
Towards Naturally Grabbing and Moving Objects in VR 
 

Jonathan Lin, Jürgen P. Schulze; Qualcomm Institute, University of California San Diego, La Jolla, CA 

 

 

Abstract 
Many VR applications require picking and moving of virtual 

objects. Many gesture based solutions do not work reliably, 

whereas controller based methods are not as natural as hand pose 

recognition. Tethered controllers add the issue of a cable being in 

the user’s way. We developed a gesture interface using a Leap 

Motion finger tracker attached to an Oculus Rift DK2 and 

implemented three ways of interacting with objects: innate 

pinching, magnetic force, and a physical button attached to the 

index finger. We built a virtual reality test scenario, in which the 

user needs to move virtual objects between shelves to sort them. 

Initial testing shows that grabbing with the button works better 

than the other two more natural methods. Besides the user 

interaction techniques, we also report on our practical experiences 

using Oculus Rift, Leap Motion and the button with the Unity 3D 

development platform. 

 

Introduction 
The purpose of this project is to create a software application 

for researchers in the psychiatry department to observe how people 

organize objects. Subjects wear the Oculus Rift virtual reality head 

mounted display, and sit in a swivel chair. Attached to the front of 

the Oculus Rift is the Leap Motion, a stereo infrared camera that 

detects hand and finger movements. While wearing these devices, 

subjects see a virtual room full of objects, where they can pick up 

an item on a table or bookshelf and place the object elsewhere in 

the room. Behavioral researchers can record the interactions for 

later study. The goal of this project is not only to benefit 

researchers in studying human organizational habits, but also to 

optimize gesture based 3D user interaction. This paper focuses on 

the latter. 

In conjunction with the hardware we use the game 

development system Unity 3D and its asset store, which provides 

ready-made 3D models and animations. We modeled a 3D room 

with a table, shelves, and dishes of different types and in different 

colors, which vaguely resemble a kitchen scenario. The Leap 

Motion is used to detect the user’s hands and surroundings and 

operates in pass through mode, so that the user will not 

unintentionally collide with real-world objects. With the Oculus 

Rift’s position tracker, the users are able to move around the 

virtual world much like in the real one so they can interact with the 

3D objects.  

One of the challenges for this project is to reliably detect the 

motions of grabbing and releasing objects in the virtual world. It is 

hard for interactive 3D systems which allow users to grab objects 

to do this realistically, because it is hard to accurately track hand 

movement, and to measure pressure and friction applied towards 

an object. We are not addressing the latter two aspects either, but 

we do make an effort to track hand motion more realistically by 

employing the Leap Motion camera. 

Another challenge is to provide the user a large enough 

working volume, because it has to be within the range the Oculus 

Rift’s positional tracker supports. Our kitchen scenario does not 

require walking but is still large enough to barely fit within the 

tracking volume. 

 

Related Work 
Interaction with objects in virtual environments has been a 

subject of research since the advent of virtual reality. The use of 

direct interaction is generally considered more intuitive than 

indirect approaches. However, it limits the reach of the user to 

nearby objects. Indirect interaction techniques such as the virtual 

laser pointer technique allow interaction with objects further than 

an arm’s length away by casting a 3D ray into the world and test 

for intersections with objects [6]. Other examples of indirect 

interaction are arm-extension techniques, such as HOMER (Hand-

centered Object Manipulation Extending Ray-casting) or Go-Go. 

The HOMER technique also casts a ray to virtual objects for 

selection, but the virtual hand moves to the object position instead 

of the object being attached to the casted ray [7]. The Go-Go 

technique interacts with virtual objects by nonlinearly scaling the 

hand positions once the physical hand goes past the threshold to 

reach virtual objects [8]. Although indirect interaction may reach 

faraway objects, it has reduced performance compared to 

manipulating objects co-located with one's hand [9]. We chose not 

to use indirect interaction techniques because they do not resemble 

real life interaction with objects enough to draw conclusions from 

the VR experience for the real world in our behavioral research 

setting. 

Direct interaction creates a more natural experience for the 

user in an immersive VR environment. However, according to Paul 

et al. [5], direct interaction has perceptual limitations, where lower 

regions that are further from the viewing axis are worse for precise 

tasks. They propose that when designing 3D user interfaces for 

direct selection with immersive HMD environments that require 

high precision, they should be restricted to a level close to the eyes 

despite more comfortable interaction in the lower regions. Direct 

interaction either uses a constrained virtual hand or a penetrating 

hand to grasp virtual objects [5]. A common approach for a 

constrained virtual hand is the physically based approach. 

Zachmann et al. [10] used the distribution of contacts from fingers 

and palm to differentiate between three states: push, precision 

grasp, and power grasp to grasp virtual objects. Borst and Indugula 

[11] use linear and torsional spring dampers between the virtual 

palm and fingers of the interconnected rigid bodies hand model. 

However, a high friction coefficient is needed for grasping. 



Even though the constrained virtual hand is the most natural 

approach, the penetrating hand approach gives better performance 

[3]. Prachyabrued and Borst [3] use visual feedback for virtual 

grasping to improve behavior after real fingers enter a virtual 

object. They evaluated eight visual feedback methods for grasping: 

Outer Hand, Inner Hand, See-through, 2-hand, finger color, object 

color, arrow and vibration. Object color and finger color gave the 

best user experience and inner hand had the best performance. 

As indirect and direct interaction have their own benefits, 

techniques such as Bendcast and Expand that use both were 

proposed. Cashion et al. [4] created an auto-select framework that 

contains techniques: Bendcast and Expand choose the most 

optimal technique in a given situation. The Bendcast technique 

selects the closest object to the cursor [4]. Expand takes clones of 

all objects that are inside the cursor when the selection is triggered 

and place them into a virtual grid. The virtual grid is spaced evenly 

to avoid object occlusion and collision, and is used for object 

selection [4, 12], but the implementation uses a Play Station Move 

controller to control a cursor, instead of gestures. Of the three 

techniques, Bendcast performed the fastest, but had the highest 

error rate.  

In our implementation, direct interaction was chosen for its 

naturalness. The Bendcast selection technique was chosen for its 

performance and object color visual feedback technique was used 

to balance the error rate. As our application requires high precision 

for selecting virtual objects, we followed Paul et al.’s [5]  

guidelines and restricted interactions to a level close to the eyes 

despite more comfortable interactions in the lower regions. Our 

setup of the Oculus Rift with the attached Leap Motion tracker 

automatically ensures that interactions only happen around the 

center of the user’s field of view. 

 

Description of the Application 
We implemented our software application with Unity 5.1.2p2, 

including its VR support module. It runs on an Intel Core i7-5820K 

CPU, with a Nvida GeForce GTX 980 GPU, which renders to an 

Oculus Rift Development Kit 2, to which a Leap Motion tracker is 

attached. Oculus PC SDK 0.7.0.0-beta was used. 

Our simulation scene contains two sets of shelves, a table and 

dinnerware: four plates, cups, bowls, and pots. Since our objective 

is a realistic simulation of organizing objects in a room, the 

distances and directions the user moves in the virtual world needs 

to be proportional to the amount moved in the physical world. 

Thus, the simulated room was chosen to be a small size due to the 

tracking limit of Oculus Rift positional tracker as shown in Figure 

1 [13]. Due to this reason, the shelves are positioned with just 

enough space in-between them for the user to comfortably interact 

with all the objects. 

 

 

 
Figure 1: Above: Simulated room setup; below: Oculus DK2 positional 

tracking volume visualization 

 

 

Limitations 

Hardware 

The Leap Motion is used for real-time hand tracking, but it 

cannot detect a hand when it is occluded because the controller 

uses optical sensors and infrared light for tracking. Another 

hardware limitation is the tracking range of 25 to 600 millimeters 

(1 inch to 2 feet) above the device [14], which forces users to pick 

up only objects within their view. As a result of this limitation, 

some users are not be able to use the full length of their arms. 

 

Software 

When the leap motion initially detects a hand, it often 

identifies it as the wrong hand (right vs. left). This poses a 

challenge for the application. Another problem presented by the 

Leap Motion is its false interpretation of inanimate objects in its 

range as another hand, such as a floor lamp or curtains. This 

interferes with the implementation, as it is able to pick objects up if 

it is in a pinching state. When more than one hand is used, the 

interaction accuracy drops dramatically, so we did the best we 

could to keep the tracking space free from objects in the tracking 

range. 

 

Implementation 

Scaling 

All 3D objects in the scene are from the Unity asset store. We 

scaled them to match their real-world counterparts, using Unity’s 

unit size of one meter. The scaling of the x, y, z axes is done using 

the object’s axis-aligned bounding box. We constructed all objects 



in reference to measurements found in IKEA’s catalogue, see 

Table 1. An interesting thing to note is that the Oculus SDK for 

Unity uses the same unit size. 

 

The user is placed in the middle of two opposing shelves, 

facing a table, so that the user’s hands are in range of both shelves 

and the table. 

 

Table 1: Sizes of various Ikea objects. 

 

 Width  Height Diameter 

Cup 0.092m 0.120m 0.092m 

Bowl 0.16m 0.07m 0.16m 

Pot 0.23m 0.125m 0.23m 

Plate 0.254m 0.03m 0.254m 

Book Shelf 0.77m 1.68m 0.39m 

Table 1.0m 0.74m 0.6m 

Floor tile 0.4064m 0.0127m 0.4064m 

 

 

Furniture  

We made the room the users find themselves in 10ft x 10ft to 

optimize it to the range of the Oculus’ positional tracker and a 

natural speed of motion. This way the user will feel that they have 

access to the whole room. The shelf width was scaled 1.5 times 

more in width so that it is easier for the user to pick up and place 

items correctly. The plaque or labels on the shelves are 0.42m wide 

and 0.1m high. The width of the labels was chosen so that the user 

can read them without issues. 

 

Sorting Detection 

At the start of the application, the positions of dinnerware and 

labels are randomized. When a dinnerware object collides with a 

shelf row, it checks the label of the row to determine if it is placed 

correctly. If the dinnerware object collides with another 

dinnerware object, it checks if the collided object is colliding with 

a shelf row, then looks up the label of the shelf row. 

 

Hand 

The player controller, hand, and hand controller are 

implemented by using the LeapOVRPlayerController, RigidHand, 

and the HandController prefab from the LeapMotionCoreAsset 

2.3.1. Physical interaction with objects other than grabbable 

objects is turned off. 

 

Grabbing Objects 

The implementation of grabbing an object can be found in 

LeapMotionCoreAsset 2.3.1 for Unity. It contains two utility 

scripts named GrabbingHand.cs and GrabbableObject.cs, where 

the RigidHand prefab needs to attach GrabbingHand.cs. All 

interactive objects need to have GrabbableObject.cs attached. The 

grabbing object distance used was 0.2m as it seems just enough 

distance to correctly select an object. The grab trigger distance 

used was 70cm. Lower values make it hard to determine if an 

object is grasped. The release trigger distance used was 1.5m 

because it is harder to release when set higher, and when set lower 

the grasped object would release unintentionally.  

The first implementation was done with innate pinching. This 

approach requires grasping an object with a pinch gesture. The 

pinch gesture is determined by finding the closest distance from 

the tip of the thumb to the joints of all fingers. If the distance is 

below a threshold, we detect a pinch. We release the object when 

the closest distance is greater than the grab trigger threshold less 

than the release trigger distance. When releasing, we reduce the 

holding force on the object so the object will gradually get dropped 

instead of abruptly. The released state is determined when the 

closest thumb to finger distance is greater than the release trigger 

distance. This technique depends on accurate finger tracking, 

which cannot always be provided by an optical tracking system 

like the Leap Motion which views the hands from only one 

direction. 

Our second implementation treats each finger as a magnet. To 

grab an object, a finger will magnetically attract an object within 

the grabbing object distance. We trigger magnetic grasping when 

the distance between the closest object and the halfway point 

between the tips of the thumb and index fingers is below a 

threshold. We release the object when it collides with a shelf or the 

table. This implementation solves the accuracy problem the 

pinching implementation presented. However, it also requires more 

concentration to select and deselect objects. It is often hard to 

correctly select objects which are close together. And it can happen 

that a grasped object gets dropped accidentally by colliding with 

other objects or the furniture. 

Our third implementation uses a Genius Ring Mouse to 

trigger grasping. The Ring Mouse is put on a finger like a ring and 

provides two buttons, of which we only use one. To grab an object, 

the user clicks and holds down the right button on the ring mouse 

when the user’s hand is within range of an object. When the button 

is released, the object is dropped. This implementation solves the 

issues from the previous implementations with the exception of 

selecting objects, which can still be inaccurate due to tracking 

jitter. 

 

Object Selection 

To indicate which object is about to be grasped, we highlight 

the object this would apply to. The object’s highlight is created 

with a halo effect centered at the object’s rendered axis-aligned 

box center.  



The ring mouse implementation limits the user to using only 

one hand to grab objects because only one ring mouse may be 

used. Thus a problem arises when there are two hands because the 

other hand will still be able to grab objects near it although it is not 

the one with the ring mouse. We solve this problem by defining 

that only one hand can grab objects. 

 

Holding Objects 

As a result of Leap Motion’s hardware limitations, hand 

tracking is not always accurate, which can result in the loss of 

tracking of the hand. When an object is being held and this 

happens, the object will register that it is not being held and falls 

down, as Unity’s physics engine defines. The problem is solved by 

having the held object float in air when the hand is lost before 

heading towards the recreated hand with a magnetic force. A 

magnetic force rather than a sudden reappearance of the object is 

used because it is more visually pleasing. The object can be 

deselected at any time during this process. However, when a hand 

is recreated, the Leap Motion may create the wrong hand and will 

fix itself by recreating the correct hand once the user physically 

moves the hand. Another problem occurs when a hand is 

accidentally lost and the object is in a held state. The object will 

register any new hand that appears as the one being held. This 

creates a problem when the hand was created from a nearby 

inanimate object in reality. This issue has been resolved by 

creating a ray in the user view direction, and use the hand with the 

shortest distance intersecting the ray. 

 
Figure 2: Using the Genius Ring Mouse to pick up and move objects. 

 

Ring Mouse 

When using the ring mouse, the application is dependent on 

the mouse cursor inside the application window. This is an issue 

when the cursor is outside of the window. To solve this issue, we 

capture the device with Direct Input in DirectX Version 9.29.1974. 

Since Unity does not specifically target an OS, 

Microsoft.DirectX.DirectInput is not supported. Even though 

Unity is C# 3.5, it is .NET 2.0 CLR compatible; therefore, a dll is 

made compiled with NET 2.0 CLR to access Direct Input. 

 

Object Meshing 

To achieve higher frame rates, all object meshes were 

imported as optimized meshes. All model collisions are handled 

with Unity's Convex Mesh collider with the exception of the 

bookshelves. The bookshelf colliders were manually created with 

Unity Box Colliders. The labels centered on the rows and the 

sorted results at the back wall were displayed as TextMesh. All 

models not including the interactable dinnerware objects are 

Kinematic objects. 

 

Grabbing Hand 

The hand controller and grabbing hand are implemented using 

the HandController.cs and GrabbingHand.cs from the 

LeapMotionCoreAsset. Modifications to both scripts have been 

made for the Ring Mouse implementation and the Halo effect. 

The scale of the HandController GameObject is 1 in the x 

direction, 1.5 in the y direction, and 1 in the z direction. The initial 

rotation of it is 270 degrees in x direction, 180 degrees in y 

direction and 0 degrees in z direction. Because the Leap Motion 

sensor defaults to the y axis for the sensing of hands, it needs to be 

rotated 270 degrees in the x direction for head mounted displays 

and 180 degrees in the y direction to correct its view with the main 

camera. The hand controller is also responsible for the deselection 

of objects when the hand is destroyed, as well as reassigning the 

object when a hand is accidentally destroyed.  

To find the closest object, the method Physics.OverlapSphere 

is used with the position between thumb and index finger reported 

by the Leap library and the object’s grabbing distance derived in 

the previous section. This method returns a Collider[] with the 

closest objects. When the hand is destroyed and recreated, the 

active object is explicitly set in GrabbingHand.cs and the object 

will move where it is currently positioned. To force the object to 

move to the hand, an offset is needed to magnetically attract the 

object to the hand with a velocity. A velocity and an angular 

velocity is given to the object to move it to the correct place when 

the object is pinched. When the object is released, a weaker force 

is first applied to it to simulate a state of sliding down the hand.  

 

Object Highlighting 

When implementing the highlight of an object with Unity’s 

Halo, the halo should be created in the editor, which can be 

activated with a boolean. To programmatically disable or enable 

the halo, the method gameObject.GetComponent("Halo") is used. 

 
Figure 3: User interaction data flow. 

 



Figure 3 shows the data flow of user interaction. The Leap 

Motion controller script creates and destroys hands. Each hand 

contains the scripts Grabbing Hand and Rigid Hand. Both Leap 

Motion Hand Controller and Grabbing Hand use the Ring Mouse 

data. The Rigid Hand script updates the hand positions with the 

data from Leap Motion’s infrared tracking. The Grabbing Hand 

script manages the interaction with the hand and the grabbable 

object. When the user clicks and holds the button on the ring 

mouse, the hand grabs the nearest object within a distance of 0.2m. 

 
Figure 4: Oculus Rift's rendering pipeline 

 

Figure 4 shows the Oculus Rift data flow. The 

OVRCameraRig is a head-tracked stereoscopic virtual reality 

camera rig. The OVRManager script is the configuration data for 

Oculus virtual reality. OculusWaitForGPU is called once we finish 

work on the CPU and we are now waiting for the GPU to do its 

work. After the GPU finishes it waits for the next draw window. In 

order to maintain a frame rate of 75fps, the CPU and GPU need to 

finish their work within ~13.3ms per frame. I.e., if a frame takes 

15 ms to complete (CPU spends 10ms and GPU spends 7ms) it 

won’t draw until the next draw window at ~26.6ms. With 

OculusWaitForGPU taking 16.6 ms.  

 

Use cases: 
 

 
 

Figure 5: Left: before grasp, Right: selected item is highlighted. 

 

 

 
 

Figure 6: Left: before grasp; Right: object grasped, magnetic force moved 

object to hand. 

 

 

 
 

Figure 7: Left: before grasp; Right: object grasped using innate pinch. 

 

We anecdotally compare three grasping techniques: innate, 

magnetic, and ring mouse pinching. We want to identify which 

technique is most consistent. Grasping a specific virtual object 

among others shows precision and accuracy. The ring mouse 

technique shows the best result for selection.  As shown in Figure 

5, selecting an object with a visual cue gives high precision and 

accuracy. The ring mouse technique gives a better performance 

than the magnetic pinch technique because the magnetic pinch 

technique requires the user to be more careful to accurately select a 

virtual object. When moving grasped objects, the hand will 

sometime lose tracking. Unlike the other two techniques, the ring 

mouse technique can still decide if an object should be in a grab or 

release state. When the hand is recreated and the grasped object is 

still in the grasp state, it will magnetically attract the grasped 

object. Releasing an object at a specific location with the ring 

mouse gives the best result. Similarly to grasping, the magnetic 

pinch technique shows a performance decrease because the 

grasped object will release when colliding with another object. 

Occasionally, the innate pinching technique will not release 

because the fingers are not well tracked. 

 

Performance 
To get the frame rate to the desired 75fps, optimizations were 

made using static and dynamic batching. We also use deferred 

rendering and a point light to generate soft shadows. We are 

currently using Oculus latest SDK 0.7.0.0-beta with NVidia driver 

version 355.84 that Oculus recommended [1], and the current 

stable version of Unity with VR is Unity 5.1.2p2 [15]. 

  

Whenever we had low framerates, the profiler shows CPU 

spikes from the function OculusWaitForGPU. This function call is 

capable of using up all available CPU time. An application 

targeted for Oculus VR should always render at 75fps; therefore, 

an approximate 13.3ms per frame can be spent between CPU and 



GPU. OculusWaitForGPU is called once all CPU processes are 

finished and waits for the GPU to finish its work. However, if in a 

frame the CPU finishes processing more than ~13.3ms, 

OculusWaitForGPU will have to wait for the next draw at 

~26.6ms. This is discussed by a Unity Representative in [2]. 

 

Discussion 
One of the challenges for this project was reliably detecting 

the motions of grabbing and releasing objects in the virtual world.  

Another challenge was programming distances and directions 

into the Oculus Rift to make use of its positional tracker. The 

distances and directions the user moves in the virtual world need to 

be proportional to the amount moved in the physical world. Using 

the positional tracker limits the user to the space physically in front 

of the tracking camera. 

In our first pilot tests, we noticed that many users did not 

embrace the Oculus Rift’s ability to do positional tracking. Instead 

of moving their head close to the object they try to grab before 

they reach out to it with their hand, they often do not move their 

head but try to grab the object with their arm stretched out far. First 

anecdotal feedback tells us that most users felt that the ring mouse 

implementation allowed for the most reliable grabbing actions, but 

some preferred innate pinching because it is more intuitive. 

 

Conclusions 
We presented a new suitable way to simulate hand 

interactions with virtual objects by utilizing a ring mouse. 

Although the ring mouse technique is not an exact simulation of a 

natural grasp, it allows the user to precisely and accurately select 

and grasp objects. It has also shown to be both efficient and user 

friendly. However, it lacks operation of both hands and grasping 

multiple objects, which should be considered for future work. A 

user study is needed for future work. In addition, the current 

movement space allowed with this implementation is overly 

constrained and would benefit from an improved form of 

navigation. 

 

References 
 

[1]  Oculus Web Site: "Oculus Runtime for Windows", URL: 

https://developer.oculus.com/downloads/pc/0.7.0.0-

beta/Oculus_Runtime_for_Windows/ 

[2]  Unity Forum: "Major VR Performance Issue: OculusWaitForGPU 

running on CPU?", URL: http://forum.unity3d.com/threads/major-vr-

performance-issue-oculuswaitforgpu-running-on-cpu.328442/ 

[3]  M. Prachyabrued, C.W. Borst, “Visual Feedback for Virtual 

Grasping”, In Proceedings of IEEE 3D User Interfaces (3DUI) 2014, 

pp. 19-26 

[4] J. Cashion, C. Wingrave and J. J. LaViola, "Optimal 3D Selection 

Technique Assignment Using Real-Time Contextual Analysis," 3D 

User Interfaces (3DUI), 2013 IEEE Symposium on, pp. 107-110, 

2013.  
[5] P. Lubos, G. Bruder and F. Steinicke  "Analysis of direct selection in 

head-mounted display environments",  3DUI,  pp.1-8 2014  

[6] M. Mine, “Virtual Environments Interaction Technqiues”,Technical 

Report TR95-018, UNC Chapel Hill Computer Science, 1995. 

[7] D. A. Bowman, L. F. Hodges, “An evaluation of techniques for 

grabbing and manipulating remote objects in immersive virtual 

environments”, In Symposium on Interactive 3D Graphics (I3D ’97), 

pp. 35–38. ACM Press, 1997 

[8] I. Poupyrev, M. Billinghurst, S. Weghorst, T. Ichikawa, “The Go-Go 

Interaction Technique: Non-Linear Mapping for Direct Manipulation 

in VR”, In ACM Symposium on User Interface Software and 

Technology (UIST), pp. 79–80, 1996. 

[9] M. R. Mine, F. P. Brooks Jr, C. H. Sequin, “Moving objects in space: 

exploiting proprioception in virtual-environment interaction”, In 

Proceedings of the 24th annual conference on Computer graphics and 

interactive techniques, pp. 19–26. ACM Press/Addison-Wesley 

Publishing Co., 1997. 

[10]  G. Zachmann, A. Rettig, “Natural and Robust Interaction in Virtual 

Assembly Simulation”, In Proceedings of the 8th ISPE International 

Conference on Concurrent Engineering: Research and Applications, 

2001. 

[11] C. W. Borst, A. P. Indugula, “Realistic virtual grasping”, In 

Proceedings of IEEE Virtual Reality Conference, pp. 91–98, 2005. 

[12] J. Cashion, C. Wingrave and J. LaViola, "Dense and Dynamic 3D 

Selection for Game-Based Virtual Environments," IEEE Transaction 

on Visualization    and Computer Graphics, vol. 18, no. 4, pp. 634-

642, 2012. 

[13] vrwiki: “Oculus Rift Development Kit 2”, URL: 

https://vrwiki.wikispaces.com/Oculus+Rift+Development+Kit+2#cite

_note-3 

[14] Leap Motion Web Site: “API Overview”, URL: 

https://developer.leapmotion.com/documentation/csharp/devguide/Le

ap_Overview.html 

[15] Unity Forum: "Oculus Runtime 0.7: better performance | extended 

mode dropped", URL: http://forum.unity3d.com/threads/oculus-

runtime-0-7-better-performance-extended-mode-dropped.347654/ 

 

Author Biographies 
Jonathan Lin is an undergraduate student at UC San Diego, 

his major is computer science, with a focus on computer graphics. 

He is currently in his senior year, expecting to graduate in 2016. 

He did the work that led to this paper as part of his undergraduate 

honors thesis. 

 

Dr. Jürgen Schulze is an Associate Research Scientist at UC 

San Diego's Qualcomm Institute, and an Adjunct Professor in the 

computer science department, where he teaches computer graphics 

and 3D user interfaces. He holds an M.S. degree from the 

University of Massachusetts (1998) and a Ph.D. from the 

University of Stuttgart, Germany (2003). After his graduation he 

spent two years as a post-doctoral researcher in the Computer 

Science Department at Brown University. 


