces in the volume is orthogonal to the viewing

direction, it means that the volume exposes more sur-

faces, which they argue provides more information.

On the other hand, the difference between the orig-

inal volume and the filtered volume represents small

details that do not affect the overall structure. The

authors also argue that a good view should be able to

expose this detail. Therefore, they find a direction

where this detail can be maximally exposed. The two

pieces of information are combined by a user-defined

weight. Because the data we used for our experiments

do not contain local features, we decided to put a 0.8

weight on the shape descriptor and a 0.2 weight on the

detail descriptor. Both descriptors require gradient

computation, and the gradient for each fragment is

computed in a shader.

Performance comparison

Both approaches (Ji and Shen and Tao et al.) were

implemented in C++ with OpenGL. The volume-

rendering algorithm uses 3D textures, and the final

image is a result of blending many parallel volume

slices. In order to compute the correct view descriptor

values for entropy-based approaches with minimum

overhead, we use GLSL shader programs. Our win-

dow size (OpenGL viewport) is 512 3 512 pixels. The

best viewpoint is selected from 500 viewpoints ran-

domly selected on the viewing sphere. The geometrical

center of each volume is located at its origin, and the

camera look-at direction is this origin for all view-

points. For our algorithm, as mentioned in section

‘‘Implementation,’’ we used the Mint translator (in ver-

sion 0.3) to generate the CUDA code for our algo-

rithm. This code was subsequently compiled with the

NVIDIA nvcc compiler and linked with the CULA

R10 library. We used version 3.2 of the CUDA Toolkit.

For the sake of a fair comparison, we ran all tests on

the same computer. The graphics card and CPU in this

machine are an NVIDIA GeForce GTX 285 and an

Intel Core i7 with 2.93 GHz. We measured the running

time 10 times for each case and report the minimum in

250 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

Table 2. During the measurement, we excluded the

time for bilateral filtering in the algorithm by Tao et al.,

which takes more than 10 s for typical data sets. We

decided not to add this time to our reported numbers

because many algorithms have been proposed31 that

allow us to do the preprocessing more efficiently than

the original algorithm. Implemented in CUDA, it

would be possible to run it in less than a second.

Table 2 shows the running time of the three algo-

rithms. Our approach vastly outperforms Ji and Shen

and Tao et al. On average, our approach is 27 times

faster than the algorithm by Ji and Shen and 38 times

faster than the algorithm by Tao et al. An important

aspect of the running times is that our algorithm runs

in less than a second, which enables us to run our algo-

rithm interactively in any volume-rendering systems.

More than 5 s running time of previous approaches

limits their use by interactive applications. We will dis-

cuss the benefits of our algorithm further in section

‘‘Applications.’’

Result comparison

Figure 7 shows the results from our algorithm and pre-

vious approaches. In the first row of Figure 7, we com-

pare the best view for the CT knee data. Figure 7(a)

and (d) renders the data from the back and the front,

respectively. One can easily see that the data show the

symmetric shape of the legs and that they render the

knee by finding the shapes of its bones. Figure 7(c)

shows two legs but the legs slightly overlap each other

because the viewpoint is from the side, making it diffi-

cult to distinguish them. The second row of Figure 7

shows the foot CT scan data. The viewpoints of Figure

7(e) and (g) are from the top, both of which show the

data effectively. However, the viewpoint for Figure

7(h) is slightly tilted. One can still understand the

shape of the foot in Figure 7(h). The third row of

Figure 7 renders the engine CT scan data set. The

result of our approach (Figure 7(i)) appears to be

slightly less optimal than Figure 7(k) and (l). However,

in our approach, the tip of the cylinder is clearly visi-

ble, while the other two approaches failed to do that.

For the tooth data, most algorithms show similar

results, as shown in the fourth row of Figure 7. The

viewpoint from the side generates a large number of

nonzero pixels (for the algorithm by Ji and Shen) and a

large portion of surfaces in the data is exposed (for the

algorithm by Tao et al.), making the best viewpoint

one from the side. The lobster data set shown in the

last row of Figure 7 looks best with our algorithm. Our

result (Figure 7(q)) shows the lobster from the top,

revealing all the details from the claws to the tail.

Figure 7(t) shows almost identical results where the

viewpoint is set slightly tilted to the side. The result

with Ji and Shen’s algorithm (Figure 7(s)) shows the

lobster from the side. This result is because the algo-

rithm favors an image that has many nonzero pixels.

Due to the body and the claw, the projected area of the

lobster is maximized when projected from the side.

Pilot study

In order to further confirm that our approach produces

comparable results to the previous algorithms, we con-

ducted a small survey among our team of researchers

to provide quantitative measures for the image quality

across multiple algorithms. ‘‘Comparable results’’ here

mean that we are not arguing that our method pro-

duces significantly better results: our method is rather

focused on the interactive performance, which we

already showed in the previous sections, and the results

from our pilot study prove that our method produces

no worse results than competing methods, which take

at least a few seconds.

We created an online questionnaire and sent it to

graduate students and research staff we work with. We

received 21 fully answered questionnaires back. The

participants were asked to rate each image in Figure 7

on a scale from 1 (worst viewpoint) to 4 (neutral) to 7

(best viewpoint).

The average ratings are listed in Table 2 and range

from 4.42 to 5.20. This range is slightly lower than the

other two approaches: the algorithm by Ji and Shen

achieved between 4.30 and 5.90, although the rating

for the lobster data is extremely low (2.23); the algo-

rithm by Tao et al. achieved the best rating, ranging

from 4.85 to 6.00. The average ratings for the images

with the worst viewpoints, shown in the second col-

umn in Figure 7, are consistently very low (between

1.95 and 2.80).

Result for multichannel data

We applied our method to a multichannel data set.

When investigating multichannel data, viewpoint is

more critical because each channel renders different

organs in the specimen and scientists usually turn on/

off a few channels and see how each channel looks or

compare two channels together. In order to investigate

two channels, scientists usually have to rotate the vol-

ume that shows the two channels most effectively.

We use the zebra fish head data, courtesy of Hideo

Otsuna and Yong Wan from the University of Utah.

The zebra fish head data consist of three channels: the

first channel, rendered in red, shows eye muscles; the

second channel, rendered in green, expresses eye,

retina ganglion cells, and tectum; and the third chan-

nel, rendered in blue, expresses cell nuclei.

Suk Kim et al. 251

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7. Comparison between other approaches: (a, e, i, m, and q) our approach, (b, f, j, n, and r) worst viewpoint, (c, g,
k, o, and s) Ji and Shen, and (d, h, l, p, and t) Tao et al.

252 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

All the rendered images in this section are rendered

with a 3D texture-based rendering algorithm with

alpha blending. The viewport size is set to 512 3 512.

The center of each volume is located at the origin, and

the view direction is set to look at the origin.

Figure 8(a) and (b) shows the overall screenshots

showing different organs in the data. The figure shows

the eye and brain region. The tectum and cells in the

eye are colored in green. The eye muscles wraps

around the eye region. The blue channel denoting cell

nuclei wraps around the organs. Because scientists are

usually more interested in channels 1 and 2, Figure

8(a) shows only two channels turned on.

As each channel already shows distinct objects, we

show results of our view selection algorithm for each

channel. Figure 9(a) shows the result for channel 1.

From Figure 9(b), one can clearly understand how the

eye muscles are spread out in the specimen. Figure 9(b),

which is the worst viewpoint from our algorithm, pre-

vents viewers from understanding the overall structure of

objects expressed in channel 1. Figure 10 shows the sec-

ond channel. Figure 10(a) clearly shows the two compo-

nents, tectum and RGCs, in the data, with no occlusion,

whereas in Figure 10(b), all the objects overlap each

other. Figure 11 shows the third channel. The third

channel contains cell nuclei, the small details of which

(a) (b)

Figure 8. (a) Rendered images of a zebra fish head with all three channels turned on. The data show the area around
the eye and the tectum. The eye muscle colored in red wraps around the retina ganglion cells (RGCs). (b) Rendered
images of the zebra fish head with only two channels turned on. With the blue channel off, one can clearly see where the
eye muscles are located around the RGCs.

(a) (b)

Figure 9. Results of our viewpoint selection algorithm applied to channel 1 of the zebra fish head data. One can
understand the overall structure of the data from the best viewpoint.

Suk Kim et al. 253

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

can be seen in Figure 11(a). However, a side view, as

shown in Figure 11(b), fails to display those details.

Discussion

Applications

Finding a good projection of a 3D data set to a 2D

image plane is important in computer graphics in order

to highlight certain features of the data set. As we have

shown, our algorithm works well for volume data sets

when using transfer functions and alpha blending,

partly due to our parallelization for CUDA, which

makes our algorithm real time. We propose that our

algorithm is particularly suitable in the following two

usage scenarios: interactive transfer function design

and automatic thumbnail generation.

First, our interactive viewpoint selection can easily

be incorporated into the transfer function design pro-

cess by automatically rotating the volume to the best

viewpoint once a new transfer function has been

selected. This integration can be done by a simple

engineering work; for instance, no viewport change

happens while a user modifies transfer function, and

as soon as user finishes transfer function exploration, a

new viewpoint is computed. Instead of jumping to the

new viewpoint, an animation effect that smoothly

changes the viewpoint from the current to the new

position will give the user a quick overview about the

new transfer function.

(a) (b)

Figure 10. Results of our viewpoint selection algorithm applied to channel 2 of the zebra fish head data. One can see
the shape of tectum and RGCs.
RGC: retina ganglion cells.

(a) (b)

Figure 11. Results of our viewpoint selection algorithm applied to channel 3 of the zebra fish head data. One can see
the cell nuclei on the surface from the best view.

254 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

Second, our viewpoint selection algorithm can rap-

idly produce thumbnail images for large databases of

volume data sets. Due to the progress in 3D volume

acquisition technology, it has become easy to generate

many data sets in a short amount of time. These data

sets are often stored in data banks and made available

through web portals.32,33 These web sites often use

thumbnail images of the data sets as previews for users

to distinguish different data sets without having to

download them. It is not practical for the operators of

such systems to manually rotate each data set to create

good views for the snapshot. Our viewpoint selection

algorithm can be used as a thumbnail generation tool

for thousands of volume data sets in a very reasonable

amount of time.

Limitation

Despite the sub-second performance and the simpli-

city of the algorithm, our approach has a few caveats,

three of which we are going to address in more detail.

First, our algorithm assumes that the rendered images

would contain the most useful information if the inter-

est points were placed far apart in the rendered images.

That works for many data sets. However, the algorithm

ignores any occlusion effects. If a data set is rather opa-

que and the visibility for the inside is limited, it may

not be able to see through the volume. In this case, if

interest points are selected on the inside, even if the

variance of the points is maximized, the result may not

produce the best view direction. However, most data

sets for direct volume-rendering systems are more

transparent. If a volume data set is rather opaque,

there is not much benefit of rendering a scene with

expensive volume-rendering process because iso-

surface rendering can produce better images with more

efficient rendering.

A potential issue of our approach is that it uses par-

allel projection from the 3D data to the 2D image

plane to determine the best view direction. In our

experience, this works quite well, even if we render the

data set with perspective projection, but in some cases,

the interesting features might not end up in the opti-

mal places when perspective projection is used to ren-

der the images.

Finally, PCA produces three eigenvectors, one of

which we choose for the best viewpoint. However, the

eigenvector is an axis, not a direction, on which you

can see the interest points effectively. The variance we

see from the eigenvector v is the same with 2v because

all the points are projected to the plane orthogonal

to v. For transparent volume data sets, this may not

cause a big difference, but one direction may not gen-

erate as good an image quality as the opposite direc-

tion. One simple solution to this problem is comparing

the entropy of the two rendered images to choose the

better one. The probability density function for the

image can be defined as in many other information

theory–based frameworks.2

Conclusion and future work

We proposed a new approach for finding the best view

direction for volume rendering. The algorithm locates

interest points in a volume data set and finds a best

view in which the interest points are spread out the

most. The interest points are found by a 3D extension

of the Harris interest point detection algorithm and

the view direction is computed by solving a PCA prob-

lem. Our algorithm runs significantly faster than other

approaches based on information theoretic frame-

works. The performance benefit comes from the

simplicity of the algorithm and an efficient implemen-

tation on the GPU architecture.

Although our algorithm assumes the Harris interest

points as important features to look at, it would be

interesting to consider different feature selection algo-

rithms, for example, scale-invariant feature transform

(SIFT).34 Studying other alternatives of the feature

selection, in terms of the effectiveness and efficiency,

could also be valuable. We would also like to investi-

gate the effect of PCA’s linear projection when using

perspective projection for rendering. To achieve this

goal, we will have to formulate the optimization prob-

lem in a different form.

Funding

Didem Unat was supported by a Center of Excellence

grant from the Norwegian Research Council to the

Center for Biomedical Computing at the Simula

Research Laboratory. Scott Baden was supported, in

part, by the University of California San Diego and, in

part, by the Simula Research Laboratory.

References

1. Vázquez P-P, Feixas M, Sbert M, et al. Viewpoint selec-

tion using viewpoint entropy. In: Proceedings of the vision

modeling and visualization conference 2001, VMV ’01, pp.

273–280. Aka GmbH, 2001 Stuttegart, Germany.

2. Bordoloi UD and Shen H-W. View selection for volume

rendering. Visualization, 2005. VIS 05. IEEE, vol., no.,

pp. 487–494, 23–28 Oct. 2005 doi: 10.1109/VISUAL.

2005.1532833.

3. Sbert M, Plemenos D, Feixas M, et al. Viewpoint qual-

ity: measures and applications. In: Eurographics workshop

on computational aesthetics in graphics, visualization and

imaging (eds L Neumann, M Sbert, B Gooch, et al.),

Girona, Spain; 18–20 May, 2005. pp. 185–192.

Suk Kim et al. 255

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

4. Takahashi S, Fujishiro I, Takeshima Y, et al. A feature-

driven approach to locating optimal viewpoints for vol-

ume visualization. Visual Conf IEEE 2005; pp. 495–502.

5. Ji G and Shen H-W. Dynamic view selection for time-

varying volumes. IEEE T Vis Comput Gr 2006; 12:

1109–1116.

6. Tao Y, Lin H, Bao H, et al. Structure-aware viewpoint

selection for volume visualization. In: IEEE Pacific 2009,

visualization symposium, Bejing, China; April 20–23;

pp. 193–200.

7. Vázquez P-P and Sbert M. Fast adaptive selection of

best views. In: Proceedings of the 2003 international confer-

ence on computational science and its applications: part III,

ICCSA’03, Montreal Quebec, Canada; May 18–21

May; pp. 295–305. Berlin, Heidelberg: Springer-Verlag,

2003.

8. Lee CH, Varshney A and Jacobs DW. Mesh saliency. In:

ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, Los

Angeles, CA; July 31st - August 4th; pp. 659–666. New

York: ACM, 2005.

9. Harris C and Stephens M. A combined corner and edge

detector. In: Proceedings of the 4th Alvey vision conference,

August 31st-September 2nd; 1988, pp. 147–151; http://

www.bmva.org/bmvc/1988/avc-88-000.pdf.

10. Kniss J, Kindlmann G and Hansen C. Interactive vol-

ume rendering using multi-dimensional transfer func-

tions and direct manipulation widgets. In: VIS ’01:

proceedings of the conference on visualization ’01, San

Diego, CA, USA; October 21–26 pp. 255–262.

Washington, DC: IEEE Computer Society, 2001.

11. Kim HS, Unat D, Baden SB, et al. Interactive data-

centric viewpoint selection. Visual Data Anal 2012;

8294(5): 829405.

12. Blanz V, Tarr MJ and Blthoff HH. What object attributes

determine canonical views? 1999 Perception; 28: 575–600.

13. Bowyer KW and Dyer CR. Aspect graphs: an introduc-

tion and survey of recent results. Int J Imag Syst Tech

1990; 2(4): 315–328.

14. Koenderink JJ and Doorn AJ. The singularities of the

visual mapping. Biol Cybern 1976; 24: 51–59.

15. Koenderink JJ and Doorn AJ. The internal representa-

tion of solid shape with respect to vision. Biol Cybern

1979; 32: 211–216.

16. Palmer S, Rosch E and Chase P. Canonical perspective

and the perception of objects. Attention Perform 1981;

IX: 131–151.

17. Polonsky O, Patan G, Biasotti S, et al. What is an image?

Towards the computation of the ‘‘best’’ view of an object.

Visual Comput 2005; 21(8–10): 840–847.

18. Laptev I and Lindeberg T. Space-time interest points.

IEEE Comput Soc 2003; 432–439.

19. Sipiran I and Bustos B. A robust 3d interest points detec-

tor based on Harris operator. In 3DOR. 2010, pp. 7–14.

20. Pearson K, On lines and planes of closest fit to systems

of points in space. Philos Mag 1901; 2(6): 559–572.

21. Boyd S and Vandenberghe L. Convex optimization. New

York: Cambridge University Press, 2004.

22. Forsyth DA and Ponce J. Computer vision: a modern

approach. Prentice Hall, New Jersey, 2002.

23. Unat D, Cai X and Baden SB. Mint: realizing CUDA

performance in 3D stencil methods with Annotated C.

In: Proceedings of the international conference on supercom-

puting, ICS ’11, Tucson, AZ May 31st-June 4th, 2011,

pp. 214–224. New York: ACM, 2011.

24. Nickolls J, Buck I, Garland M, et al. Scalable parallel

programming with CUDA. Queue 2008; 6: 40–53.

25. Unat D, Kim HS, Schulze JP, et al. Auto-optimization

of a feature selection algorithm. In: Proceedings of the 4th

workshop on emerging applications and many-core architec-

ture, San Jose, CA. June 4th 2011.

26. Dagum L and Menon R. OpenMP: an industry standard

API for shared-memory programming. IEEE Comput Sci

Eng 1998; 5(1): 46–55.

27. Roger D, Assarsson U and Holzschuch N. Efficient

stream reduction on the GPU. In: Workshop on general

purpose processing on graphics processing units, Boston,

MA, October 2007.

28. Nukada A, Ogata Y, Endo T, et al. Bandwidth intensive

3-d fft kernel for GPUS using CUDA. In: International

conference for high performance computing, networking,

storage and analysis, 2008. Austin, Texas, SC 2008. 2008,

pp. 1–11.

29. CULA tools: GPU accelerated linear algebra. http://

www.culatools.com/, 2011.

30. Paris S, Kornprobst P and Tumblin J. Bilateral filtering.

Hanover, MA: Now Publishers Inc., 2009.

31. Paris S and Durand F. A fast approximation of the bilat-

eral filter using a signal processing approach. Int J Com-

put Vision 2009; 81: 24–52.

32. Martone ME, Gupta A, Wong M, et al. A cell-centered

database for electron tomographic data. J Struct Biol

2002; 138: 145–155.

33. Mikula S, Trotts I, Stone JM, et al. Internet-enabled

high-resolution brain mapping and virtual microscopy.

Neuroimage 35(1): 9–15.

34. Lowe DG. Object recognition from local scale-invariant

features. In: Proceedings of the international conference on

computer vision-Volume 2, ICCV ’99, Kerkyra Greece,

September 20–27, p.1150. Washington, DC: IEEE

Computer Society, 1999.

256 Information Visualization 12(3-4)

 at UNIV CALIFORNIA SAN DIEGO on August 15, 2014ivi.sagepub.comDownloaded from

http://ivi.sagepub.com/

